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A B S T R A C T

Denoising fMRI data requires assessment of frame-to-frame head motion and removal of the biases motion in-
troduces. This is usually done through analysis of the parameters calculated during retrospective head motion
correction (i.e., ‘motion’ parameters). However, it is increasingly recognized that respiration introduces factitious
head motion via perturbations of the main (B0) field. This effect appears as higher-frequency fluctuations in the
motion parameters (>0.1 Hz, here referred to as ‘HF-motion’), primarily in the phase-encoding direction. This
periodicity can sometimes be obscured in standard single-band fMRI (TR 2.0–2.5 s) due to aliasing. Here we
examined (1) how prevalent HF-motion effects are in seven single-band datasets with TR from 2.0 to 2.5 s and (2)
how HF-motion affects functional connectivity. We demonstrate that HF-motion is more common in older adults,
those with higher body mass index, and those with lower cardiorespiratory fitness. We propose a low-pass
filtering approach to remove the contamination of high frequency effects from motion summary measures,
such as framewise displacement (FD). We demonstrate that in most datasets this filtering approach saves a
substantial amount of data from FD-based frame censoring, while at the same time reducing motion biases in
functional connectivity measures. These findings suggest that filtering motion parameters is an effective way to
improve the fidelity of head motion estimates, even in single band datasets. Particularly large data savings may
accrue in datasets acquired in older and less fit participants.
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1. Introduction

Functional connectivity (FC) measured with functional MRI (fMRI)
offers a powerful means of examining the systems-level organization of
the human brain (Biswal et al., 1995; Buckner et al., 2013; Power et al.,
2014b). However, the last decade has seen an explosion of studies
demonstrating that numerous sources of artifacts systematically distort
estimates of FC, including headmotion (Power et al., 2012; Satterthwaite
et al., 2012, 2019; Van Dijk et al., 2012) and respiration (Birn, 2012; Birn
et al., 2008; Power et al., 2017b). Head motion introduces bias in
measured FC through both common effects across all pair-wise regional
correlations as well as distance-dependent biases, where correlations are
increased most for adjacent regions and relatively decreased for regions
that are distant (Power et al., 2012; Satterthwaite et al., 2012). These
distortions are of particular concern in studies comparing groups or
conditions that differ systematically in head motion, for example in
comparisons between children and young adults (Greene et al., 2016;
Nielsen et al., 2019; Satterthwaite et al., 2013), adults of different ages
(Madan, 2018; Savalia et al., 2017), or clinical populations vs. normative
controls (Dosenbach et al., 2017; Fair et al., 2012; Gratton et al., 2019).
Fortunately, effective approaches have been developed to reduce biases
introduced by head motion (see review by (Power et al., 2015); (Ciric
et al., 2017; Parkes et al., 2018)). One common approach is to use a
combination of global signal regression (GSR) and motion censoring
(removal of BOLD volumes with high levels of motion) (Power et al.,
2014a); these two steps in combination perform well in controlling the
link between head motion and FC (Ciric et al., 2017; Parkes et al., 2018).
Motion censoring is particularly efficacious at reducing
distance-dependent artifacts in fMRI (Ciric et al., 2017; Parkes et al.,
2018; Power et al., 2014a), but comes at the cost of reducing the amount
of useable data (Ciric et al., 2017; Parkes et al., 2018; Raut et al., 2019).

Head motion in fMRI is typically estimated from a summary statistic
of frame-to-frame motion (e.g., framewise displacement, FD (Power
et al., 2012), or relative root-mean-square movement, RMS (Sat-
terthwaite et al., 2013)) derived from retrospective functional image
alignment (i.e., “motion correction”). However, realignment estimates
may not be pure measures of head-motion and may be influenced by
other factors such as respiration. Respiration may influence realignment
estimates in two ways: (a) through true changes in head position caused
by respiration-related movement and (b) apparent (factitious) motion in
the phase-encoding direction generated by perturbations of the main
(B0) magnetic field of T2* images caused by chest wall motion (Brosch
et al., 2002; Chen et al., 2019; Durand et al., 2001; Fair et al., 2020;
Power et al., 2019; Raj et al., 2001; Van de Moortele et al., 2002). Evi-
dence suggests that factitious motion may be the predominant source of
respiration-related motion artifacts in fMRI ((Brosch et al., 2002; Raj
et al., 2001); elaborated on further in the discussion).

The rate of respiration in humans depends on age and cardiopulmo-
nary status, but typically is 12–18 breaths per minute (0.2–0.3 Hz) in
adults (Charlton et al., 2018). This frequency range is above the Nyquist
folding frequency of most single-band fMRI studies. Specifically, at an
image sampling frequency of 0.4–0.5 Hz (i.e., TR from 2.0 to 2.5 s), the
Nyquist frequency is 0.2–0.25 Hz,1 such that adult respiration rates
would alias into frequencies from 0.1 to 0.2 Hz. Thus, respiratory effects
on alignment estimates (factitious or real) are more clearly identifiable in
head motion traces from typical multi-band acquisition sequences that
allow for data collection at fast rates (TRs<1.5 s have Nyquist limits
>0.33 Hz) (Fair et al., 2020). This faster sampling allows investigators to
separate respiratory-related effects from other head motion effects, as
abrupt head motion effects are broadband, while gradual head motion
shifts tend to occur at low frequencies. Indeed, recent evidence has
demonstrated that fast multiband fMRI data exhibit systematic pertur-
bations that match respiration rates (Fair et al., 2020) and are most
1 The Nyquist folding frequency is one half the sampling rate.
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prominent in the phase-encoding direction, consistent with an influence
on magnetic field heterogeneity (Fair et al., 2020).

However, preliminary evidence from Fair et al. (2020) suggests that
respiration may also contaminate motion estimates from fMRI data
collected at typical slower acquisition rates, in this case at aliased fre-
quencies from 0.1 to 0.2 Hz. Here, we build on Fair et al. (2020) to ask
how strong this contamination is across datasets and participants with
diverse characteristics. Importantly, it is also still uncertain how
respiration-related content in motion parameters might affect functional
connectivity, in light of common denoising techniques that censor even
small movements. Thus, the two major goals of this investigation were
(1) to determine the prevalence of motion at higher, respiration-related,
frequencies (HF-motion, >0.1 Hz) in single-band fMRI and (2) to deter-
mine whether HF-motion can be removed without adversely affecting
functional connectivity. To this end, we analyzed data from seven
single-band datasets collected on different populations on diverse scan-
ners and with different sequences (Table 1). We examined participant
characteristics associated with the occurrence of high-frequency motion,
demonstrating that in slower TR datasets HF-motion is more prominent
in older individuals and those with a higher body mass index (BMI).
Finally, we propose a low-pass filtering solution to correct HF-motion
contamination. We demonstrate that this solution saves substantial
amounts of data from censoring while still effectively reducing
motion-related bias in FC, following Ciric et al. (2017). These results
have the potential to substantially increase data savings and increase the
fidelity of head motion estimates, particularly in datasets focused on
older adults or those with higher body mass index.

2. Methods

2.1. Overview

We analyzed data from several single-band scan sequences with
repetition times (TRs) ranging from 2.0 to 2.5 s. Our goal was to char-
acterize high frequency content in the realignment (motion) parameters
and its effect on denoising for FC analysis. We first examined the relative
prevalence of HF-motion. We then examined what participant charac-
teristics are associated with HF-motion. Finally, we adjusted censoring-
based denoising strategies to account for HF-motion via filtering and
examined the consequences of this adjustment on FC. The approaches
used in each of these steps are detailed below.

