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A B S T R A C T

Background: Over the past decade, pattern decoding techniques have granted neuroscientists improved anato-
mical specificity in mapping neural representations associated with function and cognition. Dynamical patterns
are of particular interest, as evidenced by the proliferation and success of frequency domain methods that reveal
structured spatiotemporal rhythmic brain activity. One drawback of such approaches, however, is the need to
estimate spectral power, which limits the temporal resolution of classification.
New method: We propose an alternative method that enables classification of dynamical patterns with high
temporal fidelity. The key feature of the method is a conversion of time-series data into temporal derivatives. By
doing so, dynamically-coded information may be revealed in terms of geometric patterns in the phase space of
the derivative signal.
Results: We derive a geometric classifier for this problem which simplifies into a straightforward calculation in
terms of covariances. We demonstrate the relative advantages and disadvantages of the technique with simu-
lated data and benchmark its performance with an EEG dataset of covert spatial attention. We reveal the
timecourse of covert spatial attention and, by mapping the classifier weights anatomically, its retinotopic or-
ganization.
Comparison with existing method: We especially highlight the ability of the method to provide strong group-level
classification performance compared to existing benchmarks, while providing information that is com-
plementary with classical spectral-based techniques. The robustness and sensitivity of the method to noise is also
examined relative to spectral-based techniques.
Conclusion: The proposed classification technique enables decoding of dynamic patterns with high temporal
resolution, performs favorably to benchmark methods, and facilitates anatomical inference.

1. Introduction

Understanding how different brain regions interact in task-depen-
dent ways is a key goal of cognitive neuroscience. In this regard, a
frequent aim of neural data analysis is to characterize the spatio-
temporal patterns present within brain activity and, subsequently, to
enable the association of such patterns with specific cognitive states.
Perhaps the most classic of such approaches, certainly within the do-
main of electrophysiological brain recordings, is time-frequency ana-
lysis which involves the projection of data into the Fourier domain in
order to examine synchronization, spectral power and cross-channel
(i.e., network) relationships.

Recently, increased attention has been directed toward

characterizing neural recordings in terms of their underlying dynamics
via more holistic descriptions (Andrzejak et al., 2001; Adeli et al., 2007,
2008; Sitges et al., 2010). Such approaches include methods for char-
acterizing chaos and instability reflected in neural recordings via esti-
mation of Lyapunov exponents (Iasemidis et al., 1990; Güler et al.,
2005) and manifold reconstruction methods such as Takens embedding
(Takens, 1981; Sauer et al., 1991), which has been used to infer di-
rected information flow between brain regions without overt analysis of
rhythmicity (Tajima et al., 2015). As dynamical systems-based char-
acterizations, these approaches are unified in that interest is placed on
directly characterizing the underlying vector field that ultimately gov-
erns the time-evolution of the observed recordings. The vector field
describes the instantaneous evolution of dynamical systems, i.e. the
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time-derivatives of its state variables. In this spirit, here we propose a
technique for elucidating properties of the vector field that involves
analysis not of the observed time-series itself, but rather on the deri-
vatives: the ‘velocity’ trajectories of neural activity. We use the term
‘velocity’ in the dynamical systems sense in which system states, such as
a particular combination of cell voltages, are referred to as ‘positions’
within the state space and an observed sequence of ‘positions’ (states)
forms a trajectory. The ‘velocity’ is thus considering how the system
states change in time. It turns out that this rather straightforward
transformation from considering system position to system velocity
brings about several conceptual and practical advantages for classifying
neural dynamics. Our approach is motivated in part by recent results in
monotone dynamical systems theory that provide explicit character-
izations of how the attractor landscape of a dynamical system relates to
the geometry of its derivative phase flow (Smith, 1980; Sanchez, 2009,
2010; Feng et al., 2017). In other words, by analyzing the observed
velocity trajectories we can make certain deductions regarding the
properties of the underlying neural circuit dynamics. The spatial re-
solution of these deductions match the spatial resolution of the re-
cordings themselves. Exploiting this notion, we describe a novel ap-
proach to decode different cognitive states by geometrically deducing
and characterizing their corresponding velocity trajectories. As will be
seen, this approach enjoys many advantageous statistical properties. In
the particular case focused on in our paper, it reduces to an intuitive
comparison of covariance geometry of the derivative time-series, which
is amenable to classification using conic boundaries. We proceed to
demonstrate the efficacy and ease of the proposed paradigm in a variety
of examples, then apply it to an electroencephalogram (EEG) dataset
(Treder et al., 2011) wherein we show its interpretability and perfor-
mance in decoding covert spatial attention.

2. Classification for hypothesis testing in neuroscience

Classification techniques play two distinct roles within neu-
roscience: for developing basic scientific inference as with multivariate
pattern analysis (MVPA); and for developing brain-based interfaces
such as brain–computer interfaces (BCI). The technique that we now
propose has been developed with the former objective (scientific in-
ference) in mind, although BCI applications are also possible. MVPA is a
pattern-based approach to studying brain function, in which in-
vestigators attempt to decode whether activation patterns contain sig-
nificant information regarding task events or cognitive states. A
common goal of MVPA studies is to determine the anatomical regions in
the brain that contain such information (Haxby et al., 2001). Other
studies have used MVPA-type analyses to test temporal rather than
spatial hypotheses regarding brain function, as with studies of mne-
monic periodic-replay (Fuentemilla et al., 2010; Jafarpour et al., 2013).

For all of these research questions, linear classification methods are
by far the most common, and include logistic regression, linear dis-
criminants, correlation, or support-vector machines (Haxby et al.,
2014). However, a continual goal of methodological research on MVPA
applications for neuroscience is to search for enhanced classification
approaches. One potential direction is to leverage the recent advances
with deep learning approaches (i.e., convolutional neural networks,
CNNs) that have shown significant promise within machine learning
applications. A few studies have successfully adopted such approaches
to classify neural data, for example by using pre-trained image-classi-
fication networks (Spampinato et al., 2017; Wen et al., 2017). Another
potential direction for MVPA methodological development that has
been more widely explored is to improve upon the neural features that
are utilized by classification algorithms, such as encoding models
(Garcia et al., 2013; Haxby et al., 2014; Foster et al., 2016) or feature
selection (Jafarpour et al., 2013).

In the current study, we also examine changes to the neural features
utilized by classifiers, but adopt a qualitatively different approach,
which instead considers a new form of information, namely the

temporal evolution of brain activity. In particular, previous work using
MVPA for EEG/MEG decoding has employed classification analysis
using band-limited power, so that the classifier input is a periodic re-
presentation of brain activity. In contrast, the proposed technique uses
a temporal derivative, which is a powerful transformation that can
convert any spatiotemporal pattern (not just periodic ones) into another
spatial feature. However, as we later discuss, this form of information is
almost never separable with a linear boundary. Consequently, we de-
velop an analogous classifier using a (quadratic) conic boundary. In
practice, a positive classification using our method generates the fol-
lowing information: (1) a characterization of how the neural activity for
the chosen EEG channels evolves differently in time based upon the task
classes (the information is dynamically coded) and (2) a detailed tem-
poral signature of the differential patterns of temporal evolution in the
two classes.

In contrast to using complex formalisms such as deep learning, our
classifier is explicit and employs only one form of information: the di-
rection (covariance) of the temporal derivative. As a result, there is an
explicit mapping between the classifier and the geometry of the sys-
tem's temporal evolution. This feature aids the classifier's interpret-
ability. In contrast, limited interpretability is seen as one of the greatest
drawbacks of approaches such as convolutional neural networks and, to
a lesser extent, linear decoders as well (Haufe et al., 2014). The primary
contribution of the proposed technique for neuroscience investigations
is that it provides information regarding how spatiotemporal patterns of
neural activity relate to task states. This information is characterized in
terms of the interaction of neural populations across time. Such a
characterization promotes mechanistic inference regarding the nature
of task-based interactions between neural generators. As opposed to
simply linking task states with mathematical descriptions of brainwaves
(i.e. spectral power) inferences are made in terms of the temporal in-
teractions between neural populations that characterize a task state.
Any experimental inferences drawn from applying the classifier are
made at the spatial and temporal scales in which the data is recorded:
e.g. interactions between large cortical populations as indexed by the
EEG timeseries.

In the current study, we first provide simulated examples in which
the system-states and corresponding inferences are made at the cellular
scale. Next we provide analysis of the cortical populations that underlie
task-states in humans using an experimental dataset from a benchmark
EEG experiment (Treder et al., 2011). This benchmark dataset has
subsequently been treated using conventional MVPA approaches in-
volving extraction of rhythmic activity, in efforts to reveal circuit dy-
namics that underlie covert spatial attention (Samaha et al., 2016).
Critically, we demonstrate the power of the ability of our approach to
generate new neuroscientific insights regarding both the anatomical
interactions and the precise temporal dynamics that give rise to covert
spatial attention (see Section 3.4).

3. Results

3.1. Conic analysis reveals underlying system dynamics

We consider time-series (here, neural recordings) denoted as
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where n denotes the number of observed variables, ∈ +j ℤ is a trial
index and i(t)= 1, 2, …, K denotes a class label (e.g., a cognitive state).
Our overall goal is to deduce the class label (at each time) by analyzing
the derivatives of xj(t).

The proposed method for neural data analysis and classification in
this context consists of two steps. First, for each class (i), we obtain an
estimate of the derivative time-series, x t˙ ( )i( ) . Second, we use general-
ized cones as a geometric classifier for individual points of the deri-
vative time series. A generalized cone can be understood as an object in
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Euclidean space that is invariant to scaling: if a vector v is an element of
a cone, then so is αv for any non-negative ∈ +α ℝ . Thus, the cone is a
fundamentally directional object. Our approach will involve using such
cones to partition Euclidean space into sets of derivatives attainable
only by specific classes. This procedure can reveal how a system tran-
sitions between states (but not necessarily the speed at which these
transitions occur).

Our subsequent results will demonstrate that this approach com-
plements spectral analysis (e.g., assessment of oscillatory power),
which, while an assay of dynamics, does not explicitly include direc-
tional information. More specifically, unlike many existing methods for
spatiotemporal classification, we do not operate upon summary para-
meters such as power within a specific frequency band (Fuentemilla
et al., 2010; Jafarpour et al., 2013). Instead, it is the individual data
points of the derivative time series that are used as the basis for clas-
sification since these contain inherent spatiotemporal information. In
this way, our classification approach can capture the instantaneous
rules, (i.e., the dynamics), governing how the (class-specific) time-
series evolve. This approach is particularly favorable as it reduces a
spatio-temporal classification problem in the original time series to a
spatial-only problem in the derivative time-series. As we demonstrate
later, this reduction significantly aids analysis and interpretation.

