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SUMMARY

The cerebellum contains the majority of neurons in
the human brain and is unique for its uniform cy-
toarchitecture, absence of aerobic glycolysis, and
role in adaptive plasticity. Despite anatomical and
physiological differences between the cerebellum
and cerebral cortex, group-average functional con-
nectivity studies have identified networks related
to specific functions in both structures. Recently,
precision functional mapping of individuals re-
vealed that functional networks in the cerebral
cortex exhibit measurable individual specificity.
Using the highly sampled Midnight Scan Club
(MSC) dataset, we found the cerebellum contains
reliable, individual-specific network organization
that is significantly more variable than the cerebral
cortex. The frontoparietal network, thought to sup-
port adaptive control, was the only network over-
represented in the cerebellum compared to the
cerebral cortex (2.3-fold). Temporally, all cerebellar
resting state signals lagged behind the cerebral
cortex (125–380 ms), supporting the hypothesis
that the cerebellum engages in a domain-general
function in the adaptive control of all cortical pro-
cesses.
N

INTRODUCTION

The human cerebellum contains nearly four times as many neu-

rons as the cerebral cortex (hereafter referred to as cortex for

brevity) (Andersen et al., 1992) and is markedly different from

the cortex in numerous ways, including a high tonic firing rate

of principle output neurons (Manns et al., 2004), lack of aerobic

glycolysis (Vaishnavi et al., 2010), and greater rate of evolu-

tionary expansion relative to the cortex (3-to 4-fold; Barton and

Venditti, 2014). The lateral and posterior portions of the human

cerebellum are disproportionately expanded in humans

compared to apes and co-activate with cortex across a vast

array of control-related functions supported by the frontoparietal

network (Marek and Dosenbach, 2018), including error process-

ing (Dosenbach et al., 2006; Fiez, 1996; Fiez et al., 1992), task

switching (Monsell, 2003), and language processing (Petersen

et al., 1989). Seminal transneuronal tracing studies have shown

that the lateral posterior regions of the cerebellum form

closed-looped circuits with regions of the premotor, prefrontal,

and posterior parietal cortex in macaques (Dum and Strick,

2003; Kelly and Strick, 2003; Strick et al., 2009), providing an

anatomical framework for a putative role in adaptive feedback

mechanisms for behavioral modification of movement and

cognitive processes. Thus, the characterization of the cere-

bellum purely as a conserved motor structure is antiquated

and inaccurate (Buckner, 2013; Caligiore et al., 2017; Fiez,

1996; Leiner et al., 1989; Schmahmann, 2004; Schmahmann

et al., 2009; Strick et al., 2009).
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Although previous studies have provided an anatomical and

functional framework for understanding cerebellar contributions

to brain function, the degree of individual specificity in cerebellar

functional organization is currently unknown. Quantification of

individual cerebellar variability may deepen our understanding

of how individual variability in cerebellar functional organization

contributes to individual differences in behavior, psychopathol-

ogy, and clinical outcomes. One promising approach for study-

ing individual cerebellar network organization is through resting

state functional connectivity MRI (RSFC), which has revolution-

ized our understanding of cortical network organization (Krienen

and Buckner, 2009; Power et al., 2011; Yeo et al., 2011). Howev-

er, many RSFC studies are cortico-centric, either omitting dis-

cussion of the cerebellum or not including the entirety of the cer-

ebellum during data acquisition or analysis. In an influential

study, Buckner and colleagues provided the first group-aver-

aged organizational map of cerebellar functional networks

(Buckner et al., 2011). One crucial finding from this work was

that association networks, including the frontoparietal network,

were represented in the lateral cerebellum, supporting previous

anatomical tracing studies and group-average task-based hu-

man imaging studies showing increased lateral cerebellar

blood-oxygen-level-dependent (BOLD) activity during cognitive

tasks (Dosenbach et al., 2006, 2007; Fiez, 1996; Fiez et al.,

1992). These group-average studies of cerebellar RSFC, howev-

er, use limited quantities of data per individual, restricting our un-

derstanding of the degree of individual specificity in cerebellar

networks. Moreover, relatively low signal-to-noise ratio within

the cerebellum compared to the cortex, coupled with the small

folia of the cerebellum, heightens the need for high-fidelity data.

Recent work by Gordon and colleagues demonstrated the

importance of precision functional mapping in humans (Gordon

et al., 2017c). Precision functional mapping refers to the collec-

tion of large quantities of RSFC data (hours) within individual

human subjects, which improves the signal-to-noise ratio and

allows more precise characterization of functional network orga-

nization in individuals (Laumann et al., 2015). One critical finding

from these studies is that cortical networks show both common

organizational principles across individuals and individual-spe-

cific features, unresolvable in group-average data (Braga and

Buckner, 2017; Gordon et al., 2017a, 2017b, 2017c; Gratton

et al., 2018; Laumann et al., 2015). With respect to the cere-

bellum, degenerative and acute damage tends to result in indi-

vidual-specific motor and cognitive deficits (Fiez et al., 1992;

Schmahmann and Sherman, 1998), suggesting individualized

approaches to studying cerebellar organization would improve

our understanding of patient populations.

Theoretical accounts of cerebellar function ascribe it a role in

adaptive control and experience-driven adaptive plasticity (Cali-

giore et al., 2017). Adaptive plasticity requires organized, ongoing

communication between relevant brain regions. Such bidirec-

tional communication has previously been observed to manifest

in distinct frequencies (Mitra et al., 2016; van Kerkoerle et al.,

2014). Recently, Mitra and colleagues analyzed temporal lead/

lag relationships across inter-regional BOLD signals to demon-

strate that infra-slow activity (ISA) propagates through the human

brain in a highly reproducible, state-dependent manner, giving

rise to familiar RSFC networks (Mitra et al., 2014, 2015). This
978 Neuron 100, 977–993, November 21, 2018
lag analysis approach revealed directed ISA between the cortex

and hippocampus that was directionally opposite of delta band

(0.5–4 Hz) propagated activity. The temporal relationship be-

tween ISA and delta activity was subsequently found to be wide-

spread across mouse cortex (Mitra et al., 2018). However, the

temporal lead-lag relationships within cerebro-cerebellar loops

have not been characterized. As such, an examination of group-

and individual-level propagation of ISA, as estimated with BOLD,

within the cerebro-cerebellar closed-looped circuitry will provide

insights into the temporal organization of the activity shared be-

tween these structures.

The goal of the present study was to leverage the highly

sampled Midnight Scan Club (MSC) dataset to simultaneously

characterize (1) individual specificity and variability in cerebellar

RSFC and network organization, as well as (2) group- and indi-

vidual-level principles regarding the spatial organization of func-

tional networks and the temporal propagation of ISA between

the cerebellum and cortex. In each case, we benchmark the cer-

ebellum against the cortex, noting differences in individual vari-

ability, network organization, and the temporal propagation of

BOLD signals.

RESULTS

Reliable Cerebellar RSFC Estimation Requires Large
Quantities of Data
We determined the reliability of RSFC correlations within the

cerebellum by executing iterative split-half reliability analyses

similar to Laumann et al. (2015) and Gordon et al. (2017c)

(STAR Methods). Generally, cerebellar RSFC requires double

the quantity of data of cortical RSFC to achieve the same level

of split-half reliability. For example, excellent split-half reli-

ability (r > 0.90) in cortical RSFC was achieved with 45 min

of motion-censored data (as reported in Gordon et al.,

2017c), whereas equivalent excellent reliability (r > 0.90) in

cerebellar RSFC was achieved with 90 min of motion censored

data (Figures S1A–S1C and S1E). We repeated the reliability

analysis voxel-wise across the cortex and cerebellum (as

opposed to vertices in the cortex) to equate the measurement

of two structures and observed this same principle (Fig-

ure S1D). Thus, typical RSFC data quantities (i.e., <30 min

per individual) are not sufficient to provide stable estimates

of individual cerebellar RSFC.

Individual Cerebellar Networks Share Common
Features With—and Deviate from—the Group Average
Previous group-average studies have suggested that some of

the cortical functional networks are also represented in the cer-

ebellum (Buckner et al., 2011; O’Reilly et al., 2010). We deter-

mined cerebellar functional network organization using a

winner-take-all approach (WTA; STAR Methods; Buckner et al.,

2011; Choi et al., 2012; Greene et al., 2014; Hwang et al.,

2017), assigning each cerebellar voxel to the cortical network

to which it displayed the largest average correlation (Figure 1;

for flat map WTA representations, see Figure S2; for cortical

network assignments, see Figure S3). Several qualitative obser-

vations can be made in the group average (Figure 1A). Support-

ing previous results, foot, hand, and face motor representations



Figure 1. Individual Cerebellar Networks Share Common Features with—and Deviate from—the Group Average

(A) MSC average cerebellum winner-take-all network partitions.

