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Abstract
Like all resting-state functional connectivity data, the data from the Human Connectome
Project (HCP) are adversely affected by structured noise artifact arising from head
motion and physiological processes. Functional connectivity estimates (Pearson’s
correlation coefficients) were inflated for high-motion time points and for high-motion
participants. This inflation occurred across the brain, suggesting the presence of
globally-distributed artifact. The degree of inflation was further increased for
connections between nearby regions compared to distant regions, suggesting the
presence of distance-dependent, spatially-specific artifact. We evaluated several
denoising methods: censoring high-motion time points, motion regression, FMRIB’s
ICA-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as
a proxy for global signal regression). The results suggest that FIX-denoising reduced
both types of artifact, but left substantial global artifact behind. MGTR significantly
reduced global artifact, but left substantial spatially-specific artifact behind. Censoring
high-motion time points resulted in a small reduction of distance-dependent and global
artifact, eliminating neither type. All denoising strategies left differences between high-
and low-motion participants, but only MGTR substantially reduced those differences.
Ultimately, functional connectivity estimates from HCP data showed spatially-specific
and globally-distributed artifact, and the most effective approach to address both types

of motion-correlated artifact was a combination of FIX and MGTR.
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Introduction

The Human Connectome Project (HCP) endeavors to reveal variations in
connectivity and their relation to behavior, function, and genetics in 1200 healthy
participants (Van Essen et al., 2013). HCP advanced cutting-edge pulse sequences to
provide resting-state functional magnetic resonance imaging (rfMRI) data with high
spatial and temporal resolution and whole-brain coverage (Ugurbil et al., 2013).
Nonetheless, HCP rfMRI data, like most rfMRI data, are likely contaminated by artifact
resulting from a number of influences, including head motion, scanner-related issues,
and physiological processes related to cardiac, respiratory, and pCO; fluctuations. The
intention of the current work was to focus on artifact correlated with head motion and
the effectiveness of methods designed to reduce such artifacts.

Motion-correlated artifact can bias our understanding of functional networks and
their relationship with individual- and group-difference variables (Power et al., 2012; Van
Dijk et al., 2012; Yan et al., 2013b). Prior studies using lower-resolution rfMRI data
provided approaches to address motion-correlated artifact (Jo et al., 2013; Muschelli et
al., 2014, Satterthwaite et al., 2013), reviewed in Power (2015). These denoising
strategies demonstrated varying degrees of efficacy, but it is unclear whether they will

benefit higher-resolution HCP rfMRI data to the same degree.

Indicators Suggestive of Motion-Correlated Artifact
In this paper, we took four approaches to interrogating the relationship between
head motion and artifact in rfMRI data (c.f., Power et al., 2014): (i) intensity fluctuations

in time series data, (ii) distance-dependent artifacts, (iii) elevated differences between
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low- and high-motion groups, and (iv) relationships between head motion and resting
state functional connectivity (rsFC) estimates. As in the existing literature, we expect
motion-correlated artifact to take two forms: global effects and spatially-specific or
distance-dependent effects.

(i) Fluctuations in time series data: Power and colleagues (2014; 2012)
demonstrated that modest movements of the head are associated with large blood
oxygen level dependent (BOLD) signal changes across gray matter, white matter, and
cerebrospinal fluid voxels. Motion-correlated fluctuations in BOLD signal appear quite
complex: they may increase, decrease, or both before returning to baseline; they may
fluctuate across the whole brain (i.e., globally-distributed), and in some regions more
than others (i.e., spatially-specific); and they may be brief (Satterthwaite et al., 2013) or
temporally-extended (10 or more seconds after motion ends, Power et al., 2014). Some
of these BOLD fluctuations may directly result from motion, and others may be motion-
correlated artifact due to physiological processes time-locked to motion (e.g., yawning
moves the head, but also changes heart rate and pCO; concentration). Either way, the
concern is that motion-correlated artifact influences rfMRI data for all individuals on
average, but more for high-motion than low-motion individuals.

(i) Distance-dependent artifact. Artifactual variance during motion tends to be
more similar for nearby voxels than distant voxels (see discussion in Power et al.,
2015). This results in correlations between head motion and rsFC estimates that are
higher for short-distance connections and lower for long-distance connections

(Satterthwaite et al., 2012). Censoring (i.e., removing) high-motion time points reduces
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motion-correlated artifact and usually decreases correlations between nearby parcels
and increases correlations between more-distant parcels (Power et al., 2014; 2012).

(iii) Motion-group differences: Head motion during rfMRI scans varies across
individuals, and may be confounded with factors of interest, such as age (Power et al.,
2012), attention deficit hyperactivity disorder and impulsivity (Epstein et al., 2007; Kong
et al., 2014), and bipolar disorder and schizophrenia (Mamah et al., 2013).
Unfortunately, rsFC estimates also appear biased in higher-motion versus lower-motion
individuals and groups (Van Dijk et al., 2012). Differences between groups that vary in
head motion are apparent across the frequency spectrum (Satterthwaite et al., 2013)
and across analysis strategies (Power et al., 2015; Satterthwaite et al., 2012; Yan et al.,
2013b).

(iv) QC-rsFC plots: The relationship between individual differences in head
motion and rsFC estimates can also be interrogated with QC-rsFC plots: plots of the
correlation across participants between quality control (QC) measures of head motion
during the scan and rsFC estimates. Previous investigations using QC-rsFC plots
(Muschelli et al., 2014; Power et al., 2014; Satterthwaite et al., 2013) show higher rsFC
estimates in individuals with greater head motion. These increased rsFC estimates exist
across the whole brain (i.e., global) but to a greater extent for short-distance
connections (i.e., spatially-specific). Although methods such as aCompCor (Muschelli et
al., 2014) and censoring (Power et al., 2014) reduce spatially-specific effects, they fail to
substantially reduce global effects.

Goals of the current study

Here, we investigate the relationship between estimated head motion and resting

state correlations in HCP data. Using the procedures of Power and colleagues (2014),
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related to high-motion time points, and report how group- and individual-differences in

head motion relate to differences in rsFC estimates. We investigated the efficacy of
time points, FIX-denoising, and MGTR (see Methods section “Mean grayordinate time

we investigate BOLD fluctuations and distance-dependent changes in correlations
several denoising techniques including: motion regression, censoring of high-motion

series regression” for more information).
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Materials and Methods
Participants:

This investigation evaluated rfMRI data from the HCP “500 Subjects” Public Data
Release. HCP participants were between 22 and 35 years of age at the time of
recruitment, and did not have a documented history of psychiatric, neurological, or
medical disorders known to influence brain function. For a more-detailed description of
inclusion and exclusion criteria for HCP, see Van Essen and colleagues (2013).

The sample of participants included 183 participants (mean age = 29.11, sd =
3.55), divided into three motion-groups with 26 men and 35 women in each.
(Information about demographics and motion are presented in Table 1. See “Selecting
motion-groups” in the Supplement for more details.) The three motion groups did not
differ with respect to age [F(2,180) = 0.37, p = 0.693], years of education [F(2,178) =
1.35, p = 0.263], race [/%(8) = 3.79, p = 0.878], or ethnicity [/*(2) = 2.26, p = 0.323]. By
design, the motion groups did differ with respect to the proportion of high-motion time
points in their scans [F(2,180) = 232.79, p = 1.20x10'5°] and mean FD [F(2,180) =
66.17, p = 3.06x10].