The motivation for such an approach stems from recent results in
the theory of smooth monotone dynamical systems. For our purposes, a
smooth dynamical system consists of a state space (here, we consider
this to be ℝn) coupled with a phase flow, or vector field that describes,
for each state, how the system evolves forwards (and, backwards) in
time. Recent research has linked geometric knowledge about the vector
field (i.e., the derivatives along system trajectories or paths) to the
asymptotic behavior of the system state variables. Such characteriza-
tions have been made possible by formally studying the extent to which
the derivatives along a path may be confined within generalized cones
(Smith, 1980; Sanchez, 2009, 2010; Feng et al., 2017). Although a
detailed discussion of monotone dynamics is beyond our current scope
(see e.g., Smith, 2008), these recent advances motivate our use of cones
for classification in derivative space.

To the extent that spatial patterns are useful for classification, the
derivatives can provide us crucial information regarding the underlying
system dynamics (spatiotemporal patterns). Perhaps an intuitive ana-
logy is that of vertical ascent for two sorts of aircraft: (fixed-wing)
airplanes and helicopters. While helicopters can make a direct vertical
translation, airplanes require strong lateral velocity before any vertical
motion is obtainable. Thus, for an airplane, reaching a point just above
the current one requires a complex (spiral-like) velocity trajectory.
Observing this velocity trajectory is thus highly informative in deducing
the vehicle in question. Aerodynamic constraints also greatly constrain
the turning radius of an airplane. As a result, the set of obtainable ve-
locities for an airplane relative to its body-frame differs greatly from
that of a helicopter, despite both being able to reach any point in air-
space. Similarly, neural circuits are seemingly able to produce a wide
variety of spatial activity patterns, although the set of attainable deri-
vatives may be more limited. For example, in Fig. 1 we consider two
different toy networks, each composed of three continuous, recurrent
Hopfield-model neurons (Hopfield, 1984, see Methods; Fig. 1A and B).
The two networks (systems) feature a common connection scheme, but
differ in their internal dynamics. In the second system (“System B”)
every cell exhibits greater decay (in neuroscience parlance, leak con-
ductance) (Fig. 1B). The systems produce qualitatively similar trajec-
tories wherein all initial conditions lead to a damped oscillatory re-
sponse for both cases (Fig. 1C and E). Despite this similarity, the
modeled systems differ in the oscillatory envelope of their response
(Fig. 1F). In the ideal case of noise-free uninterrupted observations, the
trajectories of these systems are easily discriminable in the original
phase space (Fig. 1E). However, trial-based designs that are the primary
workhorse of experimental neuroscience recordings (e.g., single- or
multi-unit electrophysiology, EEG, fMRI, etc.) generate large numbers

of short duration observations, in which the variability of initial states
present at the trial start can result in significant entanglement of acti-
vation trajectories. When we replicate these conditions for the two si-
mulated networks, their recordings become inextricable in the phase-
space of cell activity (Fig. 1C). However, the systems remain easily
separable in the phase space of their derivative signals (Fig. 1D). As the
derivative space is indicative of instantaneous changes in activity, dy-
namical features of the system are captured in individual observations,
so the systems may be differentiated regardless of observation length or
initial conditions. Of course, this classification can be performed to a
certain degree via direct methods (e.g., linearization) if the full analy-
tical model is already known. Our goal, in contrast, is to make the same
dynamical inferences (i.e., about the structure and equations governing
the system) based only upon observation of the activity. Using our
proposed approach, we observe that derivatives are invariant within a
particular directional region (Fig. 1D). Based upon this invariance, we
can directly surmise that System A (Fig. 1A) cannot directly move
across the Cell 1 axis as its derivatives can never point in that direction
Fig. (1). Instead, its derivative space suggests System A could only
traverse the space by moving indirectly in that direction, just as phy-
sical constraints prevent vertical translation of a fixed-wing aircraft.
One possible solution, is for System A to generate a series of oscillations
leading to traversal of the space along the Cell 2 axis, which is of course
consistent with the actual dynamics (Fig. 1E and F). In contrast, deri-
vatives of System B are rarely orthogonal to the Cell 2 axis (Fig. 1D) and
the corresponding prediction holds that System B traverses the Cell 2
axis more directly (with fewer oscillations) than System A (Fig. 1E and
F).

To operationalize the above analysis, we propose a classifier to
discriminate systems based upon their directional derivatives. Most
classifiers used to analyze neural data, such as linear support vector
machines (Boser et al., 1992), assume that the classes differ in some
combination of their univariate means and thus form linear boundaries
(Norman et al., 2006). For the case of derivatives, this assumption is not
valid. In fact, a well-known result in dynamical systems theory, which
we rely upon, is that the derivatives of a smooth, bounded dynamical
system must be balanced (e.g. Sanchez, 2009): over long scales the
mean derivative is always zero. Otherwise, the system would grow in-
finitely along the direction of the mean derivative. In the case of a
neural system, the mean change in the measured activity variable (e.g.,
voltage) must be zero over a sufficiently long recording, lest the activity
grow infinitely. As the mean derivative is thus irrelevant, the moti-
vating results in dynamical systems theory concern invariance along
cones. Due to scale-invariance, conic boundaries discriminate between
classes based upon the directional components of the data, rather than
magnitude features (such as speed of evolution), and are always cen-
tered at zero. With very mild assumptions upon the way derivatives are
distributed for each class, we can derive a Bayes-optimal classifier for
directional data (see Materials and Methods) which reduces to a com-
parison of covariance matrices. The boundaries of this classifier form a
quadratic cone.

For an unlabeled time-series x(i(t))(t) we define our quadratic-cone
classifier as:

=
−

−( )i t
x t x t

( ) arg min
˙ ( ) Σ ˙ ( )
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T
x

x
n
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Here, ∈ ×Σ ℝx
n n

( ˙ )k is the covariance matrix associated with the deriva-
tive time-series of class k. At an implementation level, this covariance
can be estimated numerically by collecting labeled training data from
each class. Thus, the classifier operates on a point-wise basis: assigning
a class label to each individual data-point of the derivative time-series.
In the two class case with class labels± 1 we describe the cone in terms
of a single matrix P:

= ( )i t x t Px t( ) sgn ˙ ( ) ˙ ( )T (3)
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We denote the induced cone as ≔ ∈ ≤C P y y( ) { ℝ | Py 0}n T . The decoding
rule may be restated in terms of the cone C(P) as ∈x t˙ ( ) Int(C(P))⇔ i
(t)=−1 with Int indicating the interior (i.e. when the inequality is
strict). We present further information concerning practical and effi-
cient calculations of these terms and the case of singular covariances
(i.e. fewer samples than channels) in Materials and Methods. Formally,
we use the term ‘derivative’ in the sense of backward approximation by
Newton's difference quotient, however the scale-invariance property of
cones makes such formalism unnecessary and the backward derivative
may be replaced by the difference time series: ≃ − −x t x t x t t˙ ( ) ( ) ( Δ ).
In general, we have had success implementing the derivative in this
form without further preprocessing, even though an extensive literature
exists concerning more sophisticated methods of numerical differ-
entiation (i.e. Ahnert and Abel, 2007).

3.2. Conic geometry blindly identifies upstream network states

To test the degree to which conic-invariance describes changes in
functional structure (Honey et al., 2009), we simulated the case in
which an experimenter tries to study a complex neural network but may
only access a small number of outputs (Fig. 2A). We formalized this
scenario by simulating a chaotic (Lorenz, 1963) system's effects on a
downstream recurrent network of four bursting Hindmarsch–Rose
model neurons (Hindmarsh and Rose, 1984) with recordings only
available for the first three cells (Fig. 2B and C). Cells are either ex-
citatory (green) or inhibitory (red). The fourth, unobserved, inhibitory
neuron forms the main recipient of upstream input and is normally
quiescent save when activated by the upstream component. When the
upstream component is in the “off” state, the network acts as a delayed
negative feedback loop. When the upstream component is in the “on”
state, a new indirect inhibitory path is opened via Cell 4. Thus, by al-
tering the activity of a mediating cell, the upstream component's acti-
vation dictates possible interactions in the downstream network.

In order to blindly determine the upstream component's activity
state we performed unsupervised clustering of downstream neural
voltage. Using the three observed neurons we performed 2-means
clustering (Lloyd, 1982) for either the spectral power of the original
voltage trace (V(t)) or, for conic analysis, the covariance of the deri-
vative voltage traces (Σ V( ˙ )). Spectral power and covariances were

calculated over equal-length non-overlapping time windows. Using the
k-means algorithm (Lloyd, 1982) produces both a set of centroids
(cluster means) and labels assigning each data point to the cluster to
which it is closest. For the spectral classification we directly used the
labels assigned to each time bin by k-means as the training class. For
conic classification we discarded the original labels for each time bin
and instead generated new labels through our proposed conic method.
The two covariance centroids were treated as class covariances and we
then classified each time point according to (2). Because the conic
classifier provides instantaneous class labels, we assigned whole-bin
classes post hoc in a winner-take-all paradigm based on the sum:
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where Tl denotes the lth bin.
We repeated this simulation/analysis sequence while varying si-

mulation parameters for a total of 136 simulations per case (see
Materials and Methods). The parameters of interest were the variance
of intrinsic system noise (a Brownian motion), measurement noise,
coupling strength with the upstream component, and the window
length for each bin. Results demonstrate a general advantage of conic
classification over spectral clustering (Fig. 2D). This relationship was
most pronounced for strong coupling strength or low measurement
noise. Unlike conic decoding, spectral decoding was largely unaffected
by the white-noise added to the recorded voltages. Spectral perfor-
mance exceeded conic decoding in extreme cases of measurement
noise, which is well known to degrade estimation of derivative time
series. However, both methods were resistant to intrinsic noise within
the system. These two noise varieties (intrinsic vs. measurement) had
equal variance ranges, but unlike measurement noise, intrinsic noise
interacts with system states. For instance, Brownian motion in the
voltage variable has less impact during the fall of an action potential
than near the firing threshold, so this differential sensitivity may pre-
serve those portions of dynamics to which the conic method is most
sensitive. We conclude that for most parameter choices within this si-
mulation, the proposed conic decoding method exceeded spectral
classification of upstream system states but is susceptible to idealized
measurement noise. However, we later demonstrate that the conic
method is actually resistant to many (realistic) sources of experimental
noise and artifact (see Discussion).