(B) IndividualMSCwinner-take-all network partitions. Qualitatively, considerable variance exists betweenMSC subjects and between each subject and the group

average.
were identified in the anterior cerebellum, running anterior-to-

posterior, respectively. Control networks (frontoparietal and

cingulo-opercular) demonstrated anatomically segregated rep-

resentation along the anterior-to-posterior and medial-lateral

axis, with the cingulo-opercular network represented medially

in the anterior cerebellum, proximal to the motor networks, while

the frontoparietal network was represented laterally and posteri-

orly. Similar to the control networks, the attention networks

(dorsal attention and ventral attention) segregated along the

A-P axis and had representations in both the dorsal and ventral

cerebellum. The dorsal attention network was represented in

the anterior cerebellum, whereas the ventral attention network

was represented posteriorly, just posterior to the frontoparietal
network. The default mode network was represented in the

most medial posterior regions of the cerebellum, with additional

representation in the flocculus. Replicating group average data

(Buckner et al., 2011), visual and auditory networks were not rep-

resented in the cerebellum.

Although all subjects exhibited similar network organization,

there were deviations across individuals from the group average

in terms of specific positioning and relative amount of cerebellum

dedicated to each network (Figure 1B). For example, some

subjects demonstrated greater representation of the dorsal

attention network, while others demonstrated greater represen-

tation of the cingulo-opercular network. In the posterior cere-

bellum (axial slices), there is considerable inter-subject variability
Neuron 100, 977–993, November 21, 2018 979



Figure 2. Functional Networks Are Reliable

with Sharp Individual-Specific Boundaries be-

tween Networks

(A) The split-half reliability of individual subject WTA

assignments increases with larger quantities of data.

(B) MSC average percent difference in average corre-

lation to cortical networks between the first placeWTA

assignment and the second place WTA assignment.

(C) Percent difference in average correlation to

cortical networks between the first place WTA

assignment and the second place WTA assignment

in each individual. Large differences in correlations

between first and second place WTA assignments,

coupled with high reliability (r > 0.80) resulting from

large quantities of RSFC data, indicate networks are

reliable and specific at the individual subject level.
in the placement of divisions between the default mode and fron-

toparietal networks. Within themotor network representations of

the dorsal anterior cerebellum, individual differences in the

representation of each motor network can be noted in the para-

sagittal slices. Thus, both common organization principles and

individual differences existed in the WTA assignments between

subjects and between each subject and the MSC average.

Importantly, because WTA partitions are dependent on the

underlying RSFC matrix that does not achieve good reliability

until �90 min of high-quality data have been acquired, large

quantities of individual subject data are needed to achieve a sta-

ble estimate of individual cerebellar network organization.

Functional Networks Are Reliable with Sharp Individual-
Specific Boundaries between Networks
Despite achieving excellent RSFC reliability, one could argue the

network partitions derived above might be spuriously variable

between individuals due to the WTA method, which forces each

voxel into a single ‘‘winning’’ network. To assuage these

concerns, we calculated split-half reliability (see STAR Methods

for details) on the WTA network assignments. On average, WTA
980 Neuron 100, 977–993, November 21, 2018
network assignments required 90 min of

post-motioncensoredRSFCdata toachieve

an average Spearman split-half correlation

of 0.80 (Figure 2A). This quantity of data is

equivalent to the quantities of data needed

to delineate individual cortical networks

(see Gordon et al., 2017c).

Given that the individual WTA partitions

were as reliable as cortical networks from

Gordonetal. (2017c),we tested for individual

specificity in cerebellar networks by calcu-

lating the percent difference in average cor-

relation (to the cortex) of the ‘‘first place’’

network and the ‘‘second place’’ network.

By doing this, we were able to characterize

which networks demonstrated a clear delin-

eation between first and second place

average RSFC with the cortex. On average,

networks across the cerebellum demon-

strated a clear delineation between first and
second place networks, including both motor networks and—to

an even greater extent—association networks, including the

default mode and frontoparietal networks (Figures 2B and 2C),

supporting the notion that single networks are reliably represented

in many cerebellar voxels. Interestingly, the posterior cerebellum

contained large representationsof thepremotorandcingulo-oper-

cular networks, despite seeded correlations from primary motor

cortex demonstrating strong connectivity to these same regions

(seeFigureS4 for cerebellarmotor seedRSFC).Seedmapsgener-

ated from posterior motor hand representations in the cerebellum

revealed strong RSFC to cortical motor, premotor, and cingulo-

opercular networks (Figure S5), providing evidence that the

second representation of the cortex within the posterior cere-

bellum may be more integrative than the anterior representation.

Strong Convergence between Individual Motor
Activations and Functional Networks
We validated the claim that large quantities of data enabled ac-

curate characterization of individual-specific motor subdivisions

(i.e., foot, hand, face) within the cerebellum by leveraging 40 runs

of a motor task per subject (STARMethods) and determining the



convergence between resting statemotor network partitions and

motor foot, hand, and tongue task-evoked activity, separately.

For every subject, we made a conjunction map within the cere-

bellum, overlapping task-evoked BOLD activity (for foot, hand,

and tongue movements, separately) and WTA partitions (STAR

Methods). Peak task-evoked BOLD activity in the cerebellum

overlapped with individual WTA partitions in every subject

across the three motor domains (Figure 3). Thus, precise parti-

tioning of cerebellar motor networks is possible with large quan-

tities of data.

Individual-Level RSFC Variability in Network
Organization Is Greater in the Cerebellum Than in the
Cortex
Functional networks within the cortex are dominated by com-

mon organizational principles (group effects), as well as stable

individual features (individual effects) that are differentially

distributed across cortical networks (Gratton et al., 2018).

Here, we similarly determined the contribution of group

effects versus individual effects at the single-voxel/vertex level,

as well as at the network level across individuals (STAR

Methods). As shown in Figures 1 and S2, like cortical networks

(Gratton et al., 2018), cerebellar networks appear to follow a

similar mix of common organizational principles and individual

specificity.

We computed the standard deviation of correlations across all

voxels/vertices in the cerebellum and cortex (STAR Methods) to

determine whether individual differences in cerebellar networks

were more likely a result of greater between-subject variability

in RSFC or actual individual-specific variability in cerebellar

network topography. Inter-subject variance was significantly

lower in the cerebellum (Figure 4A) compared to the cortex

(t =�3.77, p = 0.001; Figure 4B), supporting the notion that there

may be relatively larger group-level RSFC effects in the cere-

bellum than in the cortex. These results were replicated when

we repeated this analysis in volume space (Pearson r between

approaches = 0.73). Additionally, between-subject variance

was significantly greater in association networks compared to

motor networks in both the cerebellum (t = 4.01, p = 0.002; Fig-

ure 4C) and cortex (t = 2.98, p = 0.01; Figure 4D), supporting

greater individual-level RSFC variability in association networks.

Network-level group versus individual featureswere quantified

directly by comparing the similarity of RSFC in resting state split-

half sessions between subjects (group level) and similarity of

RSFC in resting state split-half sessions within subjects (individ-

ual level) (Gratton et al., 2018). We directly quantified group-level

(off-diagonal elements in Figure 4E) and individual-level effects

(on-diagonal elements in Figure 4E) in RSFC and network orga-

nization in the cerebellum and compared these effects with the

cortex in split-half portions of the dataset (STAR Methods).

RSFC within the cerebellum demonstrated significantly greater

group- and individual-level effects than RSFC within the cortex

(group, t = 4.26, p < 0.001; individual, t = 4.01, p < 0.001; Fig-

ure 4F). The high level of group effects in the cerebellum (mean

z(r) = 1.09; Figure 4F) and cortex (mean z(r) = 0.99) indicates

that networks share a common organization across individuals.

Networks from the same individual (‘‘individual’’ effects) were

even more similar to each other compared to the group in the
cerebellum (added similarity of z(r) = 1.12; Figure 4F) and in the

cortex (added similarity of z(r) = 0.82), indicating a clear influence

of individual features over and above common organizational

principles at the network level. Importantly, the larger similarity

of individual effects within the cerebellum compared to cortex

(difference in z(r) = 0.40) suggests cerebellar network organiza-

tion may exhibit variability across subjects exceeding cortical

network variability.

We tested for differences in the variability in the spatial

arrangement of networks within the cerebellum and cortex

across subjects via permutation testing (STAR Methods). Indi-

vidual variability across subjects in the spatial arrangement of

networks was significantly higher in the cerebellum than the

cortex (p < 0.0001; Figure 5A). For quantification of anatomical

overlap of each network across subjects, see Figure S6. Consid-

erable RSFC variability existed in most networks across sub-

jects, including both motor and association networks. Jointly,

these results further support the finding that cerebellar network

organization, though following gross common organizational

principles, shows measurable variability between individuals.

Furthermore, the lateral posterior lobes of the cerebellum,

devoted to association networks, demonstrated the greatest

level of inter-subject RSFC variability.

Previous work on precision mapping of individual cortical

networks has shown convergence between task-evoked activ-

ity and network boundaries that varied anatomically between

individuals along the precentral gyrus (Gordon et al., 2017c;

Laumann et al., 2015). Similarly, we tested variability within

the cerebellar motor system, taking two approaches. First, we

quantified the amount of subject overlap in the convergence

of task/rest for the somatomotor hand network (Figure 5B).