Image acquisition:

Details of the MRI acquisition parameters for the HCP were described elsewhere
(Ugurbil et al., 2013). Structural T1-weighted and T2-weighted images were collected at
0.7 mm isotropic resolution. Whole-brain EPI acquisitions were acquired on the 3T
Siemens Connectom scanner: 32-channel head coil, TR = 720 ms, TE = 33.1 ms, in-
plane FOV = 208 x 180 mm, 72 slices, 2.0 mm isotropic voxels, multi-band acceleration

factor of 8 (Feinberg et al., 2010).
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Overview of four types of preprocessed rfMRI data:

We evaluated the reduction in motion-correlated artifact after FIX-denoising (e.g.,
removing variance classified as noise by FIX) versus without FIX-denoising, and after
MGTR versus without MGTR. Crossing these two factors of interest yielded four types
of preprocessed rfMRI data: FIX, MPP, FIX+MGTR, MPP+MGTR.

Preprocessing of HCP rfMRI data

The HCP FIX-denoising pipeline uses a gentle high-pass temporal filter (using
‘fsImaths’ with 2000 second cutoff), motion regression (i.e., regression of 24 movement
parameters: six rigid-body motion parameters, their backward temporal derivatives, and
squares of those twelve time series), and applies a “non-aggressive” regression based

on independent component analysis (ICA) to remove variance in noise components that
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was orthogonal to signal components (Salimi-Khorshidi et al., 2014).

The inputs to our preprocessing stream were both minimally-preprocessed
(MPP) and FIX-denoised rfMRI data from the HCP 500 subject release. To ensure that
comparisons between MPP and FIX-denoised data primarily reflected differences due to
“non-aggressive” regression of ICA noise components, we preprocessed the MPP data
using procedures similar to the FIX-denoising pipeline, including the lenient high-pass
temporal filter (2000 second cutoff) and motion regression but excluding the regression
of ICA noise component variance. Additional high-pass filtering (0.009 Hz) was
conducted after regressing these confound time series (Carp, 2013). (Additional details

about the HCP Minimal Preprocessing Procedures and HCP FIX-Denoising Procedures

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resting State fMRI Data from the Human Connectome Project (doi: 10.1089/brain.2016.0435)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

are provided in Supplemental Materials.)

Mean grayordinate time series regression

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resti
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Our analyses utilized the CIFTI dense time series files, which represent the rfMRI
time series for 91282 “grayordinates” (i.e., surface-based vertices and subcortical
voxels, constrained to gray matter; see Glasser et al., 2013 for more details about CIFTI
format). Therefore, rather than global signal regression, we performed mean
grayordinate time series regression (MGTR): computing the mean grayordinate time
series from the MPP or FIX data, then regressing it and its backward derivative from
each grayordinate. Although the mean grayordinate time series reflects gray matter
only, MGTR seems a reasonable replacement for global signal regression due to the
strong average correlation between the global signal and mean grayordinate time series
(r=0.94).

Using Grayordinate Plots to Visualize Fluctuations in rfMRI Data:

“‘Residual grayordinate plots” (shown in grayscale) display the time series after
denoising. These reflect the nature of rfMRI data going into rsFC estimation after each
denoising strategy. “Difference grayordinate plots” (shown in color) reflect BOLD
fluctuations removed by each denoising strategy, computed as the difference between
the current stage and a specified previous stage.

Both types of grayordinate plots display the time series data across time points
(columns) and grayordinates (rows). Intensities are displayed as z-scores, standardized
relative to the mean and standard deviation for that grayordinate. White or black values
in the “residual grayordinate plots” and red or blue values in the “difference grayordinate
plots” reflect time points when the BOLD signal for that grayordinate is relatively
extreme (greater than 2 standard deviations from the mean). These values might

influence correlation values strongly.

10
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Censoring, and its role in identifying motion-correlated artifact:

In analyses involving censoring, we explicitly deleted high-motion time points
from the time series prior to analysis. High-motion time points were identified using a
combination of FD and DVARS thresholds (as defined in Supplemental section
“Defining high-motion time points — FD and DVARS”), were defined from the original
MPP data, and were identical for each denoising strategy.

We censored high-motion time points not only as a strategy to reduce motion-
correlated artifact, but also as a means to index any remaining artifact still correlated

with head motion. Previous evaluations showed changes in rsFC estimates after

11

censoring high-motion time points (Power et al., 2014; 2012; Yan et al., 2013b; 2013a).

If motion-correlated artifact is present, high-motion time points will distort rsFC

estimates. If denoising removes motion-correlated artifact entirely, then rsFC estimates

involving high-motion time points will no longer be distorted, and will not differ from rsFC

estimates involving only low-motion time points. Therefore, comparing rsFC estimates

for censored data (i.e., low-motion time points only) to rsFC estimates for uncensored

data (i.e., low-motion and high-motion time points) will identify motion-correlated artifact

remaining after each denoising strategy.
Parcellated connectomes:

Functional connectivity was evaluated in subsequent analyses using full
correlations (Pearson’s correlation coefficients) between parcel time series extracted
from CIFTI grayordinates. We utilized the 333 cortical parcels from the Gordon and
colleagues (2014) parcellation because they have higher functional homogeneity than

several other published parcellation schemes. We also added 19 subcortical parcels

11
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from the group-average CIFTI atlas, for a total of 352 parcels. (Additional detail about
Parcellated Connectomes is included in Supplemental Materials.)
AR plots Display Motion-Correlated Artifact from High-Motion Time Points:

The influence of residual motion-correlated artifact may be revealed with AR plots
—i.e., the difference between rsFC estimates derived from censored versus uncensored
data. For each connection, rsFC estimates are computed using the censored time
series, and the uncensored time series. RSFC estimates are Fisher z-transformed,
averaged across participants, and converted back to Pearson’s r. The difference
between rsFC estimates (averaged across participants) from censored and uncensored
data is then plotted as a function of the distance between parcels.

The slope of these AR plots may demonstrate distance-dependent effects,
indicating that residual motion-correlated artifact differs for short-distance versus long-
distance connections. A shift in the mean of the AR plots may indicate global influences
on rsFC estimates, such that high-motion time points increase correlations across all
connections regardless of distance.

The mean AR and the linear relationship of AR with distance from a general

linear model (GLM) will estimate the global and distance-dependent effects,
respectively. However, because each parcel contributes to multiple rsFC observations,
rsFC observations are non-independent. Statistical inference on the mean and slope is
biased by non-independent observations. However, the parameter estimates
themselves are unbiased. After accounting or controlling for family structure,

participants provide independent observations to conduct valid statistical inference.

12
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Therefore, we fit a GLM for each participant, predicting A R with an intercept

term and a distance term (i.e, Euclidean distance between parcels, after mean-
centering). This yielded independent observations of the mean and slope. Then, one-
sample t-tests determined whether those parameters were different from zero in the
high-motion group (Table 2) and in the low-motion group (Table S1).