2.2. Datasets

Data from seven different datasets were analyzed (Table 1). Four
datasets were from Washington University in St. Louis (WUSTL), one
dataset was from the University of Iowa (Iowa), one dataset was from the
University of Texas at Dallas (Dallas), and one dataset was from the
University of Illinois at Urbana-Champaign (UIUC). All datasets were
collected with single-band scan sequences, with repetition times (TRs)
ranging from 2.0 to 2.5 s. Collectively, these data, from both Siemens and
Phillips 3T scanners, represent 1332 participants (772 females),
including children through older adults (ages 6–90), individuals with
neurological and psychiatric disorders, and neurotypical controls. All
procedures were approved by the Institutional Review Boards at the
respective institutions.

The Protein and Imaging Biomarkers in Parkinson Disease (PIB-PD),
Barch Schizophrenia (Barch-SZ), and Iowa Lesion datasets were included
as they served as our initial observations of prominent HF-motion in
single band datasets. The primary PIB-PD dataset was used to examine
the consequences of HF-motion on functional connectivity. We added the
Petersen 120þ, Dallas Lifespan, and UIUC Lifespan datasets to examine
the relationship between HF-motion and age, body mass index (BMI;
Dallas, UIUC), and cardio-respiratory fitness (UIUC). The Midnight Scan
Club (MSC) dataset was included to examine stability of HF-motion
across repeated sessions.



Table 1
Dataset demographics and basic parameters. HC¼Healthy control, PD¼ participant with Parkinson disease, SZ¼ participant with schizophrenia, LS¼ participant with
brain lesion. WUSTL ¼ Washington University in St. Louis, U Iowa ¼ University of Iowa, UT Dallas ¼ University of Texas at Dallas, UIUC ¼ University of Illinois at
Urbana-Champaign. *The PIB-PD Parkinson dataset is the primary dataset used in this paper for functional connectivity analyses.

Dataset N Age Sex (F) Site TR (s) Scanner References

PIB-PD* 102 PD
41 HC

46–90 72 WUSTL 2.2 Siemens Trio 3T Gratton et al. (2019)

Barch-SZ 57 SZ
40 HC

20–50 38 WUSTL 2 Siemens Trio 3T Lerman-Sinkoff and Barch (2016)

Petersen 120þ 587 HC 6–40 359 WUSTL 2–2.5 Siemens Trio 3T Power et al. (2012)
MSC 10 HC 24–34 5 WUSTL 2.2 Siemens Trio 3T Gordon et al. (2017)
Iowa Lesion 28 LS 25–78 15 U Iowa 2.26 Siemens Trio 3T See Supp. Methods
Dallas Lifespan 418 HC 20–89 258 UT Dallas 2 Phillips Achieva 3T Chan et al. (2018)
UIUC Lifespan 49 HC 18–75 25 UIUC 2 Siemens Trio 3T Kong et al. (2019)

Table 2
Comparison of frames retained with FD < 0.2 or fFD<0.1 criteria in different
datasets. Across most datasets, adopting fFD<0.1 for frame censoring retained
significantly more frames that an FD < 0.2 criteria. The exception is the Petersen
120þ dataset. ***p < 0.001, **p < 0.01

Dataset
percent frames retained

FD < 0.2 fFD<0.1 difference

PIB-PD 63.3% 79.1% 15.7%***
Barch-SZ 57.4% 76.2% 18.9%***
Petersen 120þ 79.7% 77.7% �2.0%***
Iowa Lesion 47.6% 59.7% 12.0%***
Dallas Lifespan 69.0% 84.2% 15.3%***
UIUC Lifespan 66.6% 82.8% 16.2%***
MSC 82.5% 86.0% 3.4%**
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Table 1 includes a brief description of the characteristics of each
dataset. Additional details on six of the seven datasets can be found in the
associated references. Note that the Barch-SZ dataset only contains sub-
jects from the second dataset (task runs) in Lerman-Sinkoff and Barch
(2016). Details on participant characteristics and MRI data collection
parameters in the final (Iowa Lesion) dataset can be found in the Supp.
Methods. Supp. Table 1 reports imaging parameters for all datasets. In all
cases apart from the primary PIB-PD dataset, we included all participants
who had a fully pre-processed dataset in our motion parameter analyses.
The PIB-PD dataset had more restricted inclusion criteria as it was used
for functional connectivity analysis, as described in the Supp. Methods.

2.3. MRI collection parameters

Details about the MRI collection parameters for each dataset can be
found in the respective references in Table 1 and are summarized in
Supp. Table 1. In brief, each dataset included fairly standard single band
gradient echo EPI functional MRI scans on 3T scanners, with TRs ranging
from 2 to 2.5s, with an A/P phase encoding direction. One dataset (UIUC
Lifespan) was collected with GRAPPA (factor 2); no other datasets
included GRAPPA, iPAT, or partial Fourier acceleration.

2.4. Pre-processing and realignment

All functional data were rigid body realigned, thereby creating six
rigid body motion parameter timeseries (3 translation and 3 rotation).
This manuscript primarily focuses on analyses of the 6 rigid body pa-
rameters from this preprocessing. Rotation parameters were converted to
mm, under the assumption of a 50 mm head radius as in Power et al.
(2012). When multiple runs were acquired in the same participant, the
motion parameters were concatenated across runs before analysis. For
the MSC dataset, where motion parameters were compared from sessions
on different days, motion parameters from each session were kept
separate. Realignment was conducted either using the 4dfp toolbox (htt
ps://sites.wustl.edu/nillabs/4dfp-documentation/; for the 4 WUSTL and
the Iowa Lesion datasets), SPM8 (https://www.fil.ion.ucl.ac.uk
/spm/software/spm8/; for the Dallas Lifespan dataset) or SPM12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/; for the UIUC
Lifespan dataset) using default parameters for rigid body realignment.
Details on the analysis package, algorithm, and alignment reference
frame are included in Supp. Table 2. All packages optimize the same
objective function (the spatial correlation between each frame and the
reference frame). Past work has demonstrated that FD traces are
extremely similar (r � 0.95) regardless of reference volume, algorithm,
or package (see Fig. S1 and associated analyses in (Power et al., 2017a)).
Supplemental analyses in this manuscript also compare HF-motion esti-
mates from different packages (4dfp; AFNI version 17.2.09; FSL version
5.0; see Supp. Fig. 1).

Slice timing correction was performed in all datasets before realign-
ment. While this is a common strategy in analysis, the choice of slice
timing correction influences FD metrics, as previously reported by Power
3

et al. (2017a), and these effects are lessened with filtering (see Supp.
Figs. 2–3 for a more extensive illustration and discussion of the effects of
slice timing correction on high-frequency motion). Field maps were only
collected in a subset of datasets (MSC, Iowa Lesion) and when available,
field map correction was applied to the functional data after realignment,
and therefore will not influence the realignment parameters reported
here.
2.5. Analysis of motion parameters

Power spectral analyses: Power spectra of the motion parameters were
calculated using the multitaper power spectral density (PMTM) module
in Matlab. Power was then log-scaled and Z-normalized within each
motion parameter and expressed as a percentile, following (Fair et al.,
2020). We refer to this scaled and normalized version of the power as
“relative power”.

Quantification of high-frequency (HF) motion: HF-motion was quanti-
fied by determining the percent of relative power above 0.1 Hz within
each motion direction. We focus on HF-motion in the y-translation
(phase-encoding) direction given that factitious respiratory-related ef-
fects are largest in the phase-encoding direction (Brosch et al., 2002;
Chen et al., 2019; Durand et al., 2001; Fair et al., 2020; Power et al.,
2019; Raj et al., 2001; Van de Moortele et al., 2002). Supplemental an-
alyses report the relationship between HF-motion in other directions and
participant demographics.