The maximum anatomical overlap across subjects in the

convergence between rest and task was seven out of ten sub-

jects, supporting individual variability in hand motor representa-

tions. Second, the cerebellar voxel with peak activation during

right hand movements (STAR Methods) was extracted for each

subject (see Figures 5C and 5D for two individual subject ex-

amples). To depict overlap between resting state hand motor

topography in the cerebellum and cortex within a subject

(match) and non-overlap (mismatch) between subjects, we

correlated the resting state time series of activity from this

peak cerebellar voxel with every cortical vertex within each

subject and to every other subject (see Figures 5C–5F for an

example of two subjects and Figure 5G for all subjects). In eight

out of ten subjects, peak task/rest overlap was higher within

than between subjects; in the remaining two it was equal. In

these two subjects (MSC 09 and MSC 10), peak task activity

was anatomically near the group-average peak. As an example

of the cerebellar mismatch in motor hand network overlap

between subjects, within MSC 02, there was convergence

between task and rest (Figure 5C), that overlapped with MSC

02’s cortical hand motor network (Figure 5E, top row left).

Conversely, the same voxel in MSC 06 lacks any strong corre-

lation with MSC 06’s cortical hand motor network (Figure 5E,

bottom row left).

To provide additional quantification of the anatomical vari-

ability between individual subjects’ hand motor representations

in the cerebellum, we calculated the average Euclidean distance
Neuron 100, 977–993, November 21, 2018 981



Figure 3. Strong Convergence between Individual Motor Activations and Functional Networks

Overlap between right motor foot, hand, and tongue task-evoked BOLD activity and their respective resting state RSFC overlaid on WTA partitions in the

cerebellum (colored patches). Note the laterality of the overlap. The black patch represents the overlap between the task and resting state. More specifically, in

the resting state data, we placed a seed in an area of motor cortex that demonstrated the greatest task-evoked activity across trials of a given movement (foot,

hand, and face, separately). This map was then thresholded at r > 0.10. Next, we correlated the cerebellar task time series with this cortical motor seed (beta

series correlation) and thresholded this map at r > 0.10. Seeded correlation from cerebellar voxel demonstrating the greatest task-evoked activity to the cortex.

Colored outline denotes Infomap-derived cortical network borders.
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Figure 4. Network-Level RSFC Individual Effects Are Greater in the Cerebellum Than in the Cortex

(A and B) Between-subject variance topography in the (A) cerebellum and (B) cortex.

(C and D) Between-subject variance was greater in cognitive networks compared to motor networks

and smaller in the cerebellum (C) than in the (D) cerebrum.

(E) Network similarity matrices. Off-diagonal elements represent group effects, whereas on-diagonal elements represent individual effects.

(F) Quantification of group versus individual effects for RSFC (1) between the cerebellum and cortex, (2) within the cerebellum, and (3) within the cortex. Error bars

denote SEM across subjects.
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Figure 5. Individual Variability in Network Organization Is Greater in the Cerebellum Than in the Cortex

(A) Difference across subjects in the standard deviation of the quantity of total space occupied by a network in the cerebellum versus the cortex. Positive values

indicate greater between subject variability in network organization within the cerebellum.

(B) Overlap across subjects in individual-specific convergence between task and rest. Higher numbers indicate greater overlap between subjects. Note that no

voxels within the cerebellum contain overlap across all ten individuals.

(C and D) Single vertex/voxel peak activation during right hand movement falls within resting state hand somatomotor network in both the cortex (left panel; gray

node within cyan outline) and cerebellum (middle panel; red node within cyan patch), and demonstrates a highly correlated time series of activation in individual

subjects. Note the persistence of the cerebellar response compared to the cortical response.

(E) RSFC from cerebellar voxel from (C) (MSC 02) to the cortex converges onMSC 02’s resting state cortical hand somatomotor network (top row), but not another

MSC subject (MSC 06; bottom row).

(legend continued on next page)
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between an individual subject’s task/rest overlap voxels (peak

voxels for each subject in Figure 5G). The average Euclidean dis-

tance across subjects was 8.2 mm with a standard deviation of

4.5 mm. Altogether, the critical implication regarding the high

level of individual variability in RSFC is that group-average

studies are spatially misrepresenting portions of individual sub-

ject networks within the cerebellum.

The Frontoparietal Network Is Disproportionately
Expanded in the Cerebellum Compared to Cortex
The WTA, similarity, and variability analyses above provided ev-

idence for both common, group-level organizational principles

and individual specificity of cerebellar networks. To probe

these spatial organization principles further and determine the

degree of consistency between network representations in

the cerebellum and cortex, we determined the percent of the

total cerebellar volume occupied by each network and percent

of the total cortical surface area occupied by each network. On

average, association networks occupied 80.2% of total cere-

bellar volume, whereas premotor and motor networks occupied

19.8% of total cerebellar volume (Figure 6A, top row). By com-

parison, association networks occupied 64.8% of the cortical

surface area, whereas premotor and motor networks occupied

19.8% of the cortical surface area (Figure 6B). Visual and audi-

tory networks occupied the other 15.4% of the cortical surface

areas. We further quantified cerebellar network proportions in

anterior and posterior cerebellar lobes. This analysis revealed

a slightly different proportion of association networks in the

anterior cerebellum (76%) compared to the posterior cere-

bellum (85%).

Unlike all other networks, the frontoparietal network was

disproportionately expanded in the cerebellum, such that it

had a 2.3-fold greater relative representation in the cerebellum

compared to the cortex (Figures 6C and 6D). Importantly, the

greater representation of the frontoparietal network in the cere-

bellum compared to the cortex was consistent across every in-

dividual. Across all MSC subjects, the frontoparietal network

occupied 23.17% of the total cerebellar volume, whereas it

only occupied 10.13% of total cortical surface area. This 2.3-

fold overrepresentation of the frontoparietal network was main-

tained or estimated as high as 3-fold when we did not include

voxels with low signal-to-noise ratio (tSNR < 2.5), low specificity

(<50% in Figure 2), or relatively low voxel-wise reliability (r < 0.70)

(Figure S7), supporting previous group-average quantification of

frontoparietal representations in the cerebellum versus cortex

(Buckner et al., 2011). The total cerebellum volume dedicated

to the frontoparietal networkwas greater than all of the cerebellar

motor and premotor networks combined. Moreover, the fronto-

parietal network contains the largest absolute representation of

any network in the cerebellum and cortex. Despite the cerebel-

lum’s common characterization as a motor structure, 80% of

the cerebellum is occupied by networks contributing to top-

down regulatory functions.
(F) RSFC correlation from cerebellar voxel from (D) (MSC 06) to the cortex converg

not another MSC subject (MSC 02; bottom row).

(G) Themean correlations from a given subject’s peak task activation within the ce

from the same cerebellar voxel, indicating individual specificity. Error bars denot
Cerebellar BOLD Signals Systematically Lag Cortical
BOLD Signals
The cerebellum was found to be dominated by association net-

works. Yet, how cortico-cerebellar networks are organized

temporally is unclear. Previous analyses of regional delays

among BOLD time series have implicated propagation of spon-

taneous ISA on the order of 1 s both within and between canon-

ical functional networks (Mitra et al., 2014, 2015). However, the

network-level relationship—as well as degree of individual spec-

ificity and variability—in the temporal organization of sponta-

neous fluctuations between the cerebellum and the cortex re-

mains unknown.

We adopted a previously described cross-covariance

approach to lag estimation in fMRI data (Mitra et al., 2014,

2015) to characterize temporal relationships between the cor-

tex and cerebellum. Pairwise temporal relationships can be

visualized via a time delay (TD) matrix, in which each element

represents the average latency between the time series of two

regions. We constructed such matrices to include both

cortical vertices and cerebellar voxels for each individual

and the MSC average. The portion of Figure 7A outlined in

light gray displays the MSC average TD matrix, corresponding

to cortical vertices, after organizing by network affiliation and

temporally sorting from early to late within each network.

Note that even off-diagonal blocks within the cortex have

both early and late portions, reaffirming the apparent

between-network propagation described previously (Mitra

et al., 2014, 2015). We repeated this procedure for all cere-

bellar voxels. Although some within- and between-network

propagation is observed in the diagonal and off-diagonal

blocks within the cerebellum (outlined in dark gray), respec-

tively, the magnitude is less than in the cortex. This indicates

there is little to no systematic temporal organization in the

propagation of ISA within the cerebellum.

Given the presence of cortico-cerebellar loops, and their pur-

ported role in error signaling and adaptive plasticity, we were

particularly interested in the temporal organization of ISA be-

tween the cerebellum and cortex. As can be seen in the portion

of Figure 7A outlined in black, the vast majority of pairwise cor-

tico-cerebellar relationships were positive, indicating cerebellar

BOLD signals temporally lagged cortical BOLD signals. We pro-

ceeded to compute, for each cerebellar voxel, its mean latency

across all cortical vertices. The resulting latency map of the cer-

ebellum, a cerebellum-cortex-specific ‘‘lag projection’’ (Mitra

et al., 2014), reflects the average latency of each cerebellar voxel

with respect to the cortex (mean of Figure 7A outlined in black). In

these lag projections, every cerebellar voxel, in each subject

(Figure 7C) and the group average (Figure 7B), had a temporally

lagged (positive) value. Mean latency values within cerebellar as-

sociation networks (M = 286 ms, SD = 145 ms) were significantly

later than cerebellar motor networks (M= 124ms, SD = 63ms) in

both the MSC average (t = 61.84, p < 0.0001) and each individual

(all t > 4.51, all p < 0.0001) (Figures 7B and 7C). To test whether
es onMSC 06’s resting state cortical hand somatomotor network (top row), but

rebellum to the hand somatomotor cortex was higher thanwithin other subjects

e SEM across the nine other subjects.
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Figure 6. The Frontoparietal Network Is Disproportionately Expanded in the Cerebellum Compared to the Cortex

(A and B) Network representation (percent of total volume/surface occupied by a network) was quantified in the cerebellum (A) and cortex (B).