Fig. 1. The two variants of a recurrent continuous neural network (A, B). Line widths indicate connection strength and green/black indicates excitatory/inhibitory.
The red markers in network B indicate a greater decay rate. Observed trajectories do not differentiate between generative systems in the original state space (C.1,
C.2), but are readily distinguishable in the derivative space and its projection onto a spherical surface (D.1, D.2). Random intervals of each orbit are plotted for 150
initial conditions and two views (view 1: C.1, D.1; view 2: C.2, D.2) with derivatives projected onto ∂Sn−1. In the original phase space (E) full trajectories of both
systems approach a focus, however, they differ in the approach envelope which separates derivatives (F). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

M.F. Singh et al. Journal of Neuroscience Methods 308 (2018) 88–105

91



3.3. The conic method produces instantaneous decoding of covert spatial
attention

In this section, we transition from simulated to real experimental
data. Specifically, we consider the method's application to EEG data
recorded during a spatial covert-orienting task, taking the data from a
publicly available database (Schmidt et al., 2011; Treder et al., 2011).
During the task a briefly presented central cue indicated where a sub-
sequent task-relevant target would appear with 80% accuracy. The
central cues had near identical visuo-spatial features and subjects were
instructed to focus upon the cue (see Materials and Methods). This
design feature implies that the putative neural dynamics associated
with particular orientations correspond to covert spatial attention ra-
ther than simply the direction of gaze. The original results using this
dataset have demonstrated that the spatial distribution of alpha power
(across channels) may be used to determine to which attended location
subjects are covertly orienting. These previous analyses (Schmidt et al.,
2011) were performed pair-wise using L1-regularized logistic regres-
sion for alpha-band power in parieto-occipital electrodes and the au-
thors presented the best pair accuracy for each subject as well as the
number of significantly classified pairs per subject out of a total of 15
(see Table 1). In a first set of analyses, we use all trials with delays of at
least 1300ms and only consider data after the first 250ms post-cue. We
consider the same metrics to those previously reported for comparison

(Treder et al., 2011) and all reported accuracies for the current analyses
are based upon leave-one-out cross-validation. Accuracies are averaged
between conditions to prevent spurious decoding from unequal class
sizes.

3.3.1. Group-level conic performance exceeds the limits of alpha-band
classification

In the case of pairwise classification, current results appear favor-
ably (Fig. 3A and B) to those previously published (Treder et al., 2011).
In their analysis, Schmidt and colleagues (Treder et al., 2011) provide
two metrics: the number of significantly discriminated pairs and the
maximal pairwise accuracy. We emphasize comparisons in terms of
number of significant pairs as these take into account more subtle
spatial comparisons whereas the previously reported maximal pairwise
accuracy corresponded to spatially opposite locations for seven out of
eight participants in Treder et al. (2011). Results demonstrate that the
conic classifier is, on average, superior to α-band based decoding in
terms of number of significant pairwise classifications (Table 1).
However, the conic advantage in maximal pairwise accuracy was in-
significant (Table 1).

3.3.2. Conic and spectral decoding form complementary techniques
As with traditional approaches applied to the dataset (Treder et al.,

2011), conic decoding exhibits variable performance across subjects.
Interestingly, however, conic and alpha-band decoding performance
across individuals tended to be negatively correlated in terms of the
number of significant pairs per subject (Fig. 3C). Due to the small
sample size and suspected outlier (Subject 8), we performed a rank-
order test with the outlier and parametric test both with and without
the outlier. Using the full data with rank-order correlation demon-
strated a negative relationship between conic and spectral performance
(Table 2). The parametric relationship with the full data did not reach
significance due to the low sample size, but this relationship greatly
increases when removing subject 8 for whom no pairs were sig-
nificantly classified by the conic method (Table 2). However, the low
sample size makes it difficult to determine whether the suspected out-
lier does in fact represent anomalous data or just the extreme poor end
of conic classification ability. Thus, while the small sample size inter-
feres with statistical inferences, results suggest that not only are these
decoding methods complementary, but also that many subjects ex-
hibiting poor spectral-based decoding may actually possess strong conic
classification. In summary, the proposed conic method and spectral

Fig. 2. Simulated comparison of blind conic vs. spectral classifi-
cation. (A) The system consists of an upstream chaotic attractor
which provides binary downstream input to a two-layer recurrent
system. Green cells are excitatory and red inhibitory. (B) Example
simulated voltages for the three cells in the bottom layer using
median model parameters. Voltage traces are in black and blue
bars indicate when the upstream input was “On”. (C) The state of
the upstream system is easily determinable by plotting the vol-
tages in the normalized derivative space. (D) Percent correct by
decoding method and simulation parameters. Neither method was
affected by the level of intrinsic system noise (IntVar), but conic
decoding suffered with the addition of measurement noise
(ExtVar). Conic decoding accuracy continued to increase with the
upstream coupling strength (Stim), while spectral decoding
showed a concave relationship. Both methods performed slightly
better for moderate bin sizes (nWin) over very small ones but
further increases did not improve performance. The shaded re-
gions give standard deviations (n=136). (For interpretation of
the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Group-level comparisons between conic and alpha-band decoding as reported
in Treder et al. (2011) and Samaha et al. (2016). The second column (“Mea-
sure”) indicates the parameter tested, namely the number of significant pairs
(locations) decoded, the maximal decoding accuracy among all possible pairs,
and the mean accuracy when performing 6-way classification (all locations at
once). The original and conic results are given in Mean (SD) format. We used
independent samples t-tests and all p-values reported are two-tailed. Due to the
much greater variance of conic decoding for the 6-way classification relative to
Samaha et al. (2016), we corrected for unequal variance in the reported t-value.
We use the ** superscript to denote uncorrected significance at p < .01.

Measure Original Conic t p df

Treder 11 Sig. pairs 3.5 (2.7) 10.3 (1.8) 3.558** .004** 15
Max accuracy (2-
way)

74.6 (2.3) 76.4 (3.2) .572 .577 15

Samaha 16 Mean accuracy
(6-way)

23 (4) 32.1 (7) 3.119** .0088** 12.1
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decoding may form complementary approaches, which is to say that
they may be decoding different forms of information. Consequently,
subjects insensitive to one technique may benefit from the other. Al-
though conic performance was significantly better on average, spectral
decoding was superior for two subjects (#1 and 8) so the conic classifier
may still be missing some information that is present in the spectral
domain and using the two methods in conjunction might provide su-
perior results.

3.3.3. Conic weights generate retinotopic maps of covert attention
The conic method also appears to replicate previously published

results showing that spatial aspects covert-orienting of covert orienting
are most prominent of posterior electrodes. In fact, spatial location is
highly prominent in the conic weights (see Materials and Methods) and,
in this case, provides anatomical localization of dynamical information
(Fig. 4) without requiring search-light type analyses (Etzel et al., 2013).
To determine whether conic weights provide anatomically meaningful
information we performed a spatial mapping of the weights for each
cone-generating matrix. We defined the map for each condition in terms
of the contrast ‘location x’ vs. the average hemifield (3 locations) op-
posite ‘x’. We averaged the covariances across subjects for viewing
purposes (group level), but in most cases similar results held at the

individual subject level as well. As a matrix, the conic classifier is most
naturally visualized as a weighted graph. However, to produce a spatial
map we assigned each channel a weight based upon its contribution to
each of the matrix's eigenvectors (see Materials and Methods). We find
that the regions representing the covertly attended location experience
decreases in the amplitude of derivatives (negative weights) while re-
gions representing the opposite spatial location experience relative in-
creases in the amplitude of derivatives (positive weights) (Fig. 4). Thus,
covert attention may be associated with neural activity whose varia-
bility (as distinct from variance) is more restricted in regions re-
presenting the covertly attended location.

3.3.4. Instantaneous decoding tracks the evolution of neural states
The conic-geometry of these instantaneous changes is easily visible

for the 2-class case (i.e. lower left vs. upper locations) when projecting
the derivative time series into the eigen-coordinates (see Materials and
Methods) with the largest eigenvalues (Fig. 5A and B). These may be
thought of as ‘principal components’, but as they relate the differential
activation between classes they also possess sign information. Further,
the absolute magnitude of each eigenvalue indicates how strongly se-
lective it is for the class associated with its sign (Fig. 5B). The time-
series of these components indicate that the information differentiating
between classes is associated with increased dynamics of certain spatial
patterns (the eigenvectors). Critically however, these dynamics are not
necessarily associated with consistent increases in particular frequency
bands (Fig. 5B). Point-wise classifier performance may be visualized by
projecting data into the plane of positive and negative eigenlengths (see
Materials and Methods) which indicates the combined ‘magnitude’ of
dynamics associated with each class (Fig. 5C). Data is displayed for the
median-performing subject in terms of number of significantly classi-
fied pairs (number four). Analogous plots for the best and worst-per-
forming subjects are included in Materials and Methods.

Fig. 3. Comparison of conic and alpha-band based decoding
methods in terms of number of significantly decoded location-
pairs. (A) Both decoding methods possess large inter-subject var-
iation in decoding performance. (B) At the group-level conic de-
coding outperforms spectral. (C) At the individual-level the tech-
niques are negatively correlated and thus form complementary
methods. For subject 8, the conic classifier did not significantly
discriminate any locational pairs for the full uncensored data.
However, censoring trials using the methods for eyeblink and
motion artifact rejection adopted in Samaha et al. (2016) im-
proved performance (see Materials and Methods).

Table 2
The relationship between conic and spectral (Treder et al., 2011) decoding
(number of significant pairs) trends negative. Statistics correspond to non-
parametric correlation (Kendall), parametric correlation (Pearson), and para-
metric with the high leverage subject (#8) removed. All p-values are two-tailed.

Statistic Outlier Correlation p df

Kendall (κ) Yes −.5879 .0738 6
Pearson (r) Yes −.355 .3882 6
Pearson (r) No −.940 .0016 5

Fig. 4. Anatomical weights distributions. Inverting conic weights
to anatomically map classifier features produces a retinotopic map
of covert spatial attention in posterior channels. Center panel in-
dicates the corresponding region of head space (posterior coronal)
while radial panels denote the weight mapping for subjects at-
tending to that location vs. opposite locations with hot colors
indicating increased prevalence in the discriminating spatio-
temporal pattern.
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3.4. Conic decoding reveals distributed interactions at high temporal
resolution

In a recent paper, Samaha and colleagues (Samaha et al., 2016) used
the same dataset to test the hypothesis that the objects of spatial covert
attention are differentially encoded in phase and power of the alpha
band using both decoding classifiers and encoding models. The authors
found an immediate phase-coupling response between frontal and
posterior regions during the early post-cue interval (0–400ms) that was
not spatially tuned, but conversely identified a sustained spatially-
tuned response in alpha-power that began at roughly 450ms post-cue.
The authors interpreted these results to indicate that previously re-
ported observations of increased anterior–posterior phase coupling
during spatial covert attention reflects top-down attentional modula-
tion of posterior sites. In contrast, they argue that the results rule out
phase coupling as a mechanism for encoding the contents of spatial
covert attention. In contrast to phase coupling, the conic classifier en-
ables investigation of more general interactions between channels.
Therefore, we tested whether the same conclusions – namely a lack of
spatial information in anterior–posterior interactions and an onset of
spatial tuning at 450ms (in our case significant decoding), would hold

for the conic classification approach.
To distinguish between local and distributed features, we compared

the full conic classifier to reduced versions that only utilized univariate
(variance) or multivariate (correlation) information (see Materials and
Methods). The variance-only version of the conic classifier results in a
weighted sum of univariate classification rules similar to signal power
while having no sensitivity to information such as signal phase. In
contrast, the correlation-only version ensures that the classifier can only
consider the relationship between channels but not channel-specific
information such as power. We then compared 6-way classification
accuracy (all 6 locations at once) for the three conic classifiers (full/
covariance, variance, and correlation) with the results recently reported
by Samaha and colleagues (Samaha et al., 2016).