Relationship between HF-motion and participant characteristics: The
relative HF power in the phase-encoding direction was related to
participant demographics including age and sex and, when available,
diagnosis (PIB-PD, Barch-Sz), body mass index (BMI; Dallas-Lifespan,
UIUC-Lifespan), and cardiorespiratory fitness (UIUC-Lifespan; see mea-
surement details in Supp. Methods). The relationship between HF-motion
and participant demographics was tested within each dataset. Relation-
ships between motion and individual demographics were examined
using Spearman correlations (for continuous data) or two-sample two-
sided t-tests (for sex, diagnosis). A final ANOVA was used to test the
relationship between HF-motion and all variables at once within each

https://sites.wustl.edu/nillabs/4dfp-documentation/
https://sites.wustl.edu/nillabs/4dfp-documentation/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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dataset; participant demographics were Z-scored before entry into the
ANOVA. In each case p-values were corrected for multiple comparisons
using FDR-correction across the number of tests (datasets); corrected p-
values are reported as p(FDR). For some analyses, data from the WUSTL
samples were grouped to create a broader age-range for analysis. Follow-
up analyses used partial correlation to test for the role of each de-
mographic variable after controlling for other demographic variables.

HF-motion filtering: To remove high-frequency content from the mo-
tion parameters, motion parameters were low-pass filtered at 0.1 Hz
using a first order Butterworth filter with zero-padding (100 frames) on
either end of the motion timeseries. The filter was applied both forward
and backward and implemented with the filtfilt.m function in Matlab
2013b (see wrapper script filter_motion.m in the manuscript gitrepo http
s://github.com/GrattonLab/Gratton2020_NI_HFmotion). Low-pass
filtering was conducted on all 6 motion parameters, not only the phase
encoding direction, as cross-talk may occur between realignment pa-
rameters (see Appendix A in Fair et al. (2020)).

Framewise Displacement (FD) vs. filtered Framewise Displacement (fFD):
As in Power et al. (2012), FD represents the sum of the absolute
frame-to-frame difference in motion parameters. Framewise displace-
ment was calculated on both the original motion parameters (FD) as well
as the low-pass filtered motion parameters (fFD).

2.6. Functional connectivity (FC)

FC Analysis: In the PD dataset, additional processing steps were done
to align and denoise the functional and structural MRI data for FC ana-
lyses. These steps are detailed in the Supplemental Methods. Afterwards,
denoised FC was related to motion measures (see below) to assess the
utility of FD vs. fFD metrics in censoring for removing motion bias in FC.

FD vs. fFD based censoring: High motion frames were identified using
either the FD or fFD metric. With FD, frames were marked as “high
motion” if they had values above 0.2 mm (as in (Power et al., 2014a)).
The fFD measure requires lowering the censoring threshold as filtering
reduces the amplitude of the FD measure (a natural consequence of
applying a filter). Two different criteria were tested: a more lenient 0.1
mm threshold and a more conservative 0.08 mm threshold. For func-
tional connectivity analyses, censoring masks also included removal of
14 frames at the start of each run (Laumann et al., 2015) and short frame
segments (<5 long) (Power et al., 2014a). For the primary versions of
these analyses, each participant was required to have 50 low-motion
frames per run and 150 low-motion frames total. Different total and
segment minima were also compared in supplemental analyses.

Motion-FC (QC-FC) Analysis: Additional analyses were conducted
following Ciric et al. (2017) to test for the relationship between motion
and functional connectivity measures (i.e., QC-FC analyses). These ana-
lyses correlated mean framewise displacement (QC) with functional
connectivity for a given connection across participants. Given that
censoring approaches most strongly influence the distance-dependence
of QC-FC relationships (Ciric et al., 2017; Parkes et al., 2018; Power
et al., 2012; Satterthwaite et al., 2012), we focus primarily on these
analyses to evaluate different censoring strategies. The motion QC
measure adopted in most analyses was based on the mean of the fFD
measure, but supplemental analyses also report QC based on mean FD.
Additional analyses adapted from Ciric et al. (2017) of the median QC-FC
relationship, the percent of significant QC-FC relationships, and the
number of QC-FC relationships above r ¼ 0.4 are also reported in the
supplement.

Statistical evaluation of QC-FC distance dependent slopes of each
censoring strategy was conducted by comparison with a null random
censoring approach. For a given subject, random censoring involved
removal of the same number of frames as called for in the true censoring
strategy, but in this case censored frames were randomly selected rather
than selected for their high FD (or fFD) values. Framematching was done
per participant. N ¼ 100 permutations of random frame censoring were
run; in each permutation, the same FD-FC benchmark tests were
4

conducted and stored. Thus, random censoring represents a null baseline
comparison which is matched for number of frames.

2.7. Data & code availability

Code associated with this manuscript will be made available upon
publication at https://github.com/GrattonLab/Gratton2020_NI_HFmot
ion. Data from the Midnight Scan Club is available at https://openneur
o.org/datasets/ds000224. Data associated with the first 120 subjects
from the Petersen 120þ dataset are available at https://openneu
ro.org/datasets/ds000243/versions/00001. Other datasets are avail-
able upon request.

3. Results

3.1. High frequency motion is present in single-band fMRI data, especially
in the phase-encoding direction

The present investigation was motivated by observation of a phe-
nomenon in the realignment parameters of two datasets that included
older participants (PIB-PD and Iowa Lesion) that was unexpected to us,
and appears relatively underappreciated in the field. To demonstrate the
characteristics of this observation, we compare realignment parameters
and their spectra from two participants in the PIB-PD dataset (Fig. 1A; the
PIB-PD dataset will be used as our primary dataset throughout this
manuscript). One of these participants (Fig. 1A top) shows typical
realignment parameters for someone with low head movements (97% of
frames are below an FD threshold of 0.2 mm). The second participant
(Fig. 1A bottom), instead, has a prominent zig-zag pattern in the
realignment time-courses most clearly in the y-translation (phase-
encoding) direction. This is also seen in the spectra of the realignment
parameters, where a large peak in the relative power of the y-direction
realignment parameter is seen above 0.1 Hz which we term high-fre-
quency motion (HF-motion). Besides this HF-motion, the second partici-
pant shows low overall movement, much like the first. However, because
of the HF-motion, only 31% of frames are below an FD threshold of 0.2
mm. Supp. Figure 1 shows that similar results are found when the motion
parameters from these two participants are derived from different algo-
rithms (AFNI’s 3dvolreg, FSL’s mcflirt), suggesting that HF-motion is not
due to a particular analysis stream.

Across the full set of participants in the PIB-PD dataset (Fig. 1B, see
also Fig. 2A), many of the PIB-PD participants show some evidence for
HF-motion, which is strongest in the phase encoding (y-translation) di-
rection. HF-motion appears next most frequently in the z-direction but
with substantially reduced magnitude (Fig. 1B; paired t-test comparing
percent of relative HF-motion in y-translation and z-translation di-
rections: t(142)¼ 18.32, p< 0.001). The correlation between HF-motion
in the y- and z-directions was modest, at r ¼ 0.29. Across participants,
HF-motion varies somewhat in peak frequency and magnitude (Fig. 2A).

HF-motion is evident also in several other datasets, including those
collected on the same scanner at WUSTL (Barch-Sz, Petersen 120þ) and
those collected at other sites (Iowa Lesion, UIUC Lifespan) and from a
different scanner manufacturer (Dallas Lifespan – Phillips Achieva), all
with TRs ranging from 2 to 2.5 s (Fig. 2A). In all datasets, a subset of
individuals shows prominent HF-motion above 0.1 Hz, with relative
power above 0.5, indicating greater than 50th percentile HF power
levels.