(C) Percentage of total surface area (cortex) relative to percentage of volume (cerebellum) for each network. Black line represents identity line (i.e., equal

representation in the cerebellum and cortex). Error bars represent the SEM across subjects. The frontoparietal network occupies more space in the cerebellum

than any other network.

(D) Relative ratio (cerebellum/cortex) of network representation. Values greater than one (horizontal dotted line) indicate greater relative space occupied by a

network in the cerebellum, whereas values less than one indicate greater space occupied by a network in the cortex.
proximity to major draining veins could be affecting the cere-

bellar lags, we recalculated the mean lag of each network in

the anterior cerebellum (more distant from veins) versus the pos-

terior cerebellum (closer to veins) and did not find a difference

across networks (Cohen’s d = 0.02; Table S1 for each subject

and network) Thus, all cerebellar BOLD signals lag cortical

BOLD signals systematically and consistently across all

subjects.

DISCUSSION

Precision functional mapping of the human cerebellum re-

vealed that (1) individual maps of cerebellar network organiza-

tion are reliable and exhibit common group-level organizational
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principles, as well as individual-specific features; (2) individual

variability of the spatial arrangement of networks is greater in

the cerebellum than in the cortex; (3) the frontoparietal

network, thought to support adaptive control, is overrepre-

sented in the cerebellum compared to the cortex across every

individual; and (4) the cerebellum temporally lagged the

cortex systematically, such that association networks within

the cerebellum demonstrated greater mean latency (lag)

from the cortex than motor networks within the cerebellum.

Jointly, these results provide evidence that the human cere-

bellum is dominated by association networks particularly

the frontoparietal network—that demonstrate both common

group-level spatiotemporal organization and individual-spe-

cific spatial arrangement.



Figure 7. Cerebellar ISA Systematically Lags

Cortical ISA

(A) MSC average time delay matrix. Note the degree to

which cerebellar BOLD signal lags behind the cortex

compared to cortico-cortical signals or cerebello-cer-

ebellum signals.

(B) Average temporal lag of each cerebellar voxel

relative to all cortical vertices in the MSC average,

quantified by network. This lag projection is computed

as an average along each column of the ‘‘Cortex-to-

cerebellum’’ portion of the time delay matrix. Note that

ISA within every voxel in the cerebellum, on average,

lags behind ISA in the cortex. Error bars denote SEM.

(C) Average lag in ISA between each cerebellar voxel

and all cortical vertices in individual subjects.
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Reliable, Individual-Specific Cerebellar Functional
Network Topography Can Be Elucidated with Large
Quantities of Data
Previous studies utilizing an individual precision functional map-

ping approach demonstrated that hours of data per individual

enabled the description of systematic and reliable individual dif-

ferences in cortical network topography (Gordon et al., 2017c;

Laumann et al., 2015), obscured by group averaging. Here, we

demonstrated this same principle holds for cerebellar functional

organization, but with the requirement of even larger amounts of

data. Specifically, RSFC in the cerebellum achieved an equiva-

lent level of excellent reliability (r > 0.90 with respect to the cor-

tex) with 90 min of low-motion data. As in the cortex, individual

motor homunculi (foot, hand, and face) representations were

demonstrated in each subject (Figure 3), and were shown to

vary anatomically across the dorsal anterior cerebellum

(Figure 5).

One nuance of delineating network organization in the cere-

bellum versus the cortex is the partitioning approach in obtaining

discrete networks. Consensus approaches to derive networks in

the cortex, such as Infomap, often need to be modified in the

striatum (Choi et al., 2012; Greene et al., 2014), thalamus (Hwang

et al., 2017), and cerebellum (Buckner et al., 2011), using a WTA

approach with the cortex as a template. Although these previous

studies used large group-averaged datasets, given their success

in delineating reliable network partitions in subcortical struc-

tures, we elected to take a similarWTA approach here.With large

quantities of data (90min to achieve r > 0.80), theWTA approach

results in reliable, individual-specific networks that converge

with task data and follow sharp boundaries between networks.

For a given quantity of data, relatively lower reliability in the

cerebellum compared to the cortex could be due to factors

relating to noise and/or differences in the BOLD signal. Gener-

ally, signal-to-noise ratio is lower in the subcortex and cere-

bellum and these regions are susceptible to artifacts, which

would lead to poorer reliability for a given quantity of data in

the cerebellum compared to cortex. Interestingly, there are

numerous distinguishing features of the cerebellum that may

systematically affect BOLD signal reliability. The cerebellum

contains four times more neurons than the cortex, but very

few glia, including astrocytes. Purkinje cells, which are the

main output cells of the cerebellum, are inhibitory, whereas

cortical pyramidal cells are excitatory. The cerebellum contains

�40–50 billion granule cells, which are not present in the cerebral

cortex. Metabolically, the cerebellum largely does not utilize aer-

obic glycolysis, while the cerebral cortex does, especially within

the default mode network (Vaishnavi et al., 2010). One or more of

these differences in cellular architecture and/or metabolism may

contribute to differences in reliability of the BOLD signal

measured during the resting state.

Cerebellar Networks Are More Variable Than Cortical
Networks across Individuals
Recently, it was discovered that networks within the cortex are

dominated by common organizational principles and stable indi-

vidual topography, with far less modulation as a function of day-

to-day variability and task state (Gratton et al., 2018). Given the

stability of individual features, one provocative implication from
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this study is that resting state fMRI offers promising utility in char-

acterizing individual variability in brain/behavior relationships

and furthering our understanding of neurological and psychiatric

disorders. While previous group-average studies have advanced

our understanding of the brain regions and networks implicated

in a broad range of disorders (Greene et al., 2016), the lack of

attention to these stable individual features likely is impeding

progress in understanding the etiology and treatment of neuro-

logical and psychiatric disorders.

We found evidence that RSFC and network organization within

the cerebellum exhibit common organizational principles and in-

dividual variability that is greater than the cortex. While the large

group effect within the cerebellum (Figure 4E) supports the idea

that important information can be gleaned from group-average

studies (Buckner et al., 2011), the even larger individual effects

in RSFC emphasize the need for complementary approaches

to human functional imaging studies of the cerebellum in both

typical and atypical cohorts.

The cerebellum has been implicated in the emergence of

several psychiatric disorders, including autism (Marko et al.,

2015), attention deficit hyperactivity disorder (Tomasi and Vol-

kow, 2012), and schizophrenia (Chen et al., 2013). Clinical

studies have shown that cerebellar damage results in individ-

ual-specific impairments, including in task-switching, associa-

tive learning, and reasoning (Schmahmann and Sherman,

1998). Given the relatively larger level of individual specificity in

the cerebellum compared to cortex, accurate spatial and tempo-

ral RSFC characterization of psychiatric disorders would likely

benefit from whole-brain approaches.

The Frontoparietal Network, Critical for Adaptive
Control, Is Disproportionately Expanded in the
Cerebellum Compared to the Cortex
Consistent with previous group-average studies (Buckner et al.,

2011), the frontoparietal network was overrepresented 2.3-fold

in the cerebellum compared to the cortex, occupying more cere-

bellar volume than any other resting state network. Why is so

much of the human cerebellum devoted to a network supporting

adaptive control? We contend it is the result of disproportionate

expansion of the lateral cerebellum in humans, supporting the

impressive repertoire of adaptive capabilities with which we are

privileged. The frontoparietal network supports task set initiation

and task switching, regulating the integration of other association

andmotor networks (Dosenbachet al., 2007). Cerebellar damage

to the lateral posterior lobes, occupied by the frontoparietal

network, often leads to cerebellar cognitive affective syndrome

(Schmahmann andSherman, 1998), with disturbances to a broad

range of control functions, including task switching, working

memory retrieval, visuo-spatial integration, language, and an

overall reduction in intellectual function (Schmahmann, 2004).

Comparison between human and non-human primates has

provided additional evidence that the disproportionate expan-

sion of the lateral cerebellum supports adaptive control. Humans

can implement rapidly switching abstract rule sets with minimal

verbal instruction and training. This is not the case for non-hu-

man primates, which require exhaustive training to perform oper-

ations mimicking task switching. Evidence suggests macaques

incur little to no switch cost, but they experience high task



interference cost during task switching, while humans incur

switch costs even with training and small interference cost (Stoet

and Snyder, 2003). As such, human and non-human primates

differ markedly in frontoparietal network regulatory processes

supporting task switching. The disproportionate representation

of the frontoparietal network within the cerebellum may be

pivotal for rapid adaption capabilities of humans. While we

were not powered to detect brain/behavior relationships (Gor-

don et al., 2017c), an important future direction will be to collect

high-fidelity RSFCdata on larger samples to understand the spe-

cific individual effects that contribute to individual differences in

behavior and disease.