To estimate differences between two denoising strategies, we computed the

difference in AR values between two strategies, then predicted those values using a

GLM for each participant with intercept and distance terms. The mean and slope
reflected the difference in global and distance-dependent effects between the two
strategies. Finally, one-sample t-tests across high-motion (Table 2) and low-motion
(Table S1) participants indicated whether the means and slopes differed from zero.
QC-rsFC plots reveal residual distance-dependent and global artifact after censoring:

For each pairwise connection, correlations were computed across 183
participants between the value of the rsFC estimate (after censoring) and the proportion
of time points censored under the combined FD and DVARS criteria. These QC-rsFC
correlations were plotted as a function of distance between the regions to examine
whether distance-dependent artifact might be present in the rfMRI time series. At the
same time, QC-rsFC correlations that are elevated across all distances are suggestive
of global artifact remaining in the time series.

To determine the statistical significance of global and distance-dependent effects

in the QC-rsFC plots, we used a similar approach to significance testing of the AR

plots. First, for each participant, a GLM predicted rsFC estimates with intercept and

distance terms, providing independent estimates of the global (mean) and distance-

13
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dependent (slope) effects. Second, to determine if individual differences in head motion
modulated global and distance-dependent effects, group-level GLMs predicted the
subject-level parameters with a “QC” term (i.e., head motion estimated by proportion of
time points censored, after mean-centering) and an intercept. We estimated the
significance of the global QC-rsFC relationship by “QC” predicting the mean, and the
significance of the distance-dependent QC-rsFC relationship by “QC” predicting the
slope. We report these results separately for censored data (Table 3) and uncensored
data (Table S2).

To estimate differences between denoising strategies, we computed the
difference in rsFC values between two strategies, then predicted those values for each
participant using a GLM with intercept and distance terms. The mean and slope reflect
the difference in global and distance-dependent effects between those two strategies.
Then, we estimated whether those parameters related to the degree of head motion
(“QC”) across participants.

Computing motion-group differences:

We computed the percentage of significant “motion-group differences” observed
in the correlation matrices after each denoising strategy. For a given rsFC estimate,
unpaired t-tests determined whether motion-group differences (e.g., between high- and
low-motion groups) were significant. (See “Establishing alpha level for testing motion-
group differences” in the Supplement for more details.) We reported the percentage of
significant motion-group differences across all connections, and separately for short-
distance (4.8 mm — 58.6 mm), medium-distance (58.6 mm — 112.3 mm), and long-

distance (112.3 mm — 166.1 mm) connections.
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For each denoising strategy, we used permutation testing to determine whether

the observed number of motion-group differences was significantly greater than
expected by chance. The null distribution was estimated by permuting motion-group

labels across participants 10000 times.

15

‘Jooud s1y) wolj IPIp Aewr UoISIdA paysiiqnd [eury dy ], ‘uondau0o jooid pue Sunipekdod o31apun 03 194 sey nq ‘uonedrqnd 10y paydaooe pue pamardi-1oad usdq sey toded siy
(SE¥0°9107 ureIq/6801°01 :10p) 192[01d SW0}2UUO)) UBTUNH Y} WO Bl [YIAF 2IelS Sunsoy ur joeJNIy pIJe[oLI0)-UOT)OJA SSAIPPY 0], SAISejeng Suisioud( Jo uonenjeAq

-Joo1d S1y) WoIJ IOPIp Avwl UOISIdA paysI[qnd [eury oy ], ‘Uonda1I0d Jooid puLFrpHasya:
(SE¥0°910T UIeIq/6801°01 :10p) 199014 SW0123UU0T) UBUINH dY) WOIJ EIe( me_\é ArIS
JIAL

it

19pun 03 324 sey nq ‘uonedrqnd 10j pa1dadoe pue pamaraal-1oad uaaq sey [onIe sy J,
TISY UI JOBJNIY PRJB[Q1I0)-UOTIOJA SSAIPPY O, SOISa1eilS SUIsIoua(] Jo Uonen[eAs]

100UU0)) UTRIg



v
ﬂ\/ﬂ/il Data from the Human Connectome Project (doi: 10.1089/brain.2016.0435)

ng State
g%&imﬁyenhﬂwg}and proof correction. The final published version may differ from this proof.

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resting State fMRI Data from the Human Connectome Project (doi: 10.1089/brain.2016.0435)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Brain Connectivit

reviewed and accepted for publication, but has yet to under

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resti

This article has been peer

Page 16 of 65

16

Results
Grayordinate plots display spatially-specific and global fluctuations
Figure 1 shows grayordinate plots from HCP participant 107422 from time points
600 - 1000 (4.8 minutes) of their fMRI_REST1_RL scan. This participant had below-
average head motion, but features evident in these data are present across the full

sample of HCP participants.

Global and spatially-specific artifact is evident in HCP MPP rfMRI data prior to
motion regression. The residual grayordinate plot (Figure 1A) prominently displays
global fluctuations as vertical bands that show similar sign (i.e., positive or negative)
and magnitude across most grayordinates. Some example time periods are indicated by
green arrows. Global fluctuations vary in duration, with some lasting 20 seconds or
more. Spatially-specific fluctuations appear as horizontal bands that varied in sign and
magnitude across grayordinates. Some examples are indicated by red and blue arrows.

Spatially-Specific Artifact is Reduced by Motion Regression and FIX-denoising:
In some cases, spatially-specific noise was isolated to a small proportion of
grayordinates but extended over several time points. These manifest as rows of higher
or lower intensity (red arrows in Figure 1A). These are reduced by motion regression
(red arrow in Figure 1F) and FIX-denoising (red arrows in Figure 1G), resulting in
reduced noise in the residual grayordinate plots (red arrows in Figure 1B and 1C). In
other cases, spatially-specific artifact was evident at specific time points, but showed
effects that varied in sign and magnitude across grayordinates. This spatially-specific

artifact is evident in the variance removed by motion regression (Figure 1F blue arrows)
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and FIX-denoising (Figure 1G blue arrows). Despite the artifact removed by these
strategies, the residual grayordinate plots show clear global fluctuations left behind by
both motion regression (Figure 1B) and FIX-denoising (Figure 1C).

Global Fluctuations are Slightly Reduced by FIX-Denoising, but Dramatically
Reduced by MGTR: FIX-denoising appeared to target some time points that exhibit
global fluctuations (Figure 1G green arrows). Some of these global fluctuations occurred
after spikes in DVARS or FD, but others did not. FIX-denoising results in a reduction in
the magnitude of global fluctuations, but FIX rfMRI data still show substantial global
fluctuations (Figure 1C green arrows) in the grayordinate time series. However, MGTR
dramatically reduced or eliminated the global fluctuations (Figures 1D and 1H).

Combining FIX-denoising and MGTR reduced both spatially-specific and global
fluctuations: The above results suggest that FIX-denoising and MGTR have different
types of effects on motion-correlated fluctuations in the rfMRI data. The differences are
most easily observed in the difference grayordinate plots, where it appears that
combining FIX-denoising and MGTR controls both spatially-specific fluctuations and
global fluctuations in those data (Figure 1J).