In datasets with repeated scans from the same individual (Gordon
et al., 2017), HF-motion characteristics show stability over sessions
(Fig. 2B): that is, if an individual shows HF-motion in one session, they
are likely to show it again in other sessions at similar frequency ranges. In
particular, MSC03 from MSC dataset shows consistent HF-motion above
0.1 Hz. MSC10 also shows a consistent peak in motion estimates, though
centered on a lower frequency (around 0.1 Hz). Notably, in the MSC
dataset, the participant who exhibited the most drowsiness and promi-
nent low frequency motion (MSC08) was different from the participants

https://github.com/GrattonLab/Gratton2020_NI_HFmotion
https://github.com/GrattonLab/Gratton2020_NI_HFmotion
https://github.com/GrattonLab/Gratton2020_NI_HFmotion
https://github.com/GrattonLab/Gratton2020_NI_HFmotion
https://openneuro.org/datasets/ds000224
https://openneuro.org/datasets/ds000224
https://openneuro.org/datasets/ds000243/versions/00001
https://openneuro.org/datasets/ds000243/versions/00001


Fig. 1. (A) Motion parameters in the PIB-PD dataset. Two participants are illustrated, one with little HF-motion (top) and one with substantial HF-motion (bottom).
Left side plots depict motion parameters over time; right side plots depict the power spectra of the motion parameters expressed in terms of relative power (see
Methods). The bottom participant shows a predominance of power above 0.1 Hz in the y-translation (*phase-encoding) direction (blue line). Black lines mark run
boundaries. (B) Plot depicting the percent of relative power above 0.1 Hz in each of the six motion parameters across all (N ¼ 143) PIB-PD participants. Y-translation
shows the most HF-motion.
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that had the most HF-motion (MSC03, and to a lesser extent MSC10 and
MSC01).

Thus, HF-motion is relatively commonplace, although more prevalent
in some participants and datasets (PIB-PD, Barch-Sz) than others
(Petersen 120þ, MSC).

3.2. High frequency motion is related to age, BMI, and cardiorespiratory
fitness

We next investigated whether the presence of HF-motion is linked to
participant characteristics. Past work suggests links between HF-motion
in the phase-encoding direction and main field perturbations caused by
chest-wall motion (Brosch et al., 2002; Fair et al., 2020; Power et al.,
2019; Raj et al., 2001). Thus, we examined participant characteristics
potentially related to this phenomenon, i.e., age, sex, body mass, and
cardiorespiratory fitness, which may modulate both respiratory rates and
5

chest size.
Since we first noted HF-motion in datasets with older participants

(PIB-PD, Barch-Sz, Iowa-Lesion), we began by examining whether HF-
motion (defined as the proportion of relative motion > 0.1 Hz in the
phase-encoding direction) varies across datasets sampling different age
ranges. Consistent with our impression, we found significantly stronger
HF-motion in datasets with older participants relative to the younger
Petersen-120þ dataset (Petersen vs. PIB-PD: t(929) ¼ 18.14, p ¼
3.27*10�63, p(FDR) < 0.001; Petersen vs. Barch-Sz: t(883) ¼ 17.84, p ¼
4.86*10�61, p(FDR) < 0.001; Petersen vs. Iowa-Lesion: t(814) ¼ 2.35, p
¼ 0.0191 p(FDR) ¼ 0.0196).

By combining the PIB-PD, Barch-Sz, and Petersen-120þ datasets, we
were able to examine the correlation between age and HF-motion in
participants from 6 to 90 years old scanned on the same Siemens 3T Trio
scanner at WUSTL (Fig. 3A). We found a significant relationship between
HF-motion and age (Spearman rank correlation: ρ ¼ 0.53, p ¼



Fig. 2. Power spectra of the y-translation (phase-encoding) motion parameter across diverse datasets. (A) Power spectra in six datasets with TR from 2 to 2.5 collected
at multiple sites and in different populations. Participants are ordered based on their proportion of HF-motion. The white line marks 0.1 Hz; at these sampling
frequencies respiratory effects in adults would typically alias into the 0.1–0.2 Hz range (above the white line). A set of participants in each dataset show peaks in power
above 0.1 Hz. (B) Power spectra from 10 sessions in the 10 MSC subjects. For a given participant, each row depicts a single scan session and subjects are separated by
horizontal black lines. HF-motion shows some consistency across sessions, with participants who exhibit the strongest HF-motion (e.g., MSC03) showing strong HF-
motion in most repeated sessions (e.g., note similarity in frequency profile of motion parameters across repeated scans – stacked lines – from the same subject; MSC03
has 8/10 sessions with >67% of power in the y-translation above 0.1 Hz; other subjects show 0–1 sessions).
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8.35*10�60, p(FDR) < 0.0001; if restricted to control participants only: ρ
¼ 0.44, p ¼ 1.92*10�29). This correlation is primarily driven by a rise in
HF-motion across the young to middle aged participants in the Petersen
120þ group (ρ ¼ 0.21, p ¼ 2.99*10�7, p(FDR) < 0.0001). To further
confirm this finding, we obtained data from two adult lifespan fMRI
datasets with participants from 20 through 90 years old (Dallas Lifespan
and UIUC Lifespan; Fig. 3B). A significant relationship to age was found
in the Dallas Lifespan dataset (ρ¼ 0.26, p¼ 1.15*10�7, p(FDR)< 0.0001;
note similar magnitude to the Petersen 120þ finding). No relationship
was seen in the smaller UIUC Lifespan dataset (ρ ¼ 0.03, p ¼ 0.812). We
speculate this may be due to the small size and unusual characteristics of
the oldest participants in this study which required attendance of three
sessions for fMRI, optical imaging, and behavioral measurements (note
the downward trend from 70þ). To further investigate whether age was
related to HF-motion in a non-linear fashion, we used a smoothing spline
approach to relate age and HF-motion in each of the three datasets (Supp.
Fig. 4). With this approach, all three datasets show evidence of upward
trends in early to middle age ranges, but a downward trend at the oldest
ages. However, the exact shape of these trends differed across datasets
(both the Dallas Lifespan and WUSTL datasets suggest a decline after 75;
the UIUC Lifespan dataset shows a decline starting earlier around age 60,
but has relatively sparse sampling of these ages). Thus, age is related to
HF-motion in most datasets, but may exhibit a non-linear relationship
with age that depends on the demand characteristics of each study.
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Next, we examinedwhether HF-motion relates to participant BMI given
the potential connection between HF-motion and chest-wall deviations
(Fig. 3C). BMI measures were only collected in the Dallas Lifespan and
UIUC Lifespan datasets. We find a significant and similar relationship be-
tween HF-motion and BMI in these two datasets (Dallas Lifespan: ρ¼ 0.27,
p ¼ 4.85*10�8, p(FDR) < 0.0001; UIUC Lifespan: ρ ¼ 0.30, p ¼ 0.0364,
p(FDR) ¼ 0.0394). The UIUC Lifespan dataset also collected measures of
cardiorespiratory fitness (see Supp. Methods for description) and, inter-
estingly, this measure also showed a modest relationship to HF-motion (ρ
¼ �0.31, p ¼ 0.030; Supp. Fig. 5). In the Dallas Lifespan dataset the
relationship of HF-motion with BMI and age remain significant when
controlling for the alternate variable via partial correlation (HF-motion vs.
BMI, controlling for age: ρ ¼ 0.26, p ¼ 9.99*10�8; HF-motion vs. age,
controlling for BMI: ρ ¼ 0.25, p ¼ 5.61*10�7; Supp. Fig. 6). In the UIUC
Lifespan dataset, the relationship between HF-motion and cardiorespira-
tory fitness remained significant after controlling for age and BMI (ρ ¼
�0.34, p ¼ 0.02), but the relationship between HF-motion and BMI is
somewhat weakened and no longer significant after controlling for age and
cardiorespiratory fitness (ρ ¼ 0.23, p ¼ 0.12; Supp. Fig. 6). This may be
due to the smaller number of participants in the UIUC Lifespan dataset
and/or to the association between BMI and cardiorespiratory fitness
(cardiorespiratory fitness vs. BMI: r ¼ �0.37, p < 0.01; Age vs. BMI: r ¼
0.11, p ¼ n.s.). Generally, these findings suggest that older, higher BMI,
and/or less fit participants may be more likely to show HF-motion. For



Fig. 3. Relationship between phase-encoding HF-motion and participant age and BMI. (A) HF-motion showed a significant relationship to age in a combined set of
three datasets collected on the same scanner at WUSTL. Different colors represent data from different datasets, with the fit line plotted for each dataset separately as a
thinner black line. Filled circles represent data from healthy controls and open circles represent data from individuals with Parkinson Disease (PD) or schizophrenia
(SZ). (B) HF-motion was also related to age in the Dallas lifespan dataset, but not in the smaller UIUC lifespan dataset. (C) HF-motion was related to participant BMI in
both the Dallas and UIUC Lifespan datasets. Supp. Fig. 6 shows scatter plots after correction for alternate participant characteristics.
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completeness, we also examined the relationship between HF-motion in
other motion directions and these demographic variables (Supp. Fig. 7);
the findings above were to some extent shared across motion directions,
with the y-translation (phase-encoding) direction showing the highest
relationship on average, followed by the z-translation. Shared relationships
may be driven by cross-talk between realignment parameters (see Ap-
pendix A in (Fair et al., 2020)).