Contributions of the Cerebellum to Individual-Specific
Adaptive Plasticity
In contrast to its conserved cytoarchitecture across species

(Caligiore et al., 2017), cerebellar contributions to behavior are

vastly different across mammalian species, suggesting that the

cerebellum links to species-specific systems. For example, un-

like humans, the cerebellum in whales has largely expanded in

the paraflocculus, supporting echolocation and acoustic

communication (Oelschlager, 2000). Similarly, the rat parafloc-

culus receives inputs from primary auditory cortex via the pons

(Azizi et al., 1985). The rat cerebellum modulates cortico-striatal

plasticity through reciprocal connections with the basal ganglia

(Chen et al., 2014) and modulates cortical sensorimotor integra-

tion (Popa et al., 2013). In humans, non-invasive stimulation

studies demonstrated that cerebellum output modulates primary

motor cortex plasticity, suggesting polysynaptic connections

between the cerebellum and cortex support the rapid adaptation

to novel environmental challenges during movement planning

(Caligiore et al., 2017).

The cerebellum alsomay play a critical role in cortical plasticity

and adaptation of higher-order constructs, such as language

(Thach, 2007). Human imaging studies of healthy subjects

have demonstrated increased functional connectivity between

the lateral cerebellum and the frontoparietal network soon after

sensorimotor learning (Albert et al., 2009) and after a period of

learning the serial reaction time task (Sami et al., 2014). In human

adults left hemisphere dominant for speech, left cortical hemi-

sphere damage results in a period of little to no speech, followed

by a gradually regaining of speech. Imaging of these individuals

during speech has shown that right cortical hemisphere activity

increases along with the left cerebellar hemisphere, reverse of

typical right cerebellar increased activity in language tasks (Con-

nor et al., 2006). The cerebellum also has been shown to undergo

morphological changes after a 100-day cognitive training pro-

gram (Raz et al., 2013). These studies suggest the cerebellum

may play a role inmodulating the cortex in an experience-depen-

dent manner, supporting individual-specific plasticity.

Given cerebellar individual variability and contributions of the

cerebellum to experience-dependent plasticity, we posit the cer-

ebellum may be an especially plastic structure important to neu-

rodevelopment. Functional networks supporting the maturation

of control demonstrate a protracted development throughout

adolescence and adulthood (Grayson and Fair, 2017; Luna

et al., 2015; Marek et al., 2015). Given the frontoparietal

network’s role in adaptive control and disproportionate repre-
sentation within the cerebellum, the lateral cerebellum may be

an overlooked source of experience-driven learning that contrib-

utes to cognitive maturation. Developmental studies focusing on

the consequence of cerebellar damage support the notion that

the cerebellum supports both motor and cognitive maturation.

In some children, resection of cerebellar tumors results in pos-

terior fossa syndrome, characterized by mutism, dysarthria,

disengagement of any spontaneous movement, and marked

personality changes including apathy and rapid fluctuations of

emotions (Schmahmann, 2004). Children with cerebellar agen-

esis or partial lesions, both motor and cognitive milestones,

are delayed and some individuals present with general intellec-

tual disabilities (Gardner et al., 2001). Thus, damage to the cere-

bellum often results in prominent motor and cognitive deficits

that are on par with, or even exceed, damage to the cortex.

The uniform cytoarchitecture of the cerebellum suggests a

common computation is occurring in each cerebellar module,

potentially engaging in a ubiquitous functionof providing theauto-

matic correction to all cortical output. As such, cerebellar insults

may lead to ‘‘dysmetria’’ in the functioning ofwhichever functional

network is implicated (Schmahmann, 2004). Future studies are

needed to test this hypothesis, coupling rigorous neuropsycho-

logical testing with precision mapping of individual humans.

A Model of Cortico-Cerebellar Temporal Propagation
BOLD signals in the cerebellum lagged behind BOLD signals in

the cortex by 100–400 ms in a network-specific manner that

was reproducible across all 10 subjects. Specifically, motor

network BOLD activity lagged behind cortical BOLD activity by

�125 ms, while association network BOLD activity lagged

behind cortical BOLD by �280 ms. The TD matrix of Figure 7A

suggests that, for each of the functional networks that are repre-

sented in both the cortex and cerebellum, the cerebellar portion

of the network represents the final destination for spontaneous

ISA propagating through the network. This is consistent with a

model in which cortical output is processed in the cerebellum

via polysynaptic anatomical connections from the cortex before

being relayed back to the same cortical areas, supporting the

cerebellum’s role in supervised learning and adaptation, and

error signaling (Dosenbach et al., 2006; Fiez et al., 1992).

It was recently discovered that ISA (0.01–0.10 Hz) and delta

band (0.5–4 Hz) activity propagate in opposite directions be-

tween the hippocampus and cerebral cortex (Mitra et al.,

2016). Using wide-field optical calcium/ hemoglobin imaging

and laminar electrophysiology in mice, it was discovered that

reciprocal propagation of ISA and delta activity occurs across

the cerebral cortex (Mitra et al., 2018). Additionally, the phase

of ISA was coupled with the amplitude of delta activity, suggest-

ing that ISAmay structure higher frequency activity, as predicted

by theories of neural communication via phase-amplitude

coupling (Fries, 2015). Based on the present findings, we hy-

pothesize that cortico-cerebellar loops exhibit a similar fre-

quency-specific temporal organization (Figure 8). In this model,

cerebellar ISA lags cortical ISA in a network-specific fashion.

Based on evidence for reciprocal propagation of ISA and delta

band activity in the cortex, we speculate a similar spatiotemporal

organization exists in cortico-cerebellar loops. Within these

loops, ISA originating in the cortex temporally organizes higher
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Figure 8. A Model of Cortico-Cerebellar Temporal Propagation

Cerebellar ISA lags cortical ISA in a network-specific fashion. ISA paces higher frequency activity, providing windows of opportunity for the sender (cerebellum) to

transmit information to the receiver (cortex). High-fidelity data are required to accurately delineate cortico-cerebellar loops, since the same anatomical location in

two individuals may be part of different functional network loops.
frequency activity originating in the cerebellum, providing win-

dows of opportunity for the cerebellum (sender) to transmit infor-

mation to the cortex (receiver). Accurate characterization of

individual-specific cerebellar networks is required to accurately

map cerebro-cerebellar circuits, as the same anatomical locus

within the cerebellum may result in different cortico-cerebellar

network loops (as is the case between Subject 1 and Subject 2

in Figure 8). Delays in ISA may vary by network due to the time

it requires the cortex (receiver) to integrate information sent

from the cerebellum. Future electrophysiological studies are

needed to directly test these predictions. Interestingly, some

recent evidence suggests stimulation of cerebellar outputs using

delta frequency optogenetics rescues attenuated medial pre-

frontal cortex activity in a mouse model of schizophrenia, indi-

cating delta band cerebellar activity may be an important

frequency regime in modulation of cortex (Parker et al., 2017).

Conclusion
Using the high-fidelity MSC dataset, we mapped the spatial and

temporal organization of cerebellar functional networks in ten in-

dividuals. Using 5 hr of resting state data per subject, we found
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that the cerebellum is functionally characterized by common,

group-level organizations principles, as well as individual-spe-

cific features. Individual variability in the spatial arrangement of

functional networks was significantly greater than in the cortex.

The frontoparietal network, critical for adaptive control, was

the only network overrepresented in the cerebellum compared

to the cortex (2.3-fold). Temporally, all cerebellar resting state

signals lagged behind the cortex (125–380 ms), most promi-

nently within association networks. Both of these group-level ef-

fects were evident in all ten individuals. These combined group

level and individual level findings suggest a domain-general

function of the cerebellum may be the ultimate correction of all

cortical motor and cognitive processes.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and processed MRI data (Gordon et al., 2017c) https://openneuro.org/datasets/ds000224;

Accession # ds000224

Task fMRI activations (Gordon et al., 2017c) https://neurovault.org/collections/2447/

Psychological Image Collection at Stirling

2D face set

N/A http://pics.psych.stir.ac.uk/

CNBC Tarrlab ‘‘Face Place’’ repository (Righi et al., 2012) http://wiki.cnbc.cmu.edu/Face_Place

Park Aging Mind Laboratory Face Database N/A http://agingmind.utdallas.edu/download-stimuli/face-

database/

Libor Spacek’s Facial Imaging Database N/A http://cmp.felk.cvut.cz/�spacelib/faces/

English Lexicon Project (Balota et al., 2007) http://elexicon.wustl.edu/

Software and Algorithms

MATLAB MathWorks RRID: SCR_001622; https://www.mathworks.com/

Connectome Workbench (Marcus et al., 2011) RRID: SCR_008750; https://www.humanconnectome.

org/software/connectome-workbench

Freesurfer (Dale et al., 1999) RRID: SCR_001847; https://surfer.nmr.mgh.harvard.edu/

FSL (Smith et al., 2004) RRID: SCR_002823; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

4dfp tools N/A ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/

Freesurfer to fs_LR pipeline (Van Essen et al., 2012) http://brainvis.wustl.edu

Parcellation code (Gordon et al., 2016) https://sites.wustl.edu/petersenschlaggarlab/resources/

Infomap (Rosvall and Bergstrom, 2008) http://www.mapequation.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Scott Marek (smarek@

wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The publicly available Midnight Scan Club (MSC) dataset was used for analyses (https://openneuro.org/datasets/ds000224). The da-

taset and processing has been previously described in detail (Gordon et al., 2017c). Below we detail minor modifications in the pro-

cessing of the data, namely multimodal surface mapping and the handling of white matter and CSF regressors. We then describe

specific analyses employed in this manuscript.