AR Plots reveal distance-dependent and global artifact

Within the high-motion group, AR plots show both distance-dependent (spatially-

specific) and global artifact. Censoring high-motion time points elucidates distance-

dependent artifact present in MPP rfMRI data (Figure 2A), confirmed by a statistically
significant slope as a function of distance (Table 2). In the FIX rfMRI data (Figure 2B),
censoring appears to reduce both global and distance-dependent artifact, as indicated

by a statistically significant mean and slope related to distance (Table 2). The reduction
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in distance-dependent artifact due to censoring is visually evident in AR plots from

MPP+MGTR and FIX+MGTR data (Figure 2C and 2D). However, both the mean and

slope of the AR effect were statistically different from zero in MPP+MGTR and

FIX+MGTR data (Table 2).

We evaluated differences in AR between denoising strategies to determine
whether those denoising strategies might reduce distance-dependent and global
artifact. Neither the difference between FIX and MPP rfMRI data nor the difference
between MPP+MGTR and MPP rfMRI data showed significant distance-dependent or
global AR effects (Table 2). One might assume that this indicates that neither denoising
strategy removes motion-correlated artifact. However, the high variability of the MPP
rfMRI data might have reduced our sensitivity to the effects of FIX and MGTR.
Consistent with this hypothesis, the difference between FIX+*MGTR and FIX rfMRI data
is significant for the mean term, and the difference between FIX+MGTR and
MPP+MGTR is significant for both the mean and slope. These findings are consistent
with our interpretation of the grayordinate plots: that MGTR reduces global fluctuations,
and that FIX reduces spatially-specific fluctuations as well as global fluctuations. The
results were similar for low-motion participants (Supplemental Figure S3 and
Supplemental Table S1).

QC-rsFC plots reveal residual distance-dependent and global artifact after censoring:

We investigated the relationship between rsFC estimates and individual

differences in estimated head motion (Figure 3 and Table 3). The MPP rfMRI data

18



Page 19 of 65

! ng State ﬂ\/ﬂ/{I Data from the Human Connectome Project (doi: 10.1089/brain.2016.0435)
This article has been peer-reviewed and accepted for publication, but has yet to underg%@mﬁyenhﬂwg}and proof correction. The final published version may differ from this proof.

Brain Connectivit

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resti

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resting State fMRI Data from the Human Connectome Project (doi: 10.1089/brain.2016.0435)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

19

shows both global and distance-dependent relationships between rsFC estimates and
the amount of motion during the scan, even after censoring, supported by the fact that
head motion is significantly related to both the mean and slope as a function of
distance. FIX-denoising resulted in a statistically significant reduction in the relationship
of head motion with the mean, but head motion still modulated both the mean and slope
in FIX data. MPP+MGTR data showed a larger reduction in the relationship between
head motion and the mean compared to MPP data, but again head motion still
modulated both the mean and slope in MPP+MGTR data. For FIX+MGTR data (after
censoring) the global relationship with head motion was still statistically significant,
albeit at its lowest level, but the distance-dependent relationship with head motion was
eliminated. Global and distance-dependent effects were significantly reduced in
FIX+MGTR data relative to both FIX data and MPP+MGTR data. These effects were

similar for uncensored data (Supplemental Figure S4 and Supplemental Table S2).

Substantial differences exist between motion groups, and are primarily reduced by
MGTR:

Consistent with prior work (Power et al., 2014), the observed number of
differences between the low- and high-motion groups was inflated strongly above
chance in the MPP rfMRI data (Table 4). Both censoring high-motion time points and
FIX-denoising reduced the number of motion-group differences slightly, but the number

of motion-group differences was still substantially elevated. In contrast, MGTR
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---------—--—---|Insert Table 4 about here----------------

dramatically reduced the number of differences between high- and low-motion groups,
albeit not to chance levels, for both MPP+MGTR and FIX+MGTR rfMRI data.
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Discussion

The current study evaluated the presence of motion-correlated artifact in HCP
rfMRI data and its removal by some common denoising strategies. Consistent with prior
work (Power et al., 2014; 2012; Satterthwaite et al., 2013; Van Dijk et al., 2012), the
current results suggest two separate classes of motion-correlated artifact: global and
spatially-specific. The denoising strategies we tested differed in efficacy for these two
classes. Consequently, a combination of methods — such as FIX-denoising to reduce
spatially-specific artifact and MGTR to reduce global artifact — will be necessary to
effectively address motion-corrected artifact.

Denoising strategies had differential effects on motion-correlated artifact

Motion regression, censoring, and FIX-denoising seemed to have the largest
effect on spatially-specific artifact. The grayordinate plots revealed that motion
regression strongly affected some grayordinates but affected others not at all, and the
sign of the effect varied across grayordinates. Censoring high-motion time points
demonstrated a distance-dependent reduction in the AR plot for MPP rfMRI data. FIX
reduced distance-dependent artifact, as indexed by the comparison of FIX+MGTR
versus MPP+MGTR data in the AR and QC-rsFC plots.

On the other hand, evidence of global artifact was only reduced substantially by
MGTR. Global artifact manifested as vertical bands in residual grayordinate plots,
influences of high-motion time points across all distances in AR plots, and relationships
between motion estimates and rsFC estimates across the entire brain in QC-rsFC plots.

These global effects were significantly reduced for FIX+*+MGTR data compared to FIX

data.
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Motion-group differences were reduced by FIX and by censoring. However, these
reductions were relatively modest. They did not appear more strongly for short-distance
connections, as might be expected from a reduction in spatially-specific artifact. In
contrast, MGTR reduced motion-group differences substantially across all distance bins.
This pattern suggests that the bulk of motion-group differences resulted from globally-
distributed artifact, as opposed to spatially-specific artifact.

FIX-denoising seems to primarily address spatially-specific artifact while doing
less to address global artifact. Perhaps that should not be surprising. First, as with many
other ICA-based denoising methods, FIX-denoising uses spatial ICA algorithms that
maximize the spatial independence of components. Consequently, global noise
variance is less likely to be isolated into a separate component and removed by ICA-
denoising. Temporal ICA algorithms may be more likely to identify global components
(Smith et al., 2012), which subsequently might be classified as noise. Second, the HCP
FIX-ICA denoising pipeline applies “non-aggressive” denoising, regressing only the
portion of noise variance orthogonal to signal components. Non-aggressive denoising
may not remove global noise that is shared across signal and noise components (Smith
et al., 2013).

Censoring appears to reduce spatially-specific artifact. However, the significant
slope of the QC-rsFC relationship for MPP and MPP+MGTR data suggests that
censoring did not eliminate distance-dependent artifact as reported in previous studies.
We postulate that the reduced efficacy of the censoring procedure in HCP rfMRI data
might result in part from increased noise variance in the FD and DVARS motion

estimates, as discussed in the Supplemental Materials.
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Potential influences of physiological noise in HCP rfMRI data

The rfMRI time series from many HCP participants contain periodic fluctuations
in signal intensity across the brain. These are visible as evenly-spaced global bands in
the grayordinate plots, resulting in periodic fluctuations in the mean grayordinate time
series (cf., center of Figure 1A). One intriguing question is whether some portion of this
motion-correlated global artifact might be physiological in origin. Head motion and
physiological artifact may be coupled if respiratory movements directly cause head
motion (e.g., yawning, sneezing, deep breathing or sighing), if ballistocardiographic
forces directly cause head motion, or if effort exerted while moving the head and body in
the scanner results in breath holding or change in heart rate.