Additional differences in HF-motion based on gender (females >

males in the Petersen 120þ) and diagnosis (PD participants < HC con-
trols, SZ participants > HC controls) were also observed but less
consistent across datasets (Supp. Fig. 5). A full table of ANOVA results
relating participant characteristics to HF-motion is included in Supp.
Table 3. These results suggest the potential concern that HF-motion may
affect group comparisons unevenly.
3.3. High frequency motion disrupts the relationship between FD and
BOLD signal abnormalities

In the previous sections we demonstrated the presence of HF-motion in
several datasets, as well as a link to participant characteristics. In this and
the next few sections we examine how HF-motion influences FC analyses.

Over the past decade, numerous studies have demonstrated a rela-
tionship between head movements (even small, ~0.2 mm) and BOLD
signal artifacts that bias functional connectivity (Power et al., 2012;
Satterthwaite et al., 2012, 2019; Van Dijk et al., 2012) (e.g., see Fig. 4A).
Typically, in these studies, head motion is summed across the 6
realignment parameters to calculate Framewise Displacement (FD).
Methodological studies suggest that removal of frames with elevated FD
(frame censoring) can effectively reduce bias in functional connectivity
7

(Ciric et al., 2017; Power et al., 2014a; Satterthwaite et al., 2012, 2013,
2019). However, these methodological studies primarily focused on the
analysis of child or young adult data which, as reported in the previous
section, exhibit significantly less HF-motion than datasets acquired in
middle aged or older participants.

In our older adult datasets, participants with low HF-motion (Fig. 4A),
show the characteristic relationship between FD spikes and BOLD signal
artifacts (e.g., note correspondence of vertical stripes in the BOLD signal
with raised FD). However, participants with prominent HF-motion show a
disrupted relationship between FD measures and BOLD signal artifacts,
driven by a raised baseline of the FD timecourse (Fig. 4B). This is expected,
as HF-motion will strongly drive frame-to-frame FD. Thus, a very high
proportion of frames are flagged as having elevated FD (FD > 0.2 (Power
et al., 2014a),) and marked for censoring in these participants, even in the
absence of discernable artifact in the fMRI signal (e.g., note the absence of
vertical bands at most of these time-windows). Thus, with HF-motion,
standard FD appears to become a poor marker of true micro-movements
and BOLD signal disruptions.
3.4. Filtering motion parameters before FD calculation as an approach to
removing HF confounds

One possibility is that FD values contaminated by HF-motion may be
improved by filtering motion parameters before FD calculation to remove
the HF-motion component. We tested this hypothesis, by low-pass filtering
motion parameters at 0.1 Hz. We then used these filtered parameters to
create a new filtered FD (or fFD) measure. These filtered motion traces
closely resemble the original motion traces, still showing evidence of
transient small movements, and indeed are almost identical in participants



Fig. 4. Relationship between fMRI signal
changes and FD. Here we plot the relation-
ship between FD (a proxy for motion) and
fMRI signal changes (via fMRI intensity
“grayplots” (Power, 2017); see Supp.
Methods) in a participant with low
HF-motion (A) and a participant with high
HF-motion (B) in the PIB-PD dataset. In each
panel, the top subplot shows the FD trace
(red ¼ standard FD, purple ¼ FD calculated
from filtered motion parameters, horizontal
lines marking typical thresholds for
censoring: black ¼ 0.2 for FD and gray ¼ 0.1
for filtered FD). The second subplot shows a
mask of frames above threshold that will be
marked for censoring (top row: FD, bottom
row: filtered FD). The third subplot shows the
stacked fMRI timecourses for gray matter
regions (scale: �2 to 2% signal change). The
final subplot shows stacked timecourses for
white matter and CSF regions. As can be seen,
censoring masks are quite different in sub-
jects with large amounts of HF-motion, but
relatively similar in subjects with low
HF-motion. NB: this grayplot is presented
after pre-processing, demeaning and
detrending, and nuisance regression, but
before interpolation and temporal filtering;
frame censoring can affect multiple stages of
processing, including application of nuisance
regression if only “low motion” frames are
used for nuisance fits (Power et al., 2014a).

2 Note that for simplicity, the censoring mask computations for Figs. 4 and 5,
Table 2, and related sections of the text are made with a simple threshold mask
(e.g., FD < 0.2 or fFD<0.1), but not including other elements of censoring that
we typically add to FC processing (Power et al., 2014a). These other elements
include: censor frames at the start of each run (14 frames) and frame segments
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with low HF-motion. However, in participants with high HF-motion, the
prominent high frequency flickering is removed (see Supp. Fig. 8 for ex-
amples of filtered motion parameters from the same subjects shown in
Fig. 1).

Because we remove power from the motion parameters, fFD tends to
show a lower baseline relative to the original FDmeasure, even in low HF-
motion subjects (see Fig. 4A, compare FD to fFD line in top subplot). Thus,
it is necessary to lower the FD threshold for censoring to more effectively
capture small head movements (Power et al., 2015). In this and the next
section, we tested the results of censoring motion frames based on a
filtered FD threshold of 0.1 mm or amore conservative 0.08mm (see Supp.
Fig. 9–10 for justification for selecting these thresholding values).

In participants without HF-motion (Fig. 4A), FD and fFD appear to be
8

quite similar. In subjects with HF-motion, spikes in the fFD measure
appears to better align with fMRI signal artifact and more effectively
expose head movements (Fig. 4B). Moreover, despite using a more con-
servative threshold, fFD leads to a much higher proportion of frames
retained in these subjects (Fig. 4B, compare censoring masks2). These
initial observations are quantified in the next section.
that are less than 5 (or 3 – see Supp. Fig. 13) contiguous units long.
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3.5. Filtering motion parameters before FD calculation saves data from
frame censoring

Next we quantified these effects across all participants in the PIB-PD
dataset. As the examples suggested, using fFD saves a substantial amount
of data from censoring in many participants, despite the more conser-
vative threshold (Fig. 5A, points above the unity line). On average, 15.7%
fewer frames were flagged when fFD<0.1 was used for censoring relative
to FD<0.2 (std¼ 16.6% of frames; t(142)¼ 11.29, p< 0.001). Moreover,
if we require 150 low motion frames to include a participant in final
analyses (~5.5 min), then fFD<0.1 censoring leads to retaining an
additional 11.9% of participants in the PIB-PD dataset, relative to
FD<0.2. Smaller but still significant data savings were seen with the
more conservative fFD<0.08 threshold (Supp. Fig. 11; average frame
savings: 6.4%, std ¼ 16.6%, t(142) ¼ 4.61, p < 0.001; 7.7% more sub-
jects retained). Similar results were obtained in the other datasets with
large amounts of HF-motion (Table 2, Supp. Fig. 12; note the exception of
the younger Petersen 120þ dataset).