Participants and Study Design
The MSC dataset includes structural and functional MRI data, as well as behavioral measures from 10 individuals (5 females, ages

24-34) scanned in 10 different sessions. Each session occurred on a separate day, beginning at midnight. Daily sessions were

conducted in close succession, with all sessions completed within 7 weeks for all participants. provided written informed consent.

Procedures were approved by the Washington University Institutional Review Board and School of Medicine Human Studies

Committee. During each of the scanning sessions, participants completed a resting-state scan followed by fMRI scans in four other

task states: a motor task, a semantic task, a coherence task, and an incidental encoding memory task. MRI acquisition parameters

and tasks are described below.

METHOD DETAILS

MRI image acquisition
Imaging for each subject was performed on a Siemens TRIO 3T MRI scanner over the course of 12 sessions conducted on separate

days, each beginning at midnight. Structural MRI was conducted across two separate days. In total, four T1-weighted images
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(sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 3.74ms, TR = 2400 ms, TI = 1000ms, flip angle = 8 degrees), four T2-weighted

images (sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 479 ms, TR = 3200 ms), four MRA (transverse, 0.6 3 0.6, x 1.0mm,

44 slices, TR = 25ms, TE = 3.34ms) and eight MRVs, including four in coronal and four in sagittal orientations (sagittal:

0.8 3 0.8 3 2.0mm thickness, 120 slices, TR = 27ms, TE = 7.05ms; coronal: 0.7 3 0.7 3 2.5mm thickness, 128 slices,

TR = 28ms TE = 7.18ms), were obtained for each subject. Analyses of the MRA and MRV scans are not reported here.

On ten subsequent days, each subject underwent 1.5 hour functional MRI scanning beginning at midnight. In each session, we first

collected thirty contiguous minutes of resting state fMRI data, in which subjects visually fixated on a white crosshair presented

against a black background. Each subject was then scanned during performance of three separate tasks: motor (2 runs per session,

7.8 min combined), incidental memory (3 runs per session, 13.1 min combined), mixed design (2 runs per session, 14.2 min com-

bined). Data from the incidental memory task and mixed design is not included in the current work. Across all sessions, each subject

was scanned for 300 total minutes during the resting state and approximately 350 total minutes during task performance. All func-

tional imaging was performed using a gradient-echo EPI sequence (TR = 2.2 s, TE = 27ms, flip angle = 90�, voxel size = 4mm x 4mm

x 4mm, 36 slices). In each session, one gradient echo field map sequence was acquired with the same prescription as the functional

images. An EyeLink 1000 eye-tracking system (https://www.sr-research.com) allowed continuous monitoring of subjects’ eyes in

order to check for periods of prolonged eye closure, potentially indicating sleep. Only one subject (MSC08) demonstrated prolonged

eye closures.

Motor task design
The motor task was adapted from that used in the Human Connectome Project (Barch et al., 2013). Subjects were presented with

visual cues that directed them to close and relax their hands, flex and relax their toes, or wiggle their tongue. Each block started

with a 2.2 s cue indicating which movement was to be made. After this cue, a centrally-presented caret replaced the instruction

and flickered once every 1.1 s (without temporal jittering). Each time the caret flickered, subjects executed the proper movement.

Twelvemovements weremade per block. Each task run consisted of 2 blocks of each type ofmovement as well as 3 blocks of resting

fixation, which lasted 15.4 s.

Cortical surface generation
Generation of cortical surfaces from theMRI data followed a procedure similar to that previously described in (Laumann et al., 2015).

First, anatomical surfaces were generated from the subject’s average T1-weighted image in native volumetric space using FreeSur-

fer’s default recon-all processing pipeline (version 5.3). This pipeline first conducted brain extraction and segmentation. After this

step, segmentations were hand-edited to maximize accuracy. Subsequently, the remainder of the recon-all pipeline was conducted

on the hand-edited segmentations, including generation of white matter and pial surfaces, inflation of the surfaces to a sphere, and

surface shape-based spherical registration of the subject’s original surface to the fsaverage surface (Dale et al., 1999; Fischl et al.,

1999). The fsaverage-registered left and right hemisphere surfaces were brought into register with each other using deformation

maps from a landmark-based registration of left and right fsaverage surfaces to a hybrid left-right fsaverage surface (‘fs_LR’). These

fs_LR spherical template meshes were input to a flexible Multi-modal surface Matching (MSM) algorithm using sulc features to reg-

ister templates to the atlasmesh (Robinson et al., 2014). These newly registered surfaceswere then down-sampled to a 32,492 vertex

surface (fs_LR 32k) for each hemisphere. The various structural metric data (thickness,curv,etc..) from the original surfaces to the

fs_LR 32k surface were composed into a single deformation map allowing for one step resampling. MSM registration provided a

more optimal fit of pial and white surfaces and reduced areal distortion (Glasser et al., 2016). These various surfaces in native ste-

reotaxic space were then transformed into atlas space (711-2B) by applying the previously calculated T1-to-atlas transformation.

fMRI Preprocessing
Functional data were preprocessed to reduce artifact and to maximize cross-session registration. All sessions underwent correction

of odd versus even slice intensity differences attributable to interleaved acquisition, intensity normalization to a whole brain mode

value of 1000, and within run correction for head movement. Atlas transformation was computed by registering the mean intensity

image from a single BOLD session to Talairach atlas space (Talairach and Tournoux, 1988) via the average high-resolution

T2-weighted image and average high-resolution T1-weighted image. All subsequent BOLD sessions were linearly registered to

this first session. This atlas transformation, mean field distortion correction (see below), and resampling to 3-mm isotropic atlas

space were combined into a single interpolation using FSL’s applywarp tool. Unless otherwise specified, all subsequent operations

were performed on the atlas-transformed volumetric time series. In some instances, we compare our main results with voxel-wise

analyses (across both cortex and cerebellum) after non-linearly transforming all subjects to a reference subject (MSC 01). For meth-

odological details of this procedure, see below (Non-linear registration of volumetric time series).

Distortion correction
A mean field map was generated based on the field maps collected in each subject (Laumann et al., 2015). This mean field map was

then applied to all sessions for distortion correction. To generate the mean field map the following procedure was used: (1) Field map

magnitude images were mutually co-registered. (2) Transforms between all sessions were resolved. Transform resolution recon-

structs the n-1 transforms between all images using the n(n-1)/2 computed transform pairs. (3) The resolved transforms were applied
Neuron 100, 977–993.e1–e7, November 21, 2018 e2
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to generate a mean magnitude image. (4) The mean magnitude image was registered to an atlas representative template. (5) Individ-

ual session magnitude image to atlas space transforms were computed by composing the session-to-mean and mean-to-atlas

transforms. (6) Phase imageswere then transformed to atlas space using the composed transforms, and amean phase image in atlas

space was computed.

Application of mean field map to individual fMRI sessions: (1) For each session, field map uncorrected data was registered to atlas

space, as above. (2) The generated transformation matrix was then inverted and applied to themean field map to bring themean field

map into the session space. (3) The mean field map was used to correct distortion in each native-space run of resting state and task

data in the session. (4) The undistorted data was then re-registered to atlas space. (5) This new transformation matrix and the mean

field map then were applied together to resample each run of resting state and task data in the session to undistorted atlas space in a

single step.

RSFC Preprocessing
Additional preprocessing steps to reduce spurious variance unlikely to reflect neuronal activity were executed as recommended in

Ciric et al. (2017) and Power et al. (2014). First, temporal masks were created to flag motion-contaminated frames. We observed that

two subjects (MSC 03 and MSC 10) had a high-frequency artifact in the motion estimates calculated in the phase encode (anterior-

posterior) direction that did not appear to reflect biological movement. We thus filtered the motion estimate time courses in this

direction only to retain effects occurring below 0.1 Hz in all subjects for consistency. Motion contaminated volumes were then iden-

tified by frame-by-frame displacement (FD). Frames with FD > 0.2mmwere flagged as motion-contaminated and > 0.5mm in the lag

analysis to retain larger contiguous chunks of data. Across all subjects, these masks censored 28% ± 18% (range: 6% – 67%) of the

data; on average, subjects retained 5929 ± 1508 volumes (range: 2733 – 7667). Note that in this paradigm, even the worst subject

retained almost two hours of data.