Compared to the previously reported results by Samaha and col-
leagues with this dataset (Samaha et al., 2016), we found that the full
and reduced conic classifiers performed favorably when applied to the
most posterior channels. The full conic classifier achieved a mean ac-
curacy of 32.1 ± 7% which was not only significantly better than
chance levels, but also significantly better than the classification per-
formance achieved by Samaha and colleagues 23.1 ± 4% based upon
alpha-power (Table 1). The reduced conic classifiers corresponding to

Fig. 5. Conic geometry for the median subject (#4). (A) Plotting the first 2 negative components and the first positive component in derivative space reveals conic
geometry. Data is displayed from a variety of viewpoints. (B) Plotting the primary positive and negative eigencomponents of the cone for a 2-location contrast
demonstrates that these components increase derivative amplitude during the corresponding cognitive state. (C) Two dimensional projections onto the length in the
“positive” and “negative” eigenspaces for the discriminative cone reveals robust classification of individual observations lasting only a few milliseconds.

Table 3
Statistical comparisons of the reduced cones (correlation/variance only) to chance, alpha-band decoding (Samaha et al., 2016), and the full conic classifier as well as
to each other. Testing compared to chance was performed via one-sample t-test and comparisons between conic classifiers and alpha-band decoding were performed
with independent samples, unequal variance t-tests. Comparisons between full/reduced conic classifiers were performed with paired t-tests. All p-values are two-
tailed and uncorrected for multiple comparisons. *= p < .05, **= p < .01.

Mean Corr Var

t p df t p df

Chance 16.67 3.343* .0124* 7 6.855** .00024** 7
Samaha 16 23 (4) .529 .6058 12.69 .672 .5141 12.19
Full cone 32.1 (7) −7.985** .00009** 7 −3.815** .0066** 7
Var 24.13 (3.08) .081 .938 7 –
Corr 24.3 (6.46) – –
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just correlation or just variance also demonstrated significant classifi-
cation ability, relative to chance accuracy (Table 3). Their performance
was worse than that of the full conic classifier and the two versions
were equivalent to each other in classification accuracy as well as to the
alpha-power classifier used by Samaha and colleagues (Table 3).
Therefore, significant information is present in both single-channel
measures (variance/power) as well as in cross-channel measures (cor-
relation) for posterior channels. Moreover the combination of these
variables (covariance) in the full cone provides far more information
than either the correlation or variance alone. We found no additional
information in the anterior channels above what was present in pos-
terior channels alone (see Materials and Methods) replicating the
findings of Samaha and colleagues (Samaha et al., 2016) that ante-
rior–posterior phase coupling is not spatially tuned.

Next, we tested whether the conic classifier produces a similar
temporal profile of covert spatial attention as the inverted encoding
models utilized by Samaha and colleagues (Samaha et al., 2016). Their
reported results indicated that significant channel tuning for alpha-
power to the attended location began at roughly 450ms post-cue. In
contrast, the conic classifier identifies significant and sustained in-
formation regarding the attended location at a substantially earlier
post-cue time period. Significance over the time course was assessed by
permutation testing n=350,000 (see Materials and Methods). For the
desired levels of significance thresholds did not vary significantly over
time or classification procedure (all σ2 < .005%) so we plot them as
static. Mean classification accuracy for the full conic method exceeded
chance (p < .05) starting at roughly 310ms post-cue (Fig. 6 A), thus
preceding the identified onset of alpha-band tuning (Samaha et al.,
2016) by nearly 150ms. We note that this initial period was not in-
cluded in the classifier training and significant decoding is attained
from that point onwards possibly reflecting similarly sustained in-
formation. Thus, the decoding pattern meets the temporal persistency
required of sustained attentional markers. Still, one possibility for the
earlier onset of significant decoding is that the discrepant interval re-
flects cue-driven responses. However, in the very early trial interval
(before 250ms) classification accuracy was consistently at or below
chance. We therefore consider it unlikely that residual activity from
visual responses drives the earlier onset of conic decoding (see Mate-
rials and Methods). Results from central and parietal electrodes suggest
that the earlier decoding ability stems from posteriorly generated
neural signals (see Materials and Methods). Lastly, we considered
whether the earlier onset of significant decoding with the conic clas-
sifier could be attributed to any preprocessing steps, yet this seems
unlikely. Our only preprocessing step consisted of a conservative wa-
velet smoothing (see Materials and Methods). In particular, the kernel
we employed is far shorter than the temporal discrepancy between
methods (cones vs. alpha-power tuning) and wavelet convolution
moves information forward in time so any biases would actually di-
minish the effect.

In summary, the conic decoding method is able to identify the
contents of covert spatial attention from approximately 310ms post-cue
from posterior sites, roughly 150ms prior to inverted encoding models
(Samaha et al., 2016; Fig. 6A). Follow-up analyses suggest that this
discrepancy is unlikely to be caused by visual responses to the cue,
transient cue-related responses in neighboring regions, or preprocessing
steps (see Materials and Methods). Moreover, the time-course of the
deconstructed cone (Fig. 6B) indicated that this initial period of sig-
nificant decoding is more attributed to local changes (the variance
component) than distributed changes (the correlation component; see
Materials and Methods). Moreover, in this period and the sur-
rounding±100ms were marked by a general anti-correlation between
decoding accuracy based upon variance vs. correlation (see Materials
and Methods; Fig. 6B). To be clear, we do not claim that this result
alone is sufficient to support an alternative account of the timecourse of
spatial attention, but we use it to illustrate how the proposed method
may contribute to neuroscience investigations through its improved

temporal sensitivity and flexibility (i.e. the ability to construct reduced
models that enable selective probing of univariate versus multivariate
effects).

3.5. Invariant properties promote robust classification

The proposed approach yields a number of fruitful properties that
minimize the contaminating effects of variance due to both ‘noise’/ar-
tifact and within-subject variance. We conducted a number of simula-
tions using the EEG dataset to demonstrate that the conic classifier is
robust to three sorts of noise: (slow) scalar multiplication (Fig. 7 A),
temporal warping (Fig. 7 B), and multivariate box noise (Fig. 7C) (see
Materials and Methods). The first two relate to the scale-invariant
properties of cones. The first case (Fig. 7A) results from simply differ-
entiating the product of the original time series xk(t) and a scalar
function f(t). When f is slow, we have

= + ≈d f t x t f t x t f t x t f t x t/dt[ ( ) ( )] ( ) ˙ ( ) ˙ ( ) ( ) ( ) ˙ ( )k k k k . Due to the scale in-
variance of cones, ∈x t˙ ( )k Int ⇔ ∈C P f t x t( ) ( ) ˙ ( ) Int C(P) when f(t)≠ 0.
This case is especially relevant for multiplicative noise in which a
multivariate signal is multiplied by an unknown scalar function, as
could be the case for amplifier noise or changes in reference electrode
conductance for EEG recordings. However, while the scaling will not
affect how datapoints are labeled for a fixed classifier, it is possible that
bias in the scaling function's magnitude can affect the calculated cov-
ariance, hence the corresponding classifier. Normalizing individual
data points of x t˙ ( ) can remove this effect, although this procedure also
can change the calculated covariance.

When sampling rates are high so that the time-series are relatively
smooth, the conic method is also invariant to temporal scaling (Fig. 7B).
More formally, we define a class invariant interval as a continuous in-
terval ≔ ⊂ +τ T T[ , ] ℝ1 2 with t1, t2∈ τ⇒ i(t1)= i(t2). Let y(t∈ τ)= x(f(t))
for any strictly positive monotone f : τ→ τ in which τ is a nonnegative
class-invariant section of the time series. Then ∈x f t˙ ( ( )) Int C(P)
⇔ ∈y t˙ ( ) Int C(P). This case follows immediately by applying the chain
rule and noticing that strict monotonicity implies ≠f t˙ ( ) 0. As the conic
method is invariant to scalar multiplication, so too is it invariant to
temporal “stretching” which corresponds to a conserved order of events
despite irregularity in the precise timing. This problem of temporal
“stretching” is referred to as dynamic time warping (DTW), and has
been discussed by many previous authors, including in the use of DTW
on derivative time series for classification (Górecki and Łuczak, 2013;
Górecki and Łuczak, 2015; Łuczak, 2016). In general, dynamic time
warping algorithms give a similarity measure between time series
evolving at different rates by comparing the order of events between
time-series rather than on a point-by-point basis. The recently proposed
derivative-DTW variants operate similarly, but on the time series of first
and second derivatives. Thus, both DTW and the currently proposed
method are able to perform classification on warped time series. Unlike
DTW, however, our approach does not explicitly consider the order of
events, but rather operates on the set of realizable changes (the deri-
vative geometry) and is thus applicable to systems in which different
initial conditions also produce different orders of events. For example,
in the Lorenz attractor (Lorenz, 1963), different initial conditions not
only affect how long a trajectory stays within one of the attractor's two
“loops”, but also how many cycles it completes before exiting. The re-
sultant time series from very similar initial conditions within the same
system thus produce time series whose order of events differ greatly,
despite generating identical state-space geometries after sufficient time.
As with the previous case of multiplication by a scalar function, tem-
poral warping will not affect how data points are classified for a fixed
cone, but it can affect the calculated covariance, hence the classifier. As
before, this effect can be removed by normalizing individual data points
of the derivative time series.

The method is also resistant to additive multivariate box noise
(Fig. 7C). This follows simply from the fact that the box function has
derivative zero everywhere save at a finite number of points

M.F. Singh et al. Journal of Neuroscience Methods 308 (2018) 88–105

95



(corresponding to steps) and thus has minimal influence on the deri-
vative time series. When the sampling rate is sufficiently high, many
slow signals such as those induced by motion artifact may be ap-
proximated via a series of box functions, making conic decoding robust
to artifactual noise. Thus the filtering of slow signal by derivatives
combined with the scale-invariant properties of cones make the

classifier robust to various sources of artifact and within-subject
variability. Lastly, we will show that in addition to robustness to noise,
our conic method is especially tuned towards task-related signals as
opposed to contaminant spontaneous activity.