As might be expected, data savings were largest in participants with
more HF-motion (Fig. 5B, ρ ¼ 0.55). In general, censoring masks con-
structed using filtered and unfiltered FD had high overlap, but the sim-
ilarity between the two masks was correlated with the amount of HF-
motion: they looked most similar in participants with little HF-motion
(Fig. 5C; ρ ¼ �0.30, p < 0.001).

In summary, these results demonstrate that filtering motion param-
eters before calculating FD can save substantial amounts of data,
particularly in participants with HF-motion contamination. Concomi-
tantly, those with little HF-motion artifact are not particularly affected by
filtering and show very similar censoring masks regardless of the
approach.

3.6. Filtering motion parameters before FD calculation does not bias
functional connectivity measures

Filtering motion parameters before FD calculation saves data from
censoring. But, does it still address motion confounds in fMRI functional
connectivity analyses? The stronger link between fFD and fMRI artifacts
(Fig. 4) suggests that it might; here wemore formally test this question by
applying the benchmark criteria from Ciric et al. (2017) to our processing
stream with censoring using either FD or fFD criteria.

Past work (Ciric et al., 2017; Parkes et al., 2018; Power et al., 2012,
2014a; Satterthwaite et al., 2012) suggests that frame censoring tech-
niques exert the strongest influence on distance-dependent biases in
functional connectivity. Without frame censoring, motion biases func-
tional connectivity based on the distance between regions: when regions
are close together, functional connectivity is relatively amplified and
correlated with motion, whereas when regions are far apart, functional
connectivity is relatively dampened. Frame censoring addresses this
confound, reducing the link between connection distance and motion.
Accordingly, here we focus first on whether the filtered FD censoring
criterion still adequately addresses distance-dependent bias in functional
connectivity data, at a similar level to that previously observed for FD
criteria in the absence of prominent HF-motion.

The following analysis is restricted to a set of N ¼ 79 PIB-PD partic-
ipants (52 PD and 27 HC) who had >150 frames under all three frame
censoring criteria (FD<0.2, fFD<0.1, fFD<0.08) to ensure that observed
differences could be attributed to censoring rather than subject inclusion.
From here onward, all censoring masks also include removal of 14 frames
at the start of each scan as well as censoring of small segments less than 5
frames long (Power et al., 2014a) unless otherwise noted. Supp. Table 4
summarizes the mean and range of frames retained under each censoring
strategy within this restricted sample.

Distance-dependent relationships between FC and motion were small
in this dataset using any of the three censoring criteria (Fig. 6A, compare
with a QC-FC distance-dependence of r ¼ �0.116 in (Ciric et al., 2017)),
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all of which did better at eliminating bias than analysis strategies omit-
ting censoring (Fig. 6B). Importantly, distance-dependent bias was not
elevated when using fFD for censoring rather than FD, despite the in-
clusion of a large number of additional frames. All three censoring stra-
tegies out-performed random censoring, with Z-statistics relative to their
matched null distributions of Z ¼ 5.14 for FD<0.2, Z¼ 8.43 for fFD<0.1,
and Z ¼ 9.76 for fFD<0.08. With N ¼ 100 random permutations, these
values are all significant at p < 0.01. See Supp. Fig. 13 for different
variations on this analysis, varying the quality metric, contiguous
segment length, andminimum number of frames per participant. We note
that inclusion of fewer frames per participant tended to increase
distance-dependent bias (Supp Fig. 13C). Regardless of the specific
implementation, we consistently find that the three censoring strategies
perform similarly, better than the non-censoring based approaches, and
better than random-censoring based approaches. Thus, we conclude that
use of fFD censoring approaches can save substantial data while still
adequately addressing motion confounds.

We next sought to replicate these findings in another dataset, electing
to use the frequently studied (Power et al., 2012, 2014a) and accessible
Petersen 120þ. We restricted our analyses to 100 subjects in the Petersen
120þ with the highest levels of HF-motion (based on the relative
HF-motion metric). Of these subjects, N ¼ 81 passed our criteria for
minimum data quantities (>150 frames) for functional connectivity
analysis under both fFD<0.1 and FD<0.2 censoring approaches. The
results of this comparison are shown in Supp. Figure 14. As with the
PIB-PD dataset, both FD<0.2 and fFD<0.1 do similarly at reducing
QC-FC distance dependence, well out-performing random censoring of
the timeseries (with N ¼ 100 permutations, p < 0.01). Thus, the good
performance of filtered FD parameters at reducing distance-dependent
artifact replicates in another independent dataset (notably sampling a
very different population).

In addition to distance-dependent bias, we examined other bench-
marks for adequate motion artifact removal from Ciric et al. (2017) in the
PIB-PD sample (Supp. Fig. 15). Again, fFD criteria did well, at levels
similar to FD based censoring. In these cases, frame censoring had a
relatively small effect as compared to global signal regression, as has
previously been reported (Ciric et al., 2017; Parkes et al., 2018). As might
be expected, given these findings, group correlation matrices in PD and
HC groups are quite similar across these three censoring strategies (Supp
Fig. 16). Thus, these results indicate that filtering motion parameters
before FD calculation saves data without re-introducing biases in func-
tional connectivity analysis.

4. Discussion

We found that high frequency fluctuations in motion (HF-motion)
that have previously been related to respiration in fast TR fMRI datasets
are also present (in aliased form) in common slower TR datasets. We
demonstrate that HF-motion is evident across seven datasets representing
diverse populations, scanner protocols, and sites. HF-motion is more
prevalent in older participants, those with higher BMI, and those with
lower cardiorespiratory fitness, suggesting that it may pose a larger issue
in populations with these characteristics. We show that the presence of
HF-motion reduces the link between motion metrics and fMRI signal
quality and suggest that filtering motion parameters before FD censoring
may be an effective strategy for correcting this contamination. We
demonstrate that this filtering approach saves a substantial amount of
data from censoring in most datasets, especially those acquired in
middle-age to older adults (12–19% of data savings in these samples).
Furthermore, we show that filtered motion parameters appear to
demonstrate greater fidelity to artifacts in fMRI data. Functional con-
nectivity benchmarking analyses demonstrate that filtered motion pa-
rameters are still effective at reducing motion biases in functional
connectivity. These results promise substantial data savings in many
common analysis pipelines that incorporate frame censoring.



Fig. 5. FD vs. fFD relationship in the PIB-PD dataset. (A) Proportion of frames below an FD threshold of 0.2 (x-axis) or an fFD threshold of 0.1 (y-axis). Black line is
unity. Note that most points lie above the black line, indicating data savings despite a lowered fFD threshold. (B) The differences in frames retained between the
FD<0.2 and fFD<0.1 is related to the amount of HF-motion (y-direction) in a given participant. (C) The similarity between censoring masks created from the fFD<0.1
threshold and the FD<0.2 threshold is related to the amount of HF-motion in a given participant. Participants exhibiting low levels of HF-motion show the most similar
censoring masks.