After computing the temporal masks for high motion frame censoring, the data were processed with the following steps:

(i) demeaning and detrending, (ii) interpolation across censored frames using least-squares spectral estimation of the values at

censored frames (Power et al., 2014) so that continuous data can be passed through (iii) a band-pass filter (0.005 Hz < f <

0.10 Hz) without re-introducing nuisance signals (Hallquist et al., 2013) or contaminating frames near high motion frames (Carp,

2013; Power et al., 2013) and (iv), multiple regression including: whole brain, principle components of ventricular and white matter

signals (see below Component-based nuisance regression), and motion regressors derived by Volterra expansion, with censored

data ignored during beta estimation, and (v) upsampling to 2mm isotropic voxels. Censored frames were then excised from the

data for all subsequent analyses.

Component-based nuisance regression
Next, the filtered BOLD time series underwent a component-based nuisance regression approach incorporating elements of previ-

ously publishedmethods (Behzadi et al., 2007). Nuisance regression using time series extracted fromwhite matter and cerebrospinal

fluid (CSF) assumes that variance in such regions is unlikely to reflect neural activity. Variance in these regions is known to correspond

largely to physiological noise (e.g., CSF pulsations), arterial pCO2-dependent changes in T2*-weighted intensity and motion artifact;

this spurious variance is widely shared with regions of interest in gray matter. We also included the mean signal averaged over the

whole brain as a nuisance regressor. Global signal regression (GSR) has been controversial. However, the available evidence indi-

cates that GSR is a highly effective de-noising strategy (Ciric et al., 2017; Power et al., 2015).

Nuisance regressors were extracted from white matter and ventricle masks, first segmented by FreeSurfer (Fischl, 2012), then

spatially resampled in register with the fMRI data. Voxels surrounding the edge of the brain are particularly susceptible to motion

artifacts and CSF pulsations (Satterthwaite et al., 2013); hence, a third nuisance mask was created for the extra-axial compartment

by thresholding the temporal standard deviation image (SDt > 2.5%), excluding a dilated whole brainmask. Voxel-wise nuisance time

series were dimensionality reduced as in CompCor (Behzadi et al., 2007), except that the number of retained regressors, rather than

being a fixed quantity, was determined, for each noise compartment, by orthogonalization of the covariance matrix and retaining

components ordered by decreasing eigenvalue up to a condition number of 30 ðlmax=lmin > 30Þ. The retained components across

all compartments formed the columns of a design matrix, X, along with the global signal, its first derivative, and the six time series

derived by retrospective motion correction. The columns of X are likely to exhibit substantial co-linearity. Therefore, to prevent nu-

merical instability owing to rank-deficiency during nuisance regression, a second-level SVD was applied to XXT to impose an upper

limit of 250 on the condition number. This final set of regressors was applied in a single step to the filtered, interpolated BOLD time

series.

Surface processing and CIFTI generation of BOLD data
Surface processing of the RSFC BOLD data proceeded through the following steps. First, the BOLD fMRI volumetric timeseries (both

resting-state and task) are sampled to each subject’s original mid-thickness left and right-hemisphere surfaces (generated as the

average of the white and pial surfaces) using the ribbon-constrained sampling procedure available in Connectome Workbench

1.0. This procedure samples data from voxels within the gray matter ribbon (i.e., between the white and pial surfaces) that lie in a

cylinder orthogonal to the local mid-thickness surface weighted by the extent to which the voxel falls within the ribbon. Voxels

with a timeseries coefficient of variation 0.5 standard deviations higher than the mean coefficient of variation of nearby voxels (within
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a 5 mm sigma Gaussian neighborhood) were excluded from the volume to surface sampling, as described in Glasser et al. (2013).

Once sampled to the surface, time courses were deformed and resampled from the individual’s original surface to the 32k fs_LR

surface in a single step using the deformation map generated above (in ‘‘Cortical surface generation’’). This resampling allows

point-to-point comparison between each individual registered to this surface space.

These surfaces were then combined with volumetric subcortical and cerebellar data into the CIFTI format using Connectome

Workbench (Marcus et al., 2011), creating full brain time courses excluding non-gray matter tissue. Subcortical (including accum-

bens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus) and cerebellar voxels were selected based on the Free-

Surfer segmentation of the individual subject’s native-space average T1, transformed into atlas space, and manually inspected.

Finally, the resting-state time courses were smoothed with geodesic 2D (for surface data) and Euclidean 3D (for volumetric data)

Gaussian kernels (s = 2.55 mm).

Vertex-wise network mapping
The network organization of each subject’s cortical surface was derived using the graph-theory-based Infomap algorithm for com-

munity detection (Rosvall and Bergstrom, 2008), following Power et al. (2011). In this approach, we calculated the Pearson correlation

matrix of the time courses from all cortical vertices, concatenated across sessions. Correlations between vertices within 30 mm of

each other were set to zero. Geodesic distance was used for within-hemisphere surface connections. Inter-hemispheric connections

between the cortical surfaces were retained, as smoothing was not performed across the mid-sagittal plane.

Thismatrix was then thresholded at a range of values calculated based on the resulting density of thematrix; the density thresholds

ranged from 0.1% to 5%. Small networks with 400 or fewer vertices / voxels were considered unassigned and removed from further

consideration as in Gordon et al. (2017c). The above analysis was conducted in each individual subject, and in data averaged across

all subjects (MSC Average).

To identify putative networks wemay find in each subject, we conducted a re-analysis of our previous work on group-average data

(Gordon et al., 2017b), in which the Infomap algorithm was conducted in data averaged across a large, independent group of 120

individuals with low quantities of per-subject data. Analysis procedures were identical to the analyses conducted on this group in

Gordon et al. (2017b), except that the minimum density threshold tested was reduced to 0.1%. As a result, we were able to identify

group-average networks corresponding to a) early visual cortex, b) somatomotor cortex associated with the foot, and c) to a strip

along postcentral gyrus corresponding closely to ‘‘pre-motor’’ activation in the Neurosynth platform (Yarkoni et al., 2011).

Putative network identities were then assigned to each subject’s communities similar to previously published work from our group

(see Gordon et al., 2017c). Figure S3 contains individual and group averaged Infomap community assignments on the cortical

surface.

Regression of adjacent cortical tissue
The most dorsal regions of the cerebellum are in close anatomical proximity to the ventral portions of the occipital lobes, resulting in

spurious functional coupling between ventral visual voxels and dorsal cerebellar voxels. To reduce this artifact, we regressed the

cortical signal within 20mm of a given cerebellar voxel, for each cerebellar voxel (Buckner et al., 2011). More specifically, we used

Euclidean distance as our metric between cerebellar voxels and cortical surface vertices. The BOLD time series from all vertices fall-

ing within 20mm of a source voxel were averaged and then regressed from the cerebellar voxel time series. The resulting residual

timeseries were used for all subsequent analyses.

Winner-take-all parcellation of the cerebellum
The network organization of each subject’s cerebellum was assigned using a winner-take-all approach (Buckner et al., 2011; Choi

et al., 2012; Greene et al., 2014; Hwang et al., 2017). For each subject, we concatenated the time series of BOLD activity across

the 10 scanning sessions across the whole brain, using the residual time series of each cerebellar voxel computed above. After

excluding high motion frames, we correlated each cortical vertex and cerebellar voxel with every other vertex and voxel, resulting

in a whole brain correlation matrix. Next, for each cerebellar voxel we computed the average correlation between a given voxel

and vertices within each cortical network in the contralateral hemisphere, resulting in a single correlation value between a voxel

and each cortical network. The network affiliation of a given voxel was assigned to the network to which it had the greatest positive

correlation. All non-zero correlations (both positive and negative) were included in the analysis. Supplemental figures of WTA and

subsequent results displayed on cerebellar flat maps were generated using the SUIT toolbox (Diedrichsen and Zotow, 2015).

RSFC and WTA reliability
Individual subject RSFC reliability and was assessed in each subject using an iterative comparison of random data subsets, similar to

Gordon et al. (2017c) and Laumann et al. (2015). For each subject, the ten scanning sessions were split into two equal-sized,

randomly selected subsets of sessions. One half of (post-motion censoring) data was randomly selected from one of the two subsets

to use as the comparison set of data. A varying amount of data (ranging in 5 min intervals from 5 min to 100 min, when possible) was

randomly selected from the other subset. Whereas Gordon et al. (2017c) and Laumann et al. (2015) calculated split-half reliability

using individual parcels, determined reliability at the vertex/voxel x network level to maximize comparability between the cerebellum

and cortex. Thus, in both the comparison and test set, we averaged the time series of activity within each individual subject’s
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Infomap-derived cortical functional network and subsequently correlated the time series of every vertex/voxel with each network. To

determine reliability, we then calculated the average correlation between the test and comparison set of data.

CerebellumWTA reliability was calculated similarly, by first repeating the same procedure to split the data into a test and compar-

ison set. We repeated the WTA procedure to partition the cerebellum in functional networks in the comparison set and for each test

set. Iterative split-half reliability was determined by calculating the Spearman correlation between WTA assignments in the test and

comparison dataset.

Network specificity
To assess the specificity of cerebellar network assignments, we took two approaches. First, for each cerebellar voxel, we calculated

the percent difference in correlation between the average correlation to the ‘winning’ cortical network and to the 2nd place network.

Cerebellar voxels with greater difference in mean correlation between 1st and 2nd place cortical networks represent areas of high

network specificity.