Interestingly, the global artifact in HCP rfMRI data (Figure 1A) and other rfMRI
data (Power et al., 2014) seems to lag head motion by 10 — 20 seconds. It has also
been shown that respiratory artifact has a response function that extends across a
similar time frame (Birn et al., 2008; Chang and Glover, 2009). Respiration modulates
BOLD signal across the entire brain, but that modulation is stronger in somatosensory,
motor, and visual cortices than other brain regions (Birn et al., 2006; Wise et al., 2004).
Compared to other areas, these regions show stronger correlations both with global
signal (Fox et al., 2009) and with individual differences in head motion (Pujol et al.,
2014; Yan et al., 2013a). These patterns could indicate that changes in respiration are
frequently accompanied by head motion and that these respiration changes may
ultimately be a core driver of global artifact in the BOLD signal. This hypothesis should
be tested directly in future work.

Disadvantages of unmitigated global artifact
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Concerns have been raised regarding global signal regression (e.g., Murphy et
al., 2009; Saad et al., 2012; Schoélvinck et al., 2010), which may also apply to MGTR.
However, we argue that a major, under-addressed concern in the literature is that
unmitigated motion-correlated artifact can be mistakenly attributed to meaningful
individual or group differences. Researchers are rightly concerned about reducing
sensitivity to individual and group differences by inadvertently discarding signal.
Nonetheless, we argue that is critical to fully address motion-correlated artifact when
researching individual and group differences that covary with head motion.

If head motion is correlated with one’s variable of interest, any motion-correlated
artifact that is retained can be mistakenly attributed to that variable of interest.
Denoising strategies that are too lenient could result in features similar to motion-
correlated artifact — such as distance-dependent correlations and globally-increased
correlations — being attributed to a wide variety of clinical, developmental, and
psychological group differences. Unfortunately, the publication bias in scientific literature
(Franco et al., 2014) may make it relatively easy to report significant correlations
resulting from motion-correlated artifact, but harder to refute such findings with
correlations that are not significant after denoising. Therefore, we lean toward being
more conservative with denoising to avoid contaminating the literature with artifactual
findings.

In our opinion, time series denoising methods such as those investigated here
are strongly preferred to leaving behind unmitigated motion artifact in rfMRI data. In the
current study, the denoising methods were chosen to target and remove specific

aspects of time series variance that have been linked to artifact, previously in the
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literature (Birn et al., 2006; Friston et al., 1996; Wise et al., 2004), and empirically in the
data (Power et al., 2014; Salimi-Khorshidi et al., 2014). Importantly, if rsFC estimates no
longer correlate with individual and group differences after these time series denoising
methods, it indicates that those variables only related to aspects of the time series that
were removed by the denoising methods. If individual or group differences resulted
entirely from aspects of the time series previously linked to artifact in the literature, it
leads to substantial doubt that those differences might be neural in origin.

To adequately address global artifact while avoiding the drawbacks associated
with global signal regression or MGTR, additional research is needed to identify
denoising strategies that eliminate global artifact related to head motion and
physiological processes. For example, CompCor (Behzadi et al., 2007; Chai et al.,
2012) uses white matter and cerebrospinal fluid signal as confound regressors to
address motion and physiological artifact without removing neural signal or inducing
anti-correlations. However, Muschelli and colleagues (2014 Supplemental Figure 1)
found increased correlations between FD and rsFC estimates across the brain after
using CompCor, suggesting residual global artifact confounded with individual
differences in head motion. Numerous other approaches (c.f., Yan et al., 2013c for
examples) exist where participant-level motion estimates are treated as covariates in
group-level and individual difference analyses. These approaches may reduce the
influence of global artifact on those analyses. However, because these approaches
regress out variance from the rsFC estimates rather than the time series, they may be
less capable of separating motion-correlated artifact from meaningful individual

differences confounded with motion.
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After denoising HCP data with FIX+MGTR, we still observed a greater number of
motion-group differences than expected by chance. It is possible that these motion-
group differences reflect differences between the high- and low-motion participants in
neural activity related to factors that might influence head motion, such as alertness,
anxiety, cognition, etc. We believe that a comparison of within-participants motion
effects versus between-participants motion effects may help to resolve this question.
However, it is critical that future studies carefully equate the degree of head motion in
within-participant with the between-participant analyses to which they are being

compared.
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Conclusion

Resting state fMRI data with high spatial and temporal resolution are available to
the public from The Human Connectome Project (http://humanconnectome.org).
Although cutting-edge technological advances have led to many improvements, HCP
rfMRI data still are affected by artifact correlated with head motion and other
physiological effects. An evaluation of artifactual changes in BOLD signal intensity
suggests the presence of spatially-specific and global artifacts correlated with head
motion. Several denoising techniques — including FIX-ICA denoising, motion regression,
and censoring high-motion time points — primarily address spatially-specific artifact.
However, these strategies leave substantial differences between rsFC estimates from
high- and low-motion individuals. In contrast, MGTR primarily addresses global artifact,
and substantially reduces rsFC differences between high- and low-motion individuals.
Consequently, a combination of denoising strategies that captures both spatially-
specific and global aspects of motion-correlated artifact will be necessary for productive

analysis of HCP rfMRI data.
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Low-motion Medium-motion High-motion
Age: mean = 29.43 mean = 28.92 mean = 28.98
sd = 3.62 sd =3.74 sd = 3.31
min = 22 min = 22 min = 23
max = 36 max = 36 max = 35
Gender: 26 men 26 men 26 men
35 women 35 women 35 women
Race:
Asian/Hawaiian/Pacific Is. 1 2 2
Black or African Am. 14 12 15
More than one 0 1 1
Unknown or Not Reported 2 1 0
White 44 45 43
Ethnicity:
Hispanic/Latino 8 9 4
Not Hispanic/Latino 53 52 57
Education: mean = 15.082 mean = 14.750 mean = 14.550
sd =1.9519 sd =1.7527 sd = 1.6917
min = 11 min = 11 min = 12
max = 17 max = 17 max = 17
Proportion of Time Points mean = 0.1602 mean = 0.2333 mean = 0.3384
Censored: sd = 0.0274 sd =0.0210 sd =0.0715
min = 0.0792 min = 0.2000 min = 0.2658
max = 0.1992 max = 0.2650 max = 0.6517
Mean FD: mean = 0.1187 mean = 0.1460 mean = 0.2157
sd =0.0217 sd = 0.0340 sd =0.0727
min = 0.0800 min = 0.0800 min = 0.1000
max = 0.1800 max = 0.2100 max = 0.5000

Evaluation of Denoisin
This article has been peer-reviewed and accepted for publication, but has yet to under
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34

Demographic and head motion information broken down by motion group. Head

motion, measured by mean FD or proportion of time points censored, differs between
groups. However, there are no statistically significant differences among groups in age,

gender, race, or ethnicity.