Fig. 6. Relationship between motion and
distance in FC. (A) The x-axis plots the dis-
tance between a pair of regions and the y-axis
plots the correlation between the FC of those
regions and motion (mean fFD) across par-
ticipants for each pair of regions (black
points), as in (Ciric et al., 2017). The red line
shows the linear fit. In the absence of
correction, head motion typically leads to
elevated FD-FC relationships for regions close
together in space and relatively dampened
FD-FC relationships for regions far apart,
leading to an overall negative slope. In the
top plot, censoring has been conducted using
an FD<0.2 criteria, in the middle plot using a
filtered FD<0.1 criteria, and in the bottom
plot using a filtered FD<0.08 criteria. (B)
Summary of the average distance-dependent
correlations across censoring strategies (red
dots); for comparison, we also computed
distance-dependent relationships with
random censoring (black dots). Filtered FD
censoring criteria do well at removing
distance-dependent bias in functional con-
nectivity (relative to FD<0.2 censoring,
random censoring, or absent censoring) while
retaining substantially more data. For varia-
tions on these analyses, see Supp. Fig. 13.
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4.1. Sources of HF-motion in realignment parameters: factitious and true
head motion

Fair et al. (2020) recently demonstrated the presence of
high-frequency fluctuations in the motion parameters of a multiband
10
dataset at frequencies that closely match respiration rates. This finding
was corroborated by several additional reports of high frequency “mo-
tion” fluctuations in other multiband datasets (Chen et al., 2019; Etzel,
2016; Inglis, 2016b; Power et al., 2019). At least two hypothetical
mechanisms may link respiration with changes in realignment



3 As a cautionary note, our motion-FC analyses also demonstrated that bias
reduction is sensitive to the minimum number of frames present across partic-
ipants (Supp. Fig. 13), consistent with reports from Parkes et al. (2018). A
minimum of 150 frames (~5.5 min) was necessary to strongly alleviate
distance-dependent motion bias in FC. In contrast, reducing the minimum frame
number to 100 or 50 progressively increased the distance-dependent bias pre-
sent in the data. Thus, these analyses suggest ensuring a relatively higher (5
min) frame minimum for maximizing bias reduction in functional connectivity
analysis.
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parameters. One is that true head movements may be induced by the
physical connection between the head and chest during respiration. The
second is that respiration can induce factitious (apparent) motion
through perturbations of the B0 magnetic field caused by changes in
abdominal volume when air enters the lungs (Brosch et al., 2002; Raj
et al., 2001). Apparent motion of this type would be expected to be most
readily visible in the phase encoding direction (Brosch et al., 2002;
Durand et al., 2001; Raj et al., 2001), which is consistent with our
observation that HF-motion is far more obvious in the phase-encoding
direction (Fig. 1). Support for this mechanism has been provided by
the demonstration of similar respiratory-related fluctuations in fMRI
signal of phantoms placed near the head (Raj et al., 2001), indicating that
they are not driven by head motion. Moreover, a mechanical model of
abdominal respiration can reproduce phase-encoding modulations of the
fMRI signal in a phantom at respiration rates, despite the lack of any
physical connection between the two objects (Brosch et al., 2002).

The magnitude of factitious head motion is determined by sequence
parameters that affect the EPI bandwidth (Hz/pixel) in the phase
encoding direction (see Fair et al., 2020, for additional discussion of this
point). Relevant sequence parameters include the TE and level of accel-
eration. In brief, shorter TEs and greater acceleration reduce sensitivity to
main field perturbations (expressed as “mm/Hz”) but also reduce the EPI
signal-to-noise ratio. GRAPPA acceleration may have contributed to the
relatively modest level of factitious head motion in the UIUC Lifespan
data (see Fig. 2 and Supp. Table 1).

In a recent paper, Power and colleagues analyzed several fast TR
multiband datasets and suggested that there may be multiple respiration-
related effects present in realignment parameters, some of which are
associated with true head movements and some of which are associated
with apparent “pseudo-motion” (Power et al., 2019). Spectral aliasing
obscures the appearance of respiratory motion in single-band datasets
(Fair et al., 2020) and precludes the detailed spectral decomposition from
Power et al. (2019). However, the predominance of HF-motion in the
phase-encoding direction (Fig. 1B) suggests that it is factitious (Fair et al.,
2020), consistent with past work (Brosch et al., 2002; Raj et al., 2001).
Regardless of its source, the motion-FC analyses that we conducted
suggest that HF-motion does not bias functional connectivity in the same
way as transient head movements reported in the past (Power et al.,
2012; Satterthwaite et al., 2012).

It is worth noting that the current observations are distinct from other
kind of respiratory effects that may need to be addressed by different
methods. Apart from the factitious effects of respiration at a constant
rate, changes in respiratory rate can also cause profound intermittent
changes in fMRI signal (Birn, 2012; Power et al., 2017b). These effects
are likely caused by alterations in arterial pCO2 levels that induce
widespread changes in T2*-weighted signals and consequent distortions
of functional connectivity measures. Global signal regression appears to
be an effective strategy to address these occasional respiratory effects
(Power et al., 2017b).

4.2. Addressing HF-motion in fMRI analysis leads to data savings

While the potential contamination of fMRI by high frequency
respiration-related effects has been appreciated for nearly 20 years
(Brosch et al., 2002; Durand et al., 2001; Raj et al., 2001; Van deMoortele
et al., 2002), the availability of multiband sequences and the typical
employment of realignment parameters to denoise fMRI data has caused
renewed interest in this phenomenon (Chen et al., 2019; Fair et al., 2020;
Power et al., 2019) (see also popular blog posts on this topic by Jo Etzel
and Ben Inglis (Etzel, 2016, Etzel, 2016, Etzel, 2016; Inglis, 2016a, b)).
With the shorter TRs associatedwith multiband data it is possible to more
clearly identify respiration-related content in realignment parameters, as
Nyquist limits are higher and respiration rates do not alias to lower fre-
quencies (Chen et al., 2019; Etzel, 2016; Fair et al., 2020; Inglis, 2016b;
Power et al., 2019). Moreover, many fMRI processing pipelines use
measures of frame-to-frame changes in realignment parameters as an
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estimate of participant head motion, and censor frames with even small
amounts of head movement (e.g., 0.2 mm) (Ciric et al., 2017; Power
et al., 2012; Satterthwaite et al., 2012, 2019). Our motion-FC analyses
(Fig. 6) once again demonstrated that a combination of GSR and motion
censoring most effectively reduces bias in functional connectivity ana-
lyses, consistent with past reports (Ciric et al., 2017; Parkes et al., 2018;
Power et al., 2012, 2014a).3 However, we additionally show that
high-frequency factitious motion can obscure small transient movements,
disrupting the connection between motion parameters and BOLD signal
disruptions. This is the case in virtually all participants in fast multiband
datasets (Fair et al., 2020), but here we show that it is also relatively
common in participants studied with slower single-band fMRI, especially
those who are older, have higher BMI, and have lower cardiorespiratory
fitness. We speculate that this increased prevalence may be due to a
combination of factors that changes breathing rates, the size of breaths,
and the size of the abdominal changes associated with respiration (see
previous section).

This factitious head motion can cause substantial data loss in analyses
employing FD-based frame censoring, and data loss may be exacerbated
in certain populations. One question is whether this data loss is neces-
sary, or if we can recover data contaminated by HF-motion without
negatively affecting fMRI analyses. Here we show evidence in favor of the
latter possibility: correcting HF-motion contamination via filtering saves
substantial amounts of data without increasing motion-related biases in
functional connectivity analyses. In participants without prominent HF-
motion, filtering has a fairly minimal effect, with comparable frames
identified for removal with and without filtering. In contrast, in partici-
pants with prominent HF-motion, large amounts of data can be recov-
ered, and grayplots suggest that these filtered motion metrics retain a
greater association with disruptions in the BOLD signal (consistent with
previous results from multiband data in adolescents (Fair et al., 2020)).
Furthermore, we conducted an extensive quantification of the effects of
motion on functional connectivity analyses and demonstrated that
filtered motion parameters still adequately correct biases, including both
those that are distance-dependent (the biases most affected by motion
censoring) as well as functional connectivity artifacts that are common
across all regions. Further, we replicated these results in an independent
dataset focused on a different population (young to middle aged neuro-
typical controls). Thus, our findings indicate that filtering effectively
corrects motion estimates, saves large amounts of data, and adequately
addresses motion confounds in functional connectivity analyses.