Task/Rest Convergence
For each task condition (right hand, left hand, right foot, left foot or tonguemovement), a 35.2 s time course was extracted from every

image voxel starting with each stimulus presentation. These time courses included the 15.4 s movement block and an additional

19.8 s to capture a full hemodynamic response. Then, for each voxel, time courses from all task trials were correlated against one

another. Pairwise correlations between trials were averaged together to produce one value per voxel. This yields very low correlation

values at voxels showing inconsistent (i.e., uncorrelated) time courses from one trial to another, but is sensitive to any voxel showing a

consistent activation time course across trials.

To determine task/rest convergencewithin the cerebellum, for eachmotor subdivision, we correlated the resting state BOLD signal

from the cortical vertex demonstrating peak correlated activity from the task analysis and thresholded the resulting cerebellar voxel-

wise correlations at 0.10 for foot and 0.15 for both hand and face motor subdivisions. This same threshold was applied to the task

data in the cerebellum.We defined convergence as voxels in the cerebellum demonstrating suprathreshold correlations for both task

and rest and super imposed this patch over the WTA network partitions.

Network Similarity: Group level versus individual level effects
A detailed account of methods for this analysis can be found in Gratton et al. (2018). We provide an overview of aspects of those

analyses pertinent to this study. Group versus individual level effects were examined by creating a network similarity matrix (similar

to Figure S7 in Gratton et al., 2018). To create the network similarity matrix, we correlated themean time series within each network in

the cortex and cerebellum, separately for split-halves of data. We then created a ‘‘second order’’ similarity matrix by correlating this

matrix (upper triangle only for within cerebellum and within cortex comparisons) both within each subject and between each other

subject’s split have of data. This matrix was then examined for group-level and individual level effects. On-diagonal elements of

the network similarity matrix (within-subjects) reflect effects from both the group and individual level. Off-diagonal elements of the

matrix (between-subjects) reflect only those effects common across the group (i.e., group level effects) Individual-effects were deter-

mined by subtracting the group effect (mean of off-diagonal elements) from the mean of the on-diagonal elements. Differences in

group versus individual effects were tested for significance within the cerebellum and cortex – and between the cerebellum and

cortex – using paired two-sample t tests.

Inter-subject RSFC variability
RSFC variancewas assessed across the cortex and cerebellum vertex/voxel-wise as themean standard deviation of Fischer z-trans-

formed correlations from a given vertex/voxel to every other vertex/voxel across subjects. As in previous analyses, we excluded any

voxels and verticeswithin 30mmof the source. Network-level variance in the cortex and cerebellumwas calculated as themean stan-

dard deviation across all vertices and voxels, respectively, within a network.

Functional network variability
We contrasted the variance in the spatial arrangement of networks within each separately. First, we calculated the relative contribu-

tion of a given network to the total surface/volume by taking the number of vertices/voxels occupied by a given network in relation to

the total number of vertices/voxels,

RCn = 100 x

�
vi
ve

�
;

where RCn is the relative contribution of a network, vi is the total volume/area occupied by a network, and ve is total volume/area. We

then calculated the inter-subject variance in relative contribution for each network within the cortex and cerebellum, separately. For

each network, the ratio between the two structures was computed and normalized by cortical variance,

Varn = 100 x

�
varcerebellum + varcortex

varcortex

�
;
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where Varn is the ratio of cerebellar to cortical variance within a network, varcerebellum is the inter-subject variance within a cerebellar

network, and varcortex is inter-subject variance within a cortical network. Lastly, global variance was computed by taking the mean

across all networks (i.e., the mean of Varn).

To test for a significant difference in the variance in network assignments within the cerebellum versus the cortex (Varn), we gener-

ated a null distribution of variance in network assignments by permuting the affiliation of a network to either the cortex or cerebellum

1,000 times and recalculating variance in the relative contribution of a network within both the cerebellum (varcerebellum) and cortex

(varcortex). We then compared the observed variance to the null distribution.

To quantify anatomical variability within a motor system (hand) in the cerebellum, we extracted each subject’s convergence patch

from the analysis above (‘Task/Rest Convergence’) and created an overlap of voxels after linear registration of each subject’s atlas-

transformed cerebellum. To further probe anatomical variability across subjects in peak handmotor representation, we extracted the

peak task-evoked BOLD activity in right-handmotor network in the cerebellum (highest Pearson r from the handmotor task). We then

correlated the resting state BOLD signal from this peak cerebellar voxel with every hand motor cortical vertex, in each subject. We

then calculated the mean correlation and normalized by the number of vertices in the Infomap hand motor patch, within a given

individual and across all MSC subjects. This process was repeated for each subject, resulting in a subject x subject matrix of

correlation values. Diagonal elements represent the ‘matching’ correlation (e.g., correlation between hand motor cerebellum

and hand motor cortex in MSC 02), whereas off-diagonal elements represent ‘mismatching’ correlations (e.g., correlation between

hand motor cerebellum in MSC 02 and hand motor cortex in MSC 06). We determined the magnitude of subject variability in hand

motor representation in the cerebellum by calculating the mean and standard deviation of Euclidean distance between peak cere-

bellar coordinates across subjects.

Relative network proportions in the cerebellum versus cortex
For each network, the fraction of the cortex and cerebellum occupying the total surface/volumewas calculatedwithin each subject as

in the variance analysis in network assignments above for the cortical surface and cerebellum separately. The between subject

average for each network was then calculated. We then plotted the mean network representation in the cerebellum against the

mean network representation in the cortex. The relative proportion occupied by a given network in the cerebellum versus the cortex

was calculated as a ratio of the two:

Rn =
Cerebn

Cortn
;

whereRn is the ratio of a network’s representation in the cerebellum (Cerebn) versus the cortex (Cortn). Values near one indicate equal

representation in the cerebellum as in the cortex. Values greater than one indicate greater representation in the cerebellum, whereas

values less than one indicate greater relative representation of a network in the cortex.

Cerebellar Lead/Lag Analysis
We used a previously published method for computing time delay estimates as described in detail elsewhere (Mitra et al., 2014,

2015). Briefly, for each session, we first computed a lagged cross-covariance function (CCF) between each pair of vertices/voxels

at a temporal resolution of the acquired data (volume TR = 2200ms). To account for censored frames, we computed CCFs over

blocks of contiguous frames and averaged these CCFs, weighted by block duration, to obtain a single CCF for the session. We

excluded time delays greater than 4 s as, in our experience, these tend to reflect sampling error or artifact. Thus, CCFs were only

computed over three TR shifts in the positive and negative directions, making the minimum block duration [3 (TR shifts) + 1 (zero-

lag)]*TR = 8.8 s. Lags were then more precisely determined by estimating the cross-covariance extremum of the session-level

CCF using three-point parabolic interpolation. The resulting set of lags was assembled into an antisymmetric matrix capturing all

possible pairwise time delays (TD matrix) for each session, which was averaged across sessions and subjects to yield subject-

and group-level TD matrices, respectively. The TD matrix was sorted from early to late, by resting state network, and finally, by brain

structure (i.e., cortex versus cerebellum), to aid in visualization of propagation within and between networks (Mitra et al., 2014) and

brain structures.

We additionally computed ‘‘lag projection’’ maps (Mitra et al., 2014) for the cerebellum based exclusively on its relationship with

cortex. Thus, for each cerebellar voxel we computed its mean latency across all cortical vertices. The resulting lag projection map of

the cerebellum reflects the average latency of each cerebellar voxel with respect to the cortex, with positive values reflecting late

activity in the cerebellum relative to the cortex.

Non-linear registration of volumetric time series
Differences in inter-subject variance of RSFC and network organizationwithin the cerebellum and between the cerebellum and cortex

may be explained, in part, by the differential handling of these two structures (i.e., surface data within the cortex, volumetric data

within the cerebellum). For each subject, the atlas-transformed T1-weighted image was non-linearly registered to a reference subject

(MSC 01) using FSL’s FNIRT. Subsequently, volumetric time series files were non-linearly registered to each subject’s registered

T1-weighted image. Session-level time series were concatenated and temporally masked for high motion frames (FD > 0.2 or

DVARS > 5.36). Cortical voxels within 30mm (Euclidean distance) of a cerebellar voxel were not included in subsequent analyses.
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We then recomputed the following: (i) split-half RSFC reliability across the cerebellum and cortex, (ii) standard deviation of RSFC

across subjects in the cortex and cerebellum, (iii) network organization using Infomap (see below), (iv) RSFC similarity, (v) frontopar-

ietal network representation in the cortex and cerebellum. For our voxel-wise parcellation using Infomap, we thresholded (0.5%

and 1%) the full adjacency matrix (cortex plus cerebellum) in a structure-specific manner, such that each structure (cortex and cer-

ebellum) – in addition to the links between cortex and cerebellum – were equal in number.

DATA AND SOFTWARE AVAILABILITY

Raw MRI data, as well as segmented cortical surfaces, preprocessed volumetric and cifti-space RSFC time courses, myelin maps,

and individual-specific parcellations and networks, will be deposited in theOpenfmri data repository (https://openfmri.org/) under the

label ‘‘Midnight Scan Club.’’ Session- and subject-specific volumetric task responses will be deposited in the Neurovault repository

(https://neurovault.org/) under the label ‘‘Midnight Scan Club task data.’’
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