Fig. 6. Decoding time series and performance for 6-way classification (all possible locations at once) using the conic method. (A) The “instantaneous accuracy” time
series produced by applying a classifier trained starting 750ms post-cue (vertical dashed line) to the entire delay time series. Cone-like classifiers using the full
covariance (red), the correlation-only (black), or the variance-only (blue) reveal an earlier onset of significant decoding than previously reported with the same data.
Horizontal lines indicate the significance threshold for the permutation p-value indicated. Accuracy is for prediction over 30ms windows and was smoothed with a
Gaussian kernel. The shaded green bar indicates the early interval in which conic decoding was significant but spectral decoding was not (Samaha et al., 2016). (B)
Decoding time series (same as A) but plotted to highlight the early anti-correlated behavior (outer bar) between information decodable by variance and information
decodable by correlation. The inner bar is the same as in (A) and indicates that early decoding was primarily due to within-channel variance. Shaded regions indicate
the standard error of mean accuracy across subjects. (C) The conic classifier performed significantly better at the full 6-way spatial contrast than any other clas-
sification method. For support vector machines (SVM) using spectral power (cyan), only the alpha-band (8–13 Hz) was significantly different from chance (indicated
by the dashed line) (Samaha et al., 2016). All conic classifiers were significant and the restriction to either only variance or only correlation produced performance
indistinguishable from that of alpha-power SVM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. Invariant properties of the conic classifier with respect to
different noise forms. Left column displays three different trans-
formations applied to the same segment of EEG data from one trial
type. (Middle column) The same forms of noise applied to a con-
stant EEG segment from a different trial type. (Right column) Data
for each trial projected onto a cone derived from the original (pre-
noise) data (blue= lower-right condition, orange=upper-left).
Line color indicates channel number. (A) The combination of de-
rivative filtering and conic scale invariance leads to robust per-
formance for scalar multiplicative noise. (B) Scale invariance of
cones leads to classifier invariance with respect to dynamic tem-
poral warping (DTW). (C) Filtering properties of derivatives lead
to robust performance in the face of multivariate box noise. (For
interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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3.6. Sensitivity to fast–slow interactions

In general, the current literature suggests that very slow changes in
the EEG amplitude are particularly prone to drift and motion artifact
(i.e. Masterton et al., 2007). In contrast, increasing evidence suggests
that fast neural activity is associated with task performance (Jerbi et al.,
2009). However, this does not necessarily indicate that slow compo-
nents are always artifactual, but simply that fast components, when
present, may be more informative. There are also many cases in which
neural activity manifests meaningful interactions between fast and slow
signals (Canolty et al., 2006; Monto et al., 2008; Torta et al., 2009).
Thus, a method is needed that (1) can analyze slow signals when fast
signals are weak/absent, (2) penalizes slow signals in the presence of
faster ones, and (3) prioritizes slow components that exhibit slow-fast
coupling over those that do not. The derivative covariance matrix ex-
hibits all of these properties, especially when the components have si-
milar variance (related to spectral power). Formally, consider two
multivariate processes: →+X t Y t( ), ( ): ℝ ℝn and class labels i(t)∈ {k}.
As before, we will denote the class-dependent derivative covariances as
Σ ẋk and Σ ẏk. Now consider a second, slower process B(t) and a constant
0 < c < 1 defined such that for any class-invariant interval τ (as de-
fined above) and non-negative scalars t, ϵ : [t, t+ ϵ]⊆ τ we have B
(t+ cϵ)− B(t)= Y(t+ ϵ)− Y(t). In other words, B(t) evolves c times
the speed of Y(t). The covariance matrix for the combined signal S
(t)≔ X(t)+ B(t) is:

= + + +( )c c X Y Y XΣ Σ Σ cov( ˙ , ˙ ) cov( ˙ , ˙ )S X Y k k k k˙ ˙ 2 ˙k k k (6)

The notation cov(A, B) indicates the covariance between two multi-
variate processes, whereas we have previously indicated single-process
covariance ΣA as shorthand for cov(A, A). Clearly c2 < c and if X Y˙ , ˙k k
are independent, =X Ycov( ˙ , ˙ ) 0k k . When Ẋk is sufficiently small (with
the frequency profile held constant), the classifier's inner term
− −Σ /det |Σ |S S

n
˙
1

˙
1 1/

k k
approaches − −Σ /det|Σ |Y Y

n
˙
1

˙
1 1/

k k
which satisfies the first con-

dition: sensitivity to slow components in the absence of fast ones.
Likewise as c becomes small (for ≠Σ 0ẋk ), the classifier's inner term is
biased towards the higher frequency X term even if the components
have similar amplitude thus satisfying our second condition. Lastly,
when X, Y have amplitude, the classifier is more sensitive to the in-
teraction between fast and slow components via X Ycov( ˙ , ˙ )k k than those
that are independent of X (hence restricted to ΣẎk) as c

2 < c. Thus our
classifier satisfies all three conditions to balance the influence of fast/
slow signal components in a manner that emphasizes task-related
components. If all three scenarios are mixed throughout a single class,
direct calculation of the covariance based upon S t˙ ( )k will be biased in
favor of periods featuring fast components due to their greater deri-
vative magnitude. Again, this bias can be removed by normalizing in-
dividual data-points of the derivative time series (using any norm). This
step will change the calculated covariance for each class, but will not
affect the data's classifiability as ∈ ⇔ ∈x t C P αx t C P˙ ( ) Int( ( )) ˙ ( ) Int( ( ))
for any nonnegative α. The classifier's performance regarding the three
criteria is exemplified by the continued sensitivity in the bursting net-
work example (Fig. 2) which featured fast–slow coupling of down-
stream/upstream dynamics and within-cell fast-slow coupling during
burst activity (Hindmarsh and Rose, 1984).

4. Discussion

We have introduced a novel method for performing classification of
spatiotemporal signals. The key innovative feature of the approach is
the use of the derivative rather than the original time-series as the basis
for classification. By using the derivative time-series, our conic ap-
proach to classification is sensitive to temporal information, even
though the classification method does not explicitly consider time as a
variable. After computing the derivative time series, the method pro-
ceeds identically to static classification methods, with each time point

of the derivative time series corresponding to one sample. From a dy-
namical-perspective the conic approach emphasizes decoding based
upon the vector field of a system rather than the time course of tra-
jectories.

We have given one example of an explicit form for conic classifi-
cation which bears some similarity to a special case of quadratic dis-
criminant analysis. However, unlike conventional quadratic dis-
criminants, the balancing properties of derivatives and scale-invariant
property of cones enable a natural explicit form for the n-class bound-
aries. These properties also lead to a number of invariance properties
that cancel certain forms of noise such as scalar-multiplicative noise
(i.e. amplifier noise), multivariate box-wave noise and low frequency
noise (as elaborated on below). The form we provide relies exclusively
upon the covariance matrices for each class's derivative time series and
is essentially a comparison of the degree to which their derivative
covariance matrices differ.

4.1. Continuous-time classification reveals the evolution of neural states

As illustrated in Fig. 5 the conic approach not only provides an
accurate prediction for the trial, but also generates a prediction for each
time point. Together, these predictions form a time series describing the
evolution of the system between states with high temporal resolution.
The key step of our conic classification technique is to capture the
dynamic properties of states by converting to the derivative time series.
Previous dynamic approaches have generated state time-series using
parameter estimates at fixed or sliding windows (Fuentemilla et al.,
2010; Jafarpour et al., 2013; van de Nieuwenhuijzen et al., 2013; King
and Dehaene, 2014). In contrast, the current approach generates a time
series of individual predictions from a single classifier. Users have ad-
ditional flexibility in choosing the desired resolution via smoothing etc.,
or application of secondary classification techniques to the cone-gen-
erated time series for higher-order analyses.

4.2. Extension to hemodynamic signals

Presently, we have only presented results of conic decoding for data
with relatively high sampling rates, namely neuronal simulations and
EEG. However, the potential exists for applications involving much
slower modalities provided the events of interest are observable on a
similarly long timescale. Task-related dynamics have long been ob-
served in the BOLD signal (e.g. Cohen et al., 1997) and more recent
studies have also found dynamic relations between regions (e.g. Chang
and Glover, 2010; Kafashan et al., 2016; Riehl et al., 2017). Although
the low sampling rate of fMRI is non-ideal for derivative estimation, the
aforementioned work suggests BOLD dynamics may be observable over
longer intervals. The temporal derivative of interpolated data might
then prove a suitable, smoother proxy. As such, the proposed method of
conic classification has potential application to fMRI studies of tem-
porally extended cognitive states.

4.3. The conic method extends classification to dynamic features

The special relevance of our proposed derivative-based classifica-
tion technique to neuroscience is that it specifically decodes dynamic
features (versus spatial patterns). The mechanism of the classifier is to
decode how a system evolves across time, which we believe is parti-
cularly salient to neuroscience. Indeed, an influential view of brain
function is to view the brain as a dynamical system. Consequently, the
most productive approach would be to map cognitive constructs not
only onto regions of the brain, but also the “patterns” of how those
regions interact in time. For example, a primary interest of the cognitive
neuroscience community is to determine the mapping from character-
istic waveforms (event-related potentials or spectral components) to
cognitive states. Classical characterizations have been used to inform
dynamic models, which then predict anatomical regions of interest.

M.F. Singh et al. Journal of Neuroscience Methods 308 (2018) 88–105

97



Indeed, several modeling and empirical results now concern how spe-
cific waveform features, such as frequency, are formed. However, pri-
mary results derived from these characterizations still ultimately link
cognitive states to specific mathematical properties of signals (e.g.
patterns of frequency decomposition). For example, previous analyses
of the covert spatial orienting dataset (Treder et al., 2011; Samaha
et al., 2016) relate band-limited power (in the alpha band) to covert
attention. In contrast, our method does not rely on deriving secondary
measures from data, but rather examines dynamics in their most pri-
mitive form: the temporal derivatives of the signals themselves.

5. Materials and methods

5.1. Derivation of the conic classification criteria (2)

To derive our equation for conic classification we assume that the
distributions for the two classes are elliptical in the sense that they may
be described in terms of ∼ −f g x x( Σ )i i

T
i

1 . Unlike the traditional defini-
tion of an elliptic function such as those described in standard quadratic
discriminant analysis we do not assume that the function f is non-in-
creasing. In fact, this must not be the case from the perspective of au-
tonomous dynamical systems as the origin/‘mean’ in derivative space
corresponds to a fixed point and should thus have low density in the
case of neural signals which are highly transient. Thus we assume
nothing regarding the distributions fi save that they are non-degenerate.
Instead of restricting the distribution, we restrict our set of classifiers to
be scale-invariant (conic) and thus we may instead consider the dis-
tribution projections on the surface of the (n− 1)-dimensional sphere
(� −n 1) without loss of generality. What follows involves deriving the
probability density of an elliptic distribution onto �∂ −n 1. These den-
sities immediately lead to the derivation of a maximum likelihood
classifier of the form (2).