Motion censoring is most heavily utilized in functional connectivity
pipelines but also has been increasingly adopted in task-based fMRI (e.g.,
see (Siegel et al., 2014)). Thus, while HF-motion is perhaps of greatest
importance in FC analyses, it may also influence task-based processing
strategies. The present findings suggest that filtering motion parameters
would be beneficial in that context. Moreover, even processing strategies
that do not explicitly censor high-motion frames may benefit from
removing high frequency content from motion parameters if they do not
track well with true head motion (Chen et al., 2019; Fair et al., 2020). As
shown in Fig. 4, filtered motion metrics appear to retain a better corre-
spondence with fMRI artifact, suggesting that any pipeline that includes
motion parameters in nuisance regression (Ciric et al., 2017; Parkes et al.,
2018; Power et al., 2015) or for identification of high quality participants
(Parkes et al., 2018) will also benefit from filtering.
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4.3. Implications for studies across different populations

We show HF-motion is somewhat trait-like, with stability across
sessions in a given individual. HF-motion is more prevalent in older
adults, those with higher BMI, and those with lower cardiorespiratory
fitness. This indicates that the current findings – and solution of using
filtered motion parameters – are most relevant to experiments focused on
populations with these characteristics. Thus, in datasets loaded with
these characteristics (PIB-PD, Barch-SZ, Dallas-Lifespan, UIUC-Lifespan,
Iowa-Lesion), filtering motion parameters saved substantial amounts of
data (12–19%), much more than seen in the young adults (and children)
collected for the MSC and Petersen-120þ datasets. These findings indi-
cate that effectively managing factitious head motion is particularly
critical in datasets acquired in older adults, such as studies of aging,
Parkinson Disease, or stroke.

Interestingly, this result also provides a clue as to why HF-motion has
not been highlighted in past work on motion censoring. Several of the
most prominent studies done in this domain (Ciric et al., 2017; Power
et al., 2011; Satterthwaite et al., 2012; Van Dijk et al., 2012) used child,
adolescent, and young adult data. However, due to the younger age of
these participants, it is likely that HF-motion was not as prominent
(perhaps due to a combination of smaller chest sizes and faster respira-
tion rates that alias motion into lower frequencies where it is hard to
distinguish from true movements). It is only with the increasing preva-
lence of multiband datasets that HF-motion is clearly evident across this
age range (Fair et al., 2020; Power et al., 2019).

In broad strokes, our findings concur with previous studies which
have demonstrated a connection between motion metrics and age and/or
BMI (Madan, 2018; Savalia et al., 2017). However, true (lower fre-
quency) head motion may also be correlated with these demographic
characteristics, even when HF-motion is explicitly removed (Siegel et al.,
2017), suggesting that some participant characteristics may relate to
both true and factitious motion. Older individuals especially with those
with high BMI and/or lower fitness may have more trouble breathing
when supine as their diaphragm is pushed down by body weight. Our
results also agree with and extend upon previous findings from Power
et al. (2019) demonstrating that HF-motion is heritable and related to
BMI in multiband data: we replicate these results in two new datasets
based on single band data and demonstrate, further, a separable rela-
tionship with age and cardiorespiratory fitness.

One question that the current findings pose is what to do for partic-
ipants/datasets collected with slower TRs that exhibit less prominent HF-
motion, such as in children or young adults. While filtering motion pa-
rameters may not be necessary in these situations, our findings suggest
that filteringmotion parameters does not appreciably alter the processing
of low HF-motion participants and results in a similar relationship to
BOLD signal abnormalities and similar censoring masks. Thus, it may be
more prudent to apply the filtering procedure across people/datasets
than to selectively choose to include this processing step in only some
participants. Moreover, it may be difficult to provide an exact age cut off
for when to filter motion metrics, as the relationship between HF-motion
and age had suggestions of a non-linear relationship (see Supp. Fig. 4).
All three datasets examined in this manuscript showed increases in HF-
motion from relatively early to mid-adulthood (ages 20–40), but also
evidence of slightly decreased HF-motion in the oldest studied ages. Even
in young adult datasets, we have found that standard unfiltered FD-based
frame censoring can occasionally lead to a subject being removed when
they would otherwise be saved by filtering HF-motion (e.g., participant
MSC03 in the MSC dataset; Fig. 2B), which argues for including this
processing step across the board. In general, these findings suggest that
filtering motion parameters may be advantageous in many participants
over college age and may be particularly useful for equating the fidelity
of motion metrics across the lifespan.
12
4.4. Other approaches to addressing HF-motion

We advocate filtering motion parameters before FD calculation to
reduce unnecessary frame censoring caused by HF-motion and validate
this preprocessing approach in functional connectivity analysis. How-
ever, in this section, we consider other approaches for addressing HF-
motion.

One simple solution to the elevated FD baseline and high frame
censoring seen with HF-motion could be to raise the FD threshold for
motion censoring. However, two issues arise with this approach. First,
because only a subset of individuals show prominent HF-motion, FD
thresholds would either need to be changed on a subject-specific basis or
risk under-censoring in participants without HF-motion. Secondly, in our
experience, HF-motion raises the FD baseline, but does not particularly
enlarge effects associated with typical head movements and disruptions
in the BOLD signal. Thus, in the presence of HF-motion it is simply more
difficult to discriminate typical head movements from the baseline, in
effect making FD a “noisier” measure. Raising the FD threshold will not
correct this noise issue.

Previous studies have also suggested correcting for HF-motion
through filtering, but adopted a notch filter (Fair et al., 2020) instead
of the low-pass filter proposed here. This prior work suggests that a notch
filter is an effective correction approach in multiband data. However, in
slower single band data, the narrower frequency range and aliasing of
respiration content means that HF signals extend over a relatively broad
range of resolved frequencies, making it more difficult to select a narrow
set of frequencies to remove from analysis. Selecting individual-specific
ranges of frequencies to filter may also be a viable solution if good res-
piratory rate data is available, but it is not clear that this strategy sub-
stantially improves generic filtering in practice (Fair et al., 2020). We
suggest that simple low-pass filtering is effective in slower single band
fMRI.

Other approaches to correcting for head motion might also be
considered in datasets with HF-motion. For example, DVARS (Smyser
et al., 2010) rather than FD could be used for frame censoring (Burgess
et al., 2016; Power et al., 2012). In our experience, this does at times
work better than the (unfiltered) FD in the presence of HF-motion, but
the effects are variable across participants (see Supplemental Material in
(Burgess et al., 2016) for similar observations and potential causes for
this variability). There is also some evidence that DVARS may also be
affected by the same B0 signal distortions that are present in FD mea-
sures, although to a lesser degree (Fair et al., 2020). Parkes et al. (2018)
also recently suggested that a combination of ICA-AROMA and global
signal regression may perform approximately as well at reducing FC
motion artifacts as censoring with GSR, as long as “high motion” in-
dividuals are removed from study (defined as those with <4 min of data
after censoring; see however Ciric et al. (2017) for slightly different
findings in an alternate study population). This may be a reasonable
option to prevent excessive data loss in analysis. Importantly, regardless
of which analysis approach is chosen (censoring through FD or DVARS,
or use of ICA-AROMA with strict subject exclusion), it is imperative to
have an accurate measure of subject motion to (a) correctly identify
frames for censoring/spike regression, (b) correctly identify which sub-
jects should be excluded due to high rates of motion, and/or (c) accu-
rately remove effects of motion through nuisance regression of motion
parameters, a step included in almost all analysis streams (Ciric et al.,
2017; Parkes et al., 2018). Thus, our findings on HF-motion and the fi-
delity of fFD metrics are relevant to most current analysis pipelines,
regardless of the precise censoring criteria adopted.

Another exciting avenue for future research is the possibility of
dynamically correcting for homogeneity distortions caused by respira-
tion. A procedure of this type has been described for diffusion tensor
imaging (Andersson et al., 2018), which also is based on EPI, but no such
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procedure has yet been developed for fMRI, as far as we are aware. In
contrast, current homogeneity field map correction approaches for fMRI
are static (i.e., a single correction is applied to a full functional run), and
are typically applied after motion realignment. Thus, these current ap-
proaches will not correct for the dynamic frame-to-frame distortions
caused by respiration.

4.5. Strengths and