Table 1:

34
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Means and slopes of the AR plots as estimated using a general linear model. Differences between denoising
36

strategies were determined by computing the difference in AR values for those strategies. Slopes are expressed as
change in AR per 100 mm, roughly reflecting the difference between average short-distance and long-distance

connections.
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Table 3
*** n<.001 Changeduel|l = |
** p<.01
* p<.05
Denoising
Mean Slope Mean Slope Mean Slope
Before MGTR 0.3272 -0.0549 0.1940 -0.0450 -0.1332 0.0099
Eﬂ After MGTR 0.0296 -0.0731 0.0084 -0.0246 -0.0212 0.0485
&
g
&
5 Change due -0.2975 -0.0182 -0.1856 0.0205
B to MGTR *k% *k*% *
O

Table 3:

g Strategies To Address Motion
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Relationship of head motion (“QC”) with the mean and slope of the rsFC-distance relationship. See Methods for
38

more detail regardin how these relationships were computed. Slopes are expressed as change in QC-rsFC relationship

per 100 mm, roughly reflecting the difference between average short-distance and long-distance connections.
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Table 4

*** p<.001
** p<.01
* p<.05

Distance | Uncensored Censored
Bin

Denoising Low vs. Med vs. Low vs. Low vs. Med vs. Low vs.
Strategy High High Med High High Med
MPP Alll 22.02%*** 0.13%** 0.04%* 12.27%*** 0.11%* 0.04%*
Shortf 23.91%*** 0.23%** 0.05% 13.90%*** 0.17%* 0.04%
Medium| 21.35%*** 0.09%** 0.04% 11.55%*** 0.08%* 0.05%
Longl 21.23%*** 0.09% 0.04% 12.21%*** 0.11% 0.03%
FIX Alll 14.23%*** 0.19%* 0.04% 12.07%*** 0.12%* 0.08%*
Shorl] 16.77%*** 0.24%** 0.04% 14.00%*** 0.11%* 0.06%
Medium| 14.20%*** 0.19%* 0.03% 12.03%*** 0.13%* 0.09%*
Long| 8.64%*** 0.14% 0.05% 7.98%*** 0.08% 0.08%
MPP + MGTR Alll 0.44%*** 0.03%** 0.01% 0.20%*** 0.02% 0.03%
Shortl 0.90%*** 0.04% 0.01% 0.28%** 0.02% 0.03%
Medium| 0.49%*** 0.03% 0.01% 0.16%™* 0.01% 0.03%
Long| 0.51%** 0.01% 0.01% 0.26% 0.01% 0.03%
FIX + MGTR Alll 0.38%*** 0.05%* 0.02% 0.28%*** 0.04% 0.02%
Shortl 0.40%*** 0.03% 0.01% 0.27%** 0.03% 0.01%
Medium| 0.36%*** 0.06%* 0.03% 0.28%*** 0.05%* 0.03%
Long| 0.46%*** 0.04% 0.01% 0.34%*** 0.00% 0.01%
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0.000242. The percentage is reported for all

40

Percentage of connections showing motion-group differences at a
connections, and separately for short-, medium-, and long-distance connections. The statistical significance is determined

via permutation testing; significance level is noted with asterisks.

Table 4:
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Figure 1:

Nature of BOLD fluctuations in HCP data, and aspects removed by each denoising stage: Five “residual
grayordinate plots” (in grayscale on left) show rfMRI data after each denoising stage: A. MPP before motion regression, B.
MPP after motion regression, C. FIX, D. MPP+MGTR, and E. FIX+MGTR. Four “difference grayordinate plots” (in color on
right) show variance removed by specific denoising steps (estimated by subtracting the current preprocessing stage from
a specified prior stage): F. motion regression (A — B); G. ICA denoising (B — C); H. MGTR (B — D); and J. ICA denoising
plus MGTR (B — E). For each grayordinate plot, columns reflect time points and rows reflect grayordinates. Intensities are
z-scored (across time, separately for each vertex), and range from -2 to +2.

The top panel on both sides shows FD (red), with horizontal lines marking FD = 0.2 mm (suggested as a censoring
threshold by Power et al., 2014) and FD = 0.39mm (current study threshold for FD). MGT (black lines) and DVARS (blue
lines) are derived from data after each denoising strategy. The horizontal line in Figure 1A corresponds to the DVARS
censoring threshold of 4.9 arbitrary MR units. Green arrows indicate time periods displaying global artifact, which
manifests as similar effects across space and occurs across most grayordinates. Spatially-specific artifacts, which
manifest as dissimilar effects across space, are indicated by red arrows (instances that occurring at few grayordinates)

and blue arrows (instances that occur across most grayordinates).
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Figure 2:

Censoring high-motion time points reveals spatially-specific and global shift artifact in AR plots: Red cloud (and
white LOESS fit line) shows effects of censoring high-motion time points on rsFC estimates in the high-motion group,
plotted as function of distance between parcels being correlated. Black cloud (and gray loess fit) shows positive control
(censoring equal number of randomized time points). Range of AR (y-axis) from 0.1 to -0.1, following Power et al. (2014).
Panels show effects of censoring on average rsFC estimates from high-motion group for A. MPP, B. FIX, C. MPP+MGTR,

and D. FIX+MGTR time series data. Analogous plots for the low-motion group are in Supplemental Figure S3.
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QC-rsFC plots show the correlation across participants between the rsFC estimates after censoring and degree of
46

head motion (quantified by proportion of time points censored using the combined FD and DVARS criteria). The QC-rsFC
relationship is plotted for each of the 61776 connections as a function of distance between parcels for A. MPP, B. FIX, C.

MPP+MGTR, and D. FIX+MGTR time series data. Analogous plots for uncensored data are in Supplemental Figure S4.

Figure 3:
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HCP Minimal Preprocessing Procedures:

Structural and fMRI minimal preprocessing for HCP rfMRI data was identical to
that described previously (Glasser et al., 2013), except that the HCP 500 subject
release utilized the multimodal surface matching (MSM, Robinson et al., 2013; Smith et
al., 2013) algorithm using FreeSurfer’s sulcal depth measure (‘sulc’) to perform cortical
inter-participant registration to the surface group-average template.

The fMRI time series images were processed in the fMRIVolume pipeline
(Glasser et al., 2013) which concatenates a set of transformations to register the fMRI
time series to MNI152 standard space (gradient- and field-inhomogeneity distortion
corrections, rigid-body motion correction, two-step registration to T1w anatomical with
FSL’s FLIRT+BBR and freesurfer's BBRegister, nonlinear T1w-to-MNI registration) and
applies them in a one-step spline resampling. Volume images were intensity normalized
to a 4D global mean of 10,000.

Subsequently, in the fMRISurface pipeline, the standard space fMRIVolume time
series was mapped to grayordinates. Voxels within the FreeSurfer cortical gray matter
ribbon were mapped to the native cortical surface mesh, downsampled to the registered
“32k_fs” mesh, and smoothed with a 2 mm FWHM Gaussian surface smoothing filter.
The fMRI time series of subcortical gray matter voxels were assigned to FreeSurfer
parcels using a parcel-constrained atlas smoothing/resampling process. The ultimate
output was a CIFTI dense time series file containing the time series for cortical surface
vertices from both hemispheres and the time series for subcortical voxels constrained to
gray matter parcels.