We impose zero density at the origin as it has no direction and hence
is never classifiable. From a practical standpoint this assumption should
be insignificant for continuous valued data with a finite number of data-
points. Our treatment of the general elliptic case is in essence the same
as the Gaussian case with mean zero long-considered in directional
statistics (Wang and Gelfand, 2013). We then apply simple monotone
transformations to the distribution to ease computation in high di-
mensional settings.

Proposition: Consider a set of elliptical probability distributions
{f}i=1,…,m over ℝn with all means equal zero and fi(0)= 0 ∀ i∈ {1, …,
m}. Denote the corresponding covariance matrices for each elliptical
distribution as {Σ}i=1,…,m, and a random variable X valued over ℝn.
Define the projection operator → ∂ −SΠ : ℝ {0}S

n n 1 and its derived dis-
tributions (hi) as follows:

= ∼ ⇒ ∼x x
x

X f X hΠ ( ) Π ( )S i S i
2 (7)

Then the following two assignment functions are equivalent:

=
−

−h X
X X

arg max (Π ( )) arg min
Σ

det |Σ |i i S i

T
i

i
n

1

1 1/ (8)

Proof. Consider the elliptic distribution fi and covariance matrix Σi.
Thus, by the definition of an elliptic function, there is a function

→g : ℝ ℝi and a functional →κ L: ℝ1 such that:

≔ −f X κ g g X X( ) ( )det |Σ | ( Σ )i i i i
T

i
1/2 1 (9)

Here κgi denotes the scaling function which depends upon gi but not Σi.

≔ −ϕ x x xΘ ( ( )) (Π ( )) Σ (Π ( ))i S
T

i S
1 (10)

The distribution of �∈ ∂ −xΠ ( )S
n 1 is found by integrating Θi along the

radial component of x; r≔ ∥ x ∥ 2:

∫= ∧
=

∞ −f x κ g r g r ϕ x r(Π ( )) )det |Σ | ( Θ ( ( )))d dΩi S i i r
n

i i(
1/2

0
1 2

(11)

In which dΩ is the volume element of the (n− 1)-spherical shell. Using
a simple change of variables (u= r2Θ(ϕ)) we remove the angular
component Θ(ϕ):

∫= ∧
=

∞ −[ ]f x κ g
ϕ

g u u
ϕ

u(Π ( )) ( )
det |Σ |

2Θ( )
( )

Θ( )
d dΩi S i

i
u i

n1/2

0
2 1

(12)

∫= ∧
=

∞ −κ g
ϕ

g u u u( )
det Σ
2Θ( )

( ) d dΩi
i
n u i

n1/2

/2 0
2 1

(13)

We will refer to the remaining integral as ξ(gi). Now consider a second
distribution f0 characterized by a separate scalar function g0≠ gi, but
identical covariance: Σ0= Σi, hence Θ0(ϕ(x))=Θ1(ϕ(x)). The
distributions may then be written:

=f x κ g
ϕ

ξ g(Π ( )) ( )
det |Σ |
2Θ ( )

( )i S i
i

i
n i

1/2

/2 (14)

=f x κ g
ϕ

ξ g(Π ( )) ( )
det |Σ |
2Θ ( )

( )S
i

i
n0 0

1/2

/2 0 (15)

As both functions are probability distributions they must sum to 1. As
the distributions are defined over �∂ −n 1 they are integrated over dΩ.
Factoring out the scalar terms produces integrals dependent only upon
the angular component Θi(ϕ).

�
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∂
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which amounts to our classifier (2). □
To recover a full maximum likelihood classification which considers

initial population proportions (pi) we simply multiply the derived
probability density proportion of the probability density fi(X) by pi
before raising solutions to −2/n hence:

= =−
−

−( )f X p f X p η
X X

p
arg max ( ) arg min ( ( ) / ) arg min

Σ
( det |Σ |)i i i i i i n n i

T
i

i i
n

2 1

2 1 1/

(19)

5.2. Computational considerations and limitations

A key computational step is calculation of the determinant. To avoid
numerical instability associated with matrix inversion, we calculate the
determinants via:

∏=M σ Mdet | | ( ( ))n

i

n

i n
1 1

(20)

where σ{1,…,n} indicate the singular values of M. Nevertheless, re-
trieving the eigenvalues may be computationally expensive (O(nk>2))
as compared with linear classification algorithms and this remains a
limitation of the proposed method. However, we have used the default
MATLAB eigenvalue algorithm for conic classification of 2000 dimen-
sional data on a midrange laptop (x64, dual Intel(R) Core(TM) i7-
6500U @ 2.50 GHz).

Another limitation of the current method concerns when the cov-
ariance matrices are ill-conditioned. In some potential applications (e.g.
fMRI) the dimension of the data (number of channels) may exceed the
number of datapoints per class. The simplest approach to this issue is
dimensionality reduction or to (artificially) increase the number of
datapoints through interpolation. However, an alternative method is to
retain the original number of dimensions and use sparse-estimation for
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the population inverse matrix. Previous authors (e.g. Friedman et al.,
2008) have developed computationally efficient methods to perform
this calculation. Many of these approaches rely upon LASSO or reg-
ularization methods so their accuracy may rely upon at least some
channels being independent.

In practice, some eigenvalues calculated for the covariance matrices
may be near zero due to dependency. To maintain stable estimates of
the classifier we recommend setting these eigenvalues equal to zero in
the pseudoinversion and removing them from the calculation of de-
terminants. However, we did not need to threshold eigenvalues for any
of the simulated classifications. For the empirical data we used a re-
lative eigenvalue threshold of 10,000.

5.3. Simulation 1

In Fig. 1 we used a sigmoidal 3-neuron recurrent network to illus-
trate conic dynamics in a low dimensional space. The connection
scheme is depicted schematically in Fig. 1A and B and features two
coupled negative feedback loops. A common hub (neuron 3) inhibits
excitatory cells 1, 2. Connections between neurons 2, 3 were stronger
than those with neuron 1. The model was as follows:

= + ∘ − − ∘ +( )W s x b D x cdx
dt

1 tanh( ( )) (21)

We use the notation ∘ to indicate the Hadamard product (element-wise
multiplication). We simulated this network twice using the same slope
(s) and connection weights (W) for each case:

=
⎡

⎣
⎢
⎢

−
−

⎤

⎦
⎥
⎥

= ⎡

⎣
⎢

⎤

⎦
⎥W s

0 0 3
0 0 25
3 25 0

1.25
2.5
3 (22)

The two cases differed, however, in the values for decay (D), base-
line (c), and threshold (b):
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Simulations were performed with Euler integration dt= .0005 and
a run time of t=3 for each iteration and then down-sampled by a factor
of 15. For each case 150 iterations were performed with starting posi-
tions selected pseudo-randomly. Segments of each time-series were also
pseudo-randomly selected using a random box-function (B(t)). The box
function was formed by choosing 200 box-lengths distributed according
to (1+ r)2 with r distributed according to the standard normal dis-
tribution (r N(0, 1)). The resulting box-lengths were then rescaled so
that they summed to the total window size (t=3). The amplitude for
each box was generated from a standard normal distribution and the
inclusion rule for displaying a point x(t) was B(t) > 1.5. Thus, roughly
6.9% of the total points were displayed for each trajectory/initial
condition.

All simulations were carried out in MATLAB2016b.

5.4. Simulation 2

For this simulation we considered a network of 4 bursting
Hindmarsh–Rose neurons with single-exponential synapses. A chaotic
Lorenz attractor provides input to the network as a representation of
upstream network activity. The Lorenz attractor was given a standard
parameterization with the addition of a Gaussian white-noise term (ηi)
with standard deviation ϵ (“Internal Noise”):

= − +y x η tdx
dt

10( ) ϵ ( )1 (25)

= − − +x z y η t
dy
dt

(28 ) ϵ ( )2 (26)

= − +z η tdz
dt

xy 8/3 ϵ ( )3 (27)

The Lorenz attractor was Euler integrated with dt= .0025 for
duration t=50. Each time point was then upsampled (repeated) by a
factor of 100 to ensure that the system did not fluctuate too quickly.
The upstream system was considered ‘on’ when the first Lorenz variable
(x) was greater than 0. Initial conditions for each iteration were nor-
mally distributed with mean [−10 −10 27] and standard deviation.25.

The output current from the Lorenz attractor was a binary function
of the first Lorenz variable's sign:
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The term κ is a scaling factor (“Stimulus Strength”) which we ma-
nipulated. Each neuron's internal dynamics were governed by the
standard Hindmarsh–Rose equations (Hindmarsh and Rose, 1984):

= − + + + +v u u I t γ tdu
dt

3 .5 ( ) ϵ ( )3 2
(29)

= − −u vdv
dt

1 5 2
(30)

= + −( )u wdw
dt

.001 4( 1.6) (31)

Here I(t) denotes the combined input to each cell and γ(t) denotes a
Gaussian white-noise process with standard deviation ϵ (“Internal
Noise”). Input consisted of a constant baseline level of input Ibase, the
synaptic currents ISyn and the currents from the Lorenz attractor ILorenz.
The synaptic currents were the product of a synaptic weight and a
single dynamic synapse variable per neuron.
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The Hindmarsh–Rose system was Euler integrated with step size.05
and end time t=5000. Initial conditions for all neuron variables
(u v w, , ) were drawn from a standard normal Gaussian distribution. All
synapses were given initial condition zero. The initialization period
from t=0 to t=1000 was removed to allow the system time to sta-
bilize. The variables of interest consisted of the voltages (u) for the first
three neurons only, which were down-sampled by a factor of 10.
Gaussian noise was added with standard deviation ξ (“Measurement
Noise”). We performed blind classification with clustering to assign
system states (Lorenz input on/off) based upon the first three neurons’
voltages. We performed classification using the covariance of the nor-
malized derivative time series (Δxt/∥ Δxt ∥ 2) for each time bin as input
to the k-means algorithm. Clustering for covariances was performed
using k-means for 2 clusters for the upper triangle of the covariance (six
elements). Similar clustering for spectral analyses were based upon 2-
cluster k-means for the vector composed of the separate real and ima-
ginary components of the spectrum evaluated at 6 equi-spaced points
spanning half the smallest window size. The conic decoding was then
performed using the two centroids derived from the k-means clustering
as the covariance matrix for each class. The prediction weights for all
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points within a window were averaged to assign a class to the full
window. For spectral clustering, labels were assigned directly based
upon the centroid cluster to which each bin belonged. As the analysis
involved blind clustering, cluster labels were arbitrary. In assigning
cluster numbers to system states (i.e. does cluster 1 or 2 indicate input
‘on’) we used the assignment that provided maximal accuracy for each
simulated trial. As such, the minimum accuracy for each trial is.5 and
the expected accuracy is greater than.5 using this assignment.
Therefore, we derive the null distribution for this case to evaluate bias.
As the accuracy for a random assignment (random mapping between
cluster number and ‘on’/‘off’ state) is uniform U[0, 1], their mean is
Bates distributed. For larger numbers of samples (as was the case for
each trial), the Bates distribution for mean.5 over [0, 1] (as there are
two classes) limits to the Gaussian N(. 5, 1/(12n)). Thus the chance
accuracy for random label assignment limits to N(. 5, 1/(12n)). For our
biased case (using the assignment that provides greatest accuracy), the
assignment function is max(μ(A), 1− μ(A)) with A the accuracy ob-
tained by arbitrary assignment. For several hundred samples, as was
our case for each trial, the expected values of this distribution is es-
sentially.5 (limiting to +.5 E N

n
[ | (0, 1) | ]

12
).

To analyze the effect of parameterization we manipulated each
parameter (intrinsic/measurement noise, stimulus strength, bin length)
independently while keeping all others at their median value. There
were a total of 136 trials per condition (parameter level) and 9 equi-
spaced conditions per variable. As demonstrated in Fig. 2D, long run
times ensured that despite the obvious noise/chaos within each trial
(Fig. 2B) standard deviations for decoding accuracy were relatively
small. Combined with the large sample size, these factors generated
highly significant results for nearly every statistical comparison. As
such we focused upon displaying performance. Note that the shading in
Fig. 2D indicates standard deviation as opposed to standard error
(which would not be visible).

5.5. Experiment 3

The data and task were obtained from an open repository associated
with (Schmidt et al., 2011; Treder et al., 2011). Briefly, during the task,
a multicolored hexagonal cue was presented for 200ms and partici-
pants were instructed to focus upon the edge corresponding to a given
color. The orientation of this edge predicted in which of 6 radially lo-
cated discs the upcoming target would be displayed after a delay of
500–2000ms. In 80% of trials the target appeared in the cued location.
Targets were presented for 200ms after which participants had to in-
dicate the target's shape (either ‘+’ or ‘x’). The dataset from these
studies is publicly available (BNCI-Horizon-2020.eu) and consists of
eight subjects’ pre-processed recordings for 60 EEG channels, 2 EOG
channels. Data was recorded at 1 kHz but the published dataset has
been down-sampled to 200 Hz. Our only further modification to the
data was a single wavelet reconstruction to estimate derivatives given
noisy data. For this step, we simply used a 1-D Daubechies 7-tap de-
composition and level 3 reconstruction, although more specialized
methods exist (Wang, 2007). Statistical analyses between previous and
current results are based upon paired t-tests for each case. The sig-
nificance of pair-wise accuracy was assessed with 1-sample t-tests for
accuracy greater than chance (50%) and Bonferoni corrections which
mimicked the original analyses with this dataset (Treder et al., 2011).
For the 15 possible pairwise-comparisons this approach typically re-
sulted in corrected significance thresholds of roughly 65% for p < .05,
although the precise threshold varied with the number of trials
(Table 4).

5.5.1. Visualizing conic projections
Plots in Fig. 5 display conic classification of subject 4's data for the

lower upper right vs. lower left contrast for the 21st, 24th, 27th, and
30th trial of each of the two locations. Time series in Fig. 5B are the

concatenated time series of the largest eigencomponent for each loca-
tion across the four classification periods each. We chose subject 4 to
illustrate conic projections as the median-performing subject (in terms
of conic-decoding performance). For context, we also include identical
plots for the best-performing (#3; Fig. 8) and worst-performing subjects
(#8; Fig. 9).

5.5.2. Individualized results for n-class decoding
In the main text we compare performance of the conic classifier

with that of other methods on the same benchmark dataset. Namely, we
presented pairwise classification accuracy for comparison to the ori-
ginal analyses by Treder and colleagues (Treder et al., 2011) and full 6-
way classification for comparison to the more recent work by Samaha
and colleagues (Samaha et al., 2016). However, one of the main ad-
vantages of the current classifier is that it is inherently multi-class as
opposed to most linear or even quadratic classifiers which are generally
pairwise, necessitating adhoc methods such as voting schemes to per-
form multi-class decoding. To better illustrate the ability of the conic
classifier on multi-class problems we therefore include results com-
paring the full range of possible comparisons (2-way through 6-way) for
each individual subject (Fig. 10). Results are plotted for the mean
performance across all possible combinations of n-locations.

5.6. Effects of artifact rejection and eigenvalue estimation

For results displayed in the main text we included all trials meeting
the trial-length criteria without consideration of possible eyeblink and
motion artifact. Moreover, we censored eigenvalues with relative
magnitudes less than 1/10,000 as calculation of very small eigenvalues
can become numerically unstable. To ensure that these choices did not
substantially affect conclusions we present the results corresponding to
Fig. 3 for the cases of either motion artifact removed based upon the
exclusion criteria adopted by Samaha and colleagues (Samaha et al.,
2016) or with alternative conditions for eigenvalue censoring. We
considered two alternative schemes for calculating the eigenvalues:
either including all eigenvalues or, rather than removing small com-
ponents, to remove the largest posterior component via Principal
Component Analysis (PCA). PCA was performed upon the full data (all
time points) in the native space (before derivative calculation/wavelet
smoothing) and the largest principal component was removed. The
eigenvalue and artifact conditions were fully crossed (Fig. 11) and we
computed the number of significant pairs (Fig. 11A and B) and pairwise
accuracies (Fig. 11C) for each subject. Group-level performance was
very similar regardless of these preprocessing conditions (Fig. 11B).
Likewise, individual performance as measured by decoding accuracy
for each pair of locations was generally consistent across conditions
(Fig. 11C). Classification accuracy for subject 8 slightly increased when
removing artifact (averaged across eigenvalue conditions: paired− t
(14)= 2.16, p= .0485, Δμ= .027 ± .0485) while accuracy for sub-
ject slightly 6 decreased (paired− t(14)=−4.635, p= .0004,
Δμ=− .021 ± .0184). We did not observe any significant changes due
to eigenvalue conditions. These changes in pairwise accuracy had a

Table 4
Number of trials for each subject meeting the trial length criteria by class (cued
location).

Location 1 2 3 4 5 6

1 70 71 72 66 58 64
2 70 66 72 73 59 67
3 66 72 63 64 64 62

Subject 4 68 74 69 68 64 69
5 72 73 62 77 64 61
6 47 53 49 51 49 48
7 70 67 70 73 57 60
8 73 67 59 73 64 69

M.F. Singh et al. Journal of Neuroscience Methods 308 (2018) 88–105

100



corresponding increase/decrease in the number of significantly de-
coded pairs (Fig. 11A). In contrast, several high-performing subjects
actually had the number of significantly classified pairs decrease when
artifactual trials were removed (Fig. 11A). However, these decrements
do not necessarily imply that performance worsened: since the sig-
nificance threshold (in terms of accuracy) decreases with the number of
classifications, removing trials due to artifact effectively increased the
accuracy threshold for significance. Thus, although the changes in pair-
wise decoding accuracy due to preprocessing conditions were minor for
most subjects, artifact-based censoring can lead to fewer significantly
classified pairs by decreasing the sample size. The main take-away from
this analysis is therefore that artifact had relatively little impact upon
decoding performance for most subjects (Fig. 11C) but removing

artifact did increase performance for the worst-performing subject (#8)
and negated the previously observed spectral advantage in decoding for
this subject.

5.6.1. Decomposing the classifier into variance and correlation
Just as spectral relationships may be decomposed into power and

phase, the covariance matrix may be decomposed into contributions of
variance and correlation to assess local (variance) vs. distributed (cor-
relation) contributions to task-related activity. Simply taking the var-
iance of each channel as input to a standard classifier does not remove
multivariate information as the classifier will still determine boundaries
based upon the covariance of observations (the covariance of var-
iances). However, by computing the cone using only the diagonal
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Fig. 8. Conic geometry for the best-de-
coding subject (#3). (A) Plotting the first
2 negative components and the first po-
sitive component in derivative space re-
veals conic geometry. Data is displayed
from a variety of viewpoints. (B) Plotting
the primary positive and negative ei-
gencomponents of the cone for a 2-loca-
tion contrast demonstrates that these
components increase derivative ampli-
tude during the corresponding cognitive
state. (C) Two dimensional projections
onto the length in the “positive” and
“negative” eigenspaces for the dis-
criminative cone reveals robust classifi-
cation of individual observations lasting
only a few milliseconds.

Fig. 9. Conic geometry for the worst-decoding subject (#8). (A) Plotting the first 2 negative components and the first positive component in derivative space reveals
conic geometry. Data is displayed from a variety of viewpoints. (B) Plotting the primary positive and negative eigencomponents of the cone for a 2-location contrast
demonstrates that these components increase derivative amplitude during the corresponding cognitive state. (C) Two dimensional projections onto the length in the
“positive” and “negative” eigenspaces for the discriminative cone reveals robust classification of individual observations lasting only a few milliseconds. Note the
large spike in this subject's data that is only visible in one of the eigenvectors.
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(variance) terms all multivariate information is gone and the resultant
classifier is actually identical to a weighted sum of univariate classifi-
cation rules:

∑⎛
⎝
⎜

∑

∏
⎞

⎠
⎟

∈

=
−

=
−( )x t σ

σ
arg min

˙ ( )
k

t T

c
n

c x

c
n

x
n

1
2

˙
2

1 ˙
2/

l

kc

kc (35)

where Tl denotes the lth bin and σẋ
2

kc denotes the variance of the deri-
vative signal for class k at channel c. To generate the classifier based

upon correlation alone, we used the regular conic classifier ((2)) but z-
scored the data channel-wise for every channel. Thus, for every trial,
each transformed channel had a variance of one so that the covariance
was identical to the correlation.

5.6.2. Testing the influence of anterior channels
In addition to the 13 most posterior channels we also tested the

contribution of anterior channels. Using the first 11 anterior channels
(first two rows) produced decoding that was weak (μ= .201 ± .0275),

Fig. 10. Individualized decoding accuracy for multi-class decoding. The x-axis (“n”) denotes the number of classes and performance was averaged over all possible
combinations of “n” spatial locations using the same windows as the pairwise comparisons (starting 250ms post-cue) and including all trials lasting atleast 1300ms
(without artifact rejection).