HCP FIX-Denoising Procedures
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Here, we detail the main steps of the FIX-ICA denoising pipeline, which factor
into the additional preprocessing applied to the MPP data. The HCP FIX-ICA denoising
pipeline has five main steps: 1) remove very slow, effectively linear, trends using a
gentle high-pass temporal filter (cutoff=2000 s, as implemented by ‘fsimaths’), 2)
conduct spatial ICA analysis to decompose the volume time series data into
independent spatial components, 3) separate those components into noise (artifact) and
signal components using an automatic classifier trained on 100 scan runs from 25 HCP
participants (17 women), 4) regress out the full variance associated with the 24 motion
parameters, and 5) apply a “hon-aggressive” regression of the noise component time
series to remove noise variance that is orthogonal to signal components (Salimi-
Khorshidi et al., 2014). FIX classifies noise components using volumetric maps as input,
since the noise components may extend into white matter and CSF, which may provide
useful information to help classify them into signal and noise (Salimi-Khorshidi et al.,
2014). However, the time series of the noise components can be regressed from either
volume or grayordinate data to yield FIX-denoised rfMRI data.

Selecting motion groups:

The tendency to produce head motion may be heritable (Couvy-Duchesne et
al., 2014; Winkler et al., 2015). To avoid inflating statistical significance, we
narrowed the participant list from 452 participants with four rfMRI scans to a
group of 204 unrelated participants. For all analyses described below, we used

only their complete “rfMRI_REST1_RL” scan (1200 time points; 14.4 minutes). We

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resting State fMRI Data from the Human Connectome Project (doi: 10.1089/brain.2016.0435)
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proportion of high-motion time points in their rffMRI scan (See “Defining high-
motion time points — FD and DVARS” below).

Initially, each motion group had a different ratio of men to women (high-
motion: 30M to 38F; medium-motion: 33M to 35F; low-motion: 26M to 42F). To
avoid confounding gender with motion, we matched the gender ratio in all three
groups by selecting within each motion-group 26 men and 35 women at random.
Defining high-motion time points — FD and DVARS:

FD (Framewise Displacement) reflects relative displacement of the head
between adjacent time points, using the formula from Power and colleagues (2012).
The backward difference of the rigid-body motion parameter time series provided
estimates of displacement and rotation between time points. Rotations were converted
to millimeter displacement on a 50mm radius sphere. The absolute values of the six
displacement estimates were summed to provide the estimate of FD at each time point.
DVARS (temporal Derivative, then RMS VARiance over elementS) was computed as
the RMS intensity change between adjacent time points, using the formula from Smyser
and colleagues (2010) by taking the backward difference of the MPP CIFTI dense time
series, and computing the root mean square of that signal change across all
grayordinates.

There are two notable differences in behavior of FD and DVARS in the HCP fMRI
data compared to previously published examples. Figure S1 shows an example of FD
and DVARS for one medium-motion participant across 400 time points (4.8 minutes).
Additional examples of FD and DVARS can be seen at the top of Figure 1. First,

periodic fluctuations in FD (Figure S1, red line) appear greater in HCP rfMRI data
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compared to previously published data. These fluctuations may arise from
physiologically-based movement, such as breathing or heart beats, being better
sampled with faster acquisition. These increased fluctuations relate to higher mean FD,
a larger proportion of time points being censored by a conservative FD threshold, and a
smaller separation between abrupt motion “spikes” and the baseline “noise floor”. In the
HCP rfMRI data, DVARS appeared to separate large, transient changes from baseline
noise levels (Figure S1, blue line) better than FD (Figure S1, red line). The additional
variance in FD related to periodic fluctuations may have contributed to a lower
correlation between FD and DVARS time series in the HCP rfMRI data (mean r=0.41

across participants) compared to previously published data (Power et al., 2014).

Second, median DVARS was observed to vary substantially from participant to
participant, and correlates with participant head size (r=0.52). Median DVARS value will
increase with thermal noise. Thermal noise is directly related to coil loading
(Triantafyllou et al., 2005), which is impacted by head size. We median-centered the
DVARS time series to remove the impact of baseline differences in thermal noise
across participants, and focus on transient fluctuations in DVARS.

To overcome limitations with the individual motion measures, we combined
censoring criterion based on FD or DVARS values. The overall degree of head motion
within the scan was quantified as the proportion of time points that surpassed either the
FD or DVARS criteria. The censoring thresholds for FD and DVARS were chosen
using the empirical rank procedure of Power and colleagues (2014 Figure 11B; see

also Figure S2). The empirical rank procedure helps to identify the amount of
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motion (i.e., FD or DVARS) corresponding to a large proportion of extreme
correlations (e.g., empirical rank above 90" or 95" percentile). We visually
inspected the grayordinate plots to ensure a rough correspondence in time
between time points censored by the chosen thresholds and disturbances or
extreme values in the grayordinate time series. For FD, this suggested a more
liberal threshold (FD > 0.39 mm) than proposed by Power and colleagues (2014) to
focus on faster, larger, punctate motion rather than discarding data with elevated FD
from slower, periodic (e.g., physiologically-related) motion. For DVARS, this procedure
suggested a censoring threshold greater than 4.9 arbitrary units' above the median
DVARS for the scan.

Relating FD and DVARS

The combined censoring criterion was weighted more strongly toward censoring
a time point based on DVARS (censoring ~25% of time points across all scans) than FD
(censoring ~3% of time points across all scans). Despite the stronger weighting toward
DVARS, the proportion of time points censored by the combined censoring criterion was
strongly correlated with both mean FD (Spearman p=0.75) and the proportion of time
points surpassing solely the FD criterion (Spearman p=0.74).

There was some concern about the increased reliance on DVARS over FD for
assigning participants to motion groups. Because DVARS is derived from the difference
in image intensity between successive time points, DVARS values could be affected by
changes in global signal resulting from physiological processes or even neural global

signal. If this were true, motion-group differences between groups ranked by our

' During preprocessing, HCP fMRI NIFTI volumes are normalized to a grand mean of 10000.

52



Page 53 of 65
53

measure of head motion might be due instead to differences in global signal between
successive time points due to physiological artifact or neural global signal. However,
changes in image intensity due to neural activity are mediated by a slow response
function (Boynton et al., 1996; Glover, 1999), as are aspects of BOLD signal related to
respiration (Birn et al., 2008) and heart rate (Chang et al., 2009). These slow response
functions will limit the potential changes in image intensity that occur between adjacent
time points (especially with faster TR), and thereby limit the influence of these factors on
DVARS values.