Fig. 11. Effects of preprocessing steps (artifact-censoring and eigenvalue censoring) on classification performance. (A) The number of significantly decoded pairs for
some subjects varied with the pre-processing steps. Conic decoding performance for subject 8 is at least as good as for spectral decoding whenever artifactual trials
are removed. (B) Group-level performance was very similar across pre-processing choices. (C) The pairwise decoding accuracy is generally unaffected by pre-
processing choices (as opposed to the number of significant pairs). For subject 8, however, accuracy generally increased with artifact rejection.
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but significantly above chance (t(7)= 3.54, p= .0095, 2-tailed) for the
six-way classification. When we censored high motion trials using
Samaha and colleague's (Samaha et al., 2016) criteria the anterior
classifier did not reach significance (μ= .1911 ± .0296;t(7)= 2.33,
p= .0525, 2-tailed). Performance for the deconstructed conic classifiers
(variance and correlation) was even weaker. These results confirm Sa-
maha and colleague's (Samaha et al., 2016) conclusion that activity in
anterior channels does not reflect the attended location. Moreover,
combining the very anterior and very posterior channels together did
not improve classification accuracy above the posterior channels alone
(t(7)=−1.85, p= .106, 2-tailed). In fact, the accuracy tended to de-
crease (Δμ=− .019 ± .029) indicating that the anterior channels
were simply adding noise. Thus, results using the conic method agree
with the previous findings that anterior–posterior coupling does con-
tribute additional information regarding the attended location from
what is found using the posterior channels alone.

5.6.3. Testing conic time series
Conic time series were formed by taking the classification accuracy

over moving windows of 6 data points (30ms) to form predictions.
Finer resolutions (i.e. single data points) are also possible, but we chose
a (very small) sliding window instead to aid visualization. Accuracy is
for leave-one-out cross-validation. Classifiers were trained on the in-
terval 750–1900ms post-cue and tested on the full trial interval. Thus
the first 750ms was not present in the training data for any trial. The
resultant accuracies were averaged across class for each subject and
smoothed with length 7 (35ms), unit variance Gaussian kernel. The
kernel was scaled to have an area of exactly one so it did not bias
overall performance.

In order to test the significance of the conic time series we per-
formed permutations based upon scrambled class labels (spatial loca-
tion) with all else identical. The number of observations per scrambled
class was the same as in the original data. We performed 10,000 per-
mutations for each combination of subject× classifier. Using the in-
dividual subject distributions we then constructed the group-level dis-
tribution from the means of subject-wise permuted data repeated
350,000 times for each classifier. None of the resultant significance
thresholds displayed substantial variation with respect to classifier
choice or time post-cue (all σ2 < .05%) so we set them constant at the
mean value.

5.6.4. Ruling out visually-evoked and central/parietal influences to
posterior decoding

To control for the possibility that our earlier onset of significant
posterior decoding was due to visually-evoked activity we considered
the similarity between activity during the window of primary visual
responses (i.e. the first 250ms after stimulus onset= 50ms post-cue;
Makeig et al., 2002) and the delay period. This activity does not re-
semble the learned patterns during delay as reflected in insignificant
decoding accuracy (Fig. 6A) so it is unlikely that the onset of significant
posterior decoding is related to visually-evoked responses. Another
possibility is that the earlier onset of significant decoding reflects later
processing of the cue such as its semantic significance as opposed to
reflecting spatial attention. We do not believe this explanation is likely
either due to the spatial profile of decoding – namely a mismatch be-
tween central/parietal and posterior decoding time courses. Event-re-
lated activity associated with semantic processing has been previously
described (in other experiments) over the relevant interval
(300–500ms post-cue) but is centered over central and parietal elec-
trodes (Kutas and Hillyard, 1980; Kutas and Federmeier, 2011) while
we only considered occipital and parieto-occipital (the 13 most pos-
terior). To test whether our early decoding onset reflected processes
linked to the parietal lobes, we considered the parietal electrodes (an
additional 11) both alone and in addition to posterior electrodes. In
both cases classification accuracy was above chance. However, the
addition of parietal electrodes did not augment the early decoding

accuracy and parietal electrodes alone did not exhibit a sustained re-
sponse starting at that interval. Moreover, combining posterior and
parietal electrodes did not improve mean classification accuracy re-
lative the posterior electrodes alone (Δμ=− .0298 ± .0614;t
(7)=−1.375, p= .212). As parietal electrodes did not add additional
information for decoding (as reflected in accuracy), posterior conic
decoding is unlikely to be driven by parietal processes. However, par-
ietal electrodes did reveal a different pattern of results with an even
earlier, but weak and transient, component which reached significance
(p < .05) beginning at 170ms and lasted approximately 100ms. This
component was driven by the correlation of derivatives between par-
ietal electrodes (as opposed to variance) and demonstrated a different
time course than the decoding performance at posterior electrodes
(namely a lack of sustained response). Thus, our earlier onset of sig-
nificant posterior decoding cannot be explained by processes linked to
parietal sites that tend to occur near the time interval of interest (i.e.
semantic event-related activity Kutas and Hillyard, 1980; Kutas and
Federmeier, 2011).

5.6.5. Interpreting local vs. distributed contributions to decoding in EEG
data

In general, dissociating the source of EEG signals is a nontrivial
endeavor, although several methods have been developed to localize
source signals (i.e. Grech et al., 2008). The main confound is volume
conductance, by which changes in focal cortical activity can lead to
changes in correlations between regions. For instance, scalp regions
which have high conductance paths to the site of local activation will
appear more correlated with each other. Therefore, simply identifying
differences in decoding accuracy between variance and correlation is
insufficient to suggest that the neural generators are more focal vs.
distributed. However, in the present case we can separate these possi-
bilities as the variance and correlation decoding time-courses are anti-
correlated during this early interval. In contrast, a focal neural gen-
erator will always have a positively correlated impact on variance and
correlation as they both depend monotonically upon the generative
signal's amplitude. We consider the early period of significant decoding
to be from 300 to 500ms corresponding to the first 200ms after the
start of significant decoding performance. Over this interval the group
average time series for correlation-based and variance-based decoding
accuracy are negatively correlated (r(39)=− .324, p= .0108, 2-tailed)
and the same holds for individual subjects after detrending: (mean
r=− .22 ± .28 after detrending). Thus, the time courses of variance-
based and correlation-based decoding accuracies during this early in-
terval are inconsistent with a common focal neural source.

5.6.6. Generating spatial maps
All spatial maps displayed were generated using the group-averaged

covariances of the derivative for each class. Data in Fig. 4 is displayed
from a posterior coronal view (as indicated in center). For each location
we considered the cone generated by the contrast location “x” vs. the
hemifield opposite “x” (the average covariance across 3 locations). The
method in which we visualized the conic matrix is by conversion to a
vector which forms a static head-map. As with functional connectivity,
the more natural way to visualize the matrix is as a weighted graph
between nodes, however, we chose to use a headmap to better visualize
the evident retinotopic organization. To do this, we defined each
channels contribution to the conic matrix as the sum of its squared
contributions to each eigenvector vj weighted by the corresponding
eigenvalue λj. Thus the ith channel's weight (wi) was:

∑=
=

w λ v[ ]i
j

n

j j i
1

2

(36)

Smooth maps were created by interpolating the channel-wise mea-
surements after coronal projection. Linear triangulation-based inter-
polation was performed with the built-in MATLAB function ‘griddata’.
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5.6.7. Eigenlengths and eigencomponents
In the two class case (labels= ±1), the conic boundary corre-

sponds to ∂ ≔ =C P x x Px( ) { ˙ | ˙ ˙ 0}T with P the weighted inverse of covar-
iance matrices:

≔ −
−

−

−

−
−
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[ 1] (37)

The class assignment function is =i t x t Px t( ) sgn( ˙ ( ) ˙ ( ))T . As P is real
symmetric, it has a spectral decomposition UDUH. Splitting the diagonal
matrix of eigenvalues (D) into positive and negative components:
D=D+−D− produces:

= −+ −x Px D U x D U x˙ ˙ || ( ˙ )|| || ( ˙ )||T H H
2
2

2
2 (38)

As the right side of Eq. (38) involves the difference of two norms, we
refer to them as the positive (with D+) and negative (with D−) eigen-
lengths. These eigenlengths are useful for generating a 2-dimensional
projection of the data by which to compare separability as in Fig. 5C.
Similarly we generate “eigencomponents” of the system by simply ro-
tating it into the cone's coordinate-axes (U x t˙ ( )H ). We call the eigen-
components positive or negative based upon the sign of the corre-
sponding eigenvalue in D and these may be used to linearly decompose
the signal into class-sensitive components as in Fig. 5A and B. In gen-
eral, the magnitude of each component's eigenvalue is related to how
tuned that component is for a specific class.

5.6.8. Testing the conic sensitivity to noise
To illustrate the invariance properties of our conic classifier we

considered trials number 21, 24, 27, and 30 for the lower right and
upper left locations each for subject 3. Using this data we calculated the
discriminating cone and projected all subsequent data onto the cone's
main eigenvectors for visualization (the first two corresponding to
lower right and the first for upper left). Thus, all transformed data are
plotted on the same axis generated from the original cone. We then
considered three noise-transformations on the data: multiplicative
noise, dynamic temporal warping (DTW), and multivariate box noise.
To simulate multiplicative noise we simply multiplied the pre-deriva-
tive data with a random spline before computing derivatives. We also
used a random spline for the dynamic temporal warping example in
which the spline values served as the time values at which we evaluated
the data through interpolation. Thus, the transformation under multi-
plicative noise between a univariate spline s(t) and multivariate data X
(t) was calculated as s(t)X(t), while the transformation under DTW was
calculated as X(s(t)) with non-integer values assessed through inter-
polation. In the latter case splines were constrained to be positive-va-
lued and monotone. Random splines was calculated by first generating
a set of random time spacing between interpolation control points
(distributed � (0, 10 ms) and � (0, 50 ms) for multiplication and
DTW, respectively. The x-values for interpolation control points were
likewise randomly generated from � (0, .2) and � (0, .05) , respec-
tively. To generate a temporal scaling function, the x-values generated
from DTW were converted to their cumulative sum to generate a
monotone time sequence and then rescaled to match the data's temporal
bounds. Box noise was applied additively using a randomly generated
box function. To create these functions we first specified a fixed number
of jump points (20) and a vector-valued variance for the jump ampli-
tudes of each channel. We generated these variances from the dis-
tribution �2 (0, 1) . The spacing between jumps was generated from
the distribution �+5 ms (0, 5 ms)2 separately for each channel and
values were rescaled and floored to produce integer values within the
data range. The amplitudes of each jump were generated from a normal
distribution with the standard deviation mentioned previously (ran-
domly drawn from �2 (0, 1) for each channel). After noise was added
(independently for each class) data was projected into the original conic
eigenspace to determine whether the original geometry still held.
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