To verify that changes in the mean grayordinate time series between successive
time points did not affect the ranking of participants into high- versus low-motion groups,

we recomputed DVARS values after the influence of mean grayordinate time series was
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removed by regressing the mean grayordinate time series and backward derivative of

the mean grayordinate time series from the MPP time series. DVARS and the mean

Brain Connectivit

grayordinate time series are mathematically related by the following equation: DVARS?
= dMGT? + sVar, where dMGT is the backward difference of the mean grayordinate time
series, and sVar is the variance of the backward difference signal over space.
Therefore, DVARS values recomputed after regressing mean grayordinate time series
and the backward derivative of the mean grayordinate time series are influenced solely
by sVar. 84% of high-motion participants from the original motion-groups were still
designated high-motion using the post-MGTR DVARS values, and 75% of low-motion

participants from the original motion-groups were still designated low-motion using the

Evaluation of Denoising Strategies To Address Motion-Correlated Artifact in Resting State fMRI Data from the Human Connectome Project (doi: 10.1089/brain.2016.0435)
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post-MGTR DVARS values. More importantly, the number of differences between high-

and low-motion groups observed in rsFC estimates derived from the MPP data was very
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similar whether groups were ranked using our original criteria or using post-MGTR
DVARS. This suggests that the influence of the mean grayordinate time series on
DVARS values is very small, and that changes in mean grayordinate time series
between successive time points are not driving the assignment of participants to high-
versus low-motion groups in the current study.

Performing MGTR on FIX data:

We were concerned that the prior regression of 24 motion parameters and
noise components from the FIX rfMRI data could cause the mean grayordinate
time series from the original MPP data to poorly fit the FIX time series. Therefore,
to perform MGTR on the FIX time series, we computed the mean grayordinate
time series from the FIX-denoised time series and regressed it from the FIX rfMRI
data.

Performing additional high pass temporal filtering:

Additional temporal frequency filtering was conducted after regressing
confound time series (Carp, 2013). For each denoising strategy, the appropriate
time series confounds were regressed (e.g., 24 motion regressor time series,
unique variance in ICA noise components, mean grayordinate time series) before
high-pass filtering with a second-order zero-phase Butterworth filter (threshold =
0.009 Hz). In analyses involving censoring, temporal frequency filtering was done
after linear interpolation over high-motion time points.

Grayordinate plots:
The order of grayordinate rows is described by Glasser and colleagues (2013),

with roughly the top third reflecting left cortex, the middle third reflecting right cortex,
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and the bottom third reflecting cerebellum and subcortical grayordinates. Grayordinates
were automatically subsampled during plotting. This may make spatially-specific
fluctuations more difficult to see in grayordinate plots, because they are spread across

discontiguous rows and compressed during plotting.

Parcellated connectomes:

This parcellation of Gordon and colleagues (2014) consists of 333 surface-based
parcels. Because this parcellation does not contain subcortical regions, we added 19
subcortical parcels (i.e., brainstem, plus left/right amygdala, hippocampus, accumbens,
caudate, pallidum, putamen, thalamus, ventral diencephalon, and cerebellum) from the
standard subcortical segmentation in 2mm MNI space contained in the group-average
CIFTI atlas (Glasser et al., 2013), for a total of 352 parcels.

For subsequent analyses requiring distance between parcels, we computed the
Euclidean distance between the estimated centers of the parcels in MNI coordinates. To
estimate the center of subcortical parcels, we simply averaged the voxel coordinates in
MNI space. To estimate the center of surface parcels, we averaged the X, Y, and Z
coordinates within each parcel on the HCP Q1-Q6 average midthickness surface. Then,
we utilized the “surface-closest-vertex” function in the Connectome Workbench
wb_command utility to find the coordinate of the cortical vertex nearest to the computed

average.

Establishing alpha level for testing motion-group differences
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An alpha of 0.05 (uncorrected for multiple comparisons) would limit our ability to
compare the efficacy of denoising methods in the presence of large motion-related
artifacts. For example, if motion-related artifact inflated effects 20 times larger than
chance under one strategy and 40 times larger than chance under another, we might
expect both scenarios to show significant motion-group differences for every pairwise
correlation. In contrast, a Bonferroni-corrected alpha resulting in a familywise error rate
of 5% would limit our ability to compare denoising methods in the presence of small
motion-related artifacts. For example, it would be possible to see only 1 significant
motion-group difference under a denoising method that entirely eliminated motion-
related artifact and a second method that inflated motion-group differences 20 times
larger than chance.

Although a wide range of alpha values might have achieved these goals, we
chose o = 0.000242, equivalent to 300 times the Bonferroni-corrected alpha of 5%.
(There were 61776 total possible pairwise correlations (ignoring directionality)
among the 333 surface parcels (Gordon et al., 2014) and the 19 subcortical gray
matter parcels (Glasser et al., 2013).) At this alpha level, we would expect roughly 15
significant tests under the null hypothesis that there were no motion-group differences.
Both small effects (e.g., two times larger than chance) and very large effects (e.g., 4000

times larger than chance) should be detectable at this alpha level.
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Compared to previously-published data, FD estimates from HCP fMRI data have less
separation between high-motion “spikes” and the “noise floor”, due in part to periodic
fluctuations in FD across time. Example timeseries of FD (red) and DVARS (blue) from high-
motion participant 159340, rfMRI_REST1_RL scan, time points 350 - 750. Horizontal lines
on the FD plot correspond to FD = 0.2 mm (suggested as a censoring threshold by Power et
al., 2014) and FD = 0.39 mm (FD threshold utilized for the current study). The horizontal
line on the DVARS plot corresponds to DVARS = 4.9 (arbitrary MR units), the DVARS
censoring threshold used for the current study.
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Figure S2
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“Heat maps” (following the procedure used in Power et al. 2014, Figure 11B) demonstrate
proportion of extreme correlations as a function of FD values (Panel A) or DVARS values
(Panel B). X-axis reflects the FD (or DVARS) value of data within a sliding window. Y-axis
reflects the empirical rank of the differences between correlations within the sliding
window and correlations in the lowest FD (or DVARS) window. Color of box shows
proportion of data at the sliding window that falls within that empirical rank. At each value
of FD (or DVARS), roughly 5% of the data should fall by chance in each of the 20 empirical
rank bins. Higher proportions of data falling in high empirical rank bins indicate more
extreme differences in correlations for those FD (or DVARS) values compared to the lowest
FD (or DVARS) window.
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Figure S3 MPP timeseries or FIX timeseries
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Delta-R plots: Low motion group (high pass filter)

Spatially-specific and global shift artifact are evident in AR plots for low-motion group after
censoring high-motion time points: Red cloud (and white LOESS fit) shows effects of
censoring high-motion time points on rsFC estimates, plotted as function of distance
between parcels being correlated. Black cloud (and gray LOESS fit) shows positive control
(censoring equal number of randomized time points). Range of AR (y-axis) from 0.1 to -0.1,
following Power et al. (2014). Panels show effects of censoring on average rsFC estimates
from low-motion group for A. MPP, B. FIX, C. MPP+MGTR, and D. FIX+MGTR timeseries
data. Deviation from zero across all distances suggests global artifact, and increased
deviation at short-distances compared to other distances suggests spatially-specific
artifact.
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Figure S4
QC-rsFC plots show the correlation across participants between the rsFC estimates before

censoring and degree of head motion (quantified by proportion of time points exceeding
the combined FD and DVARS criteria). The QC-rsFC relationship is plotted for each of the

61776 connections as a function of distance between parcels for A. MPP, B. FIX

MPP+MGTR
Figure 3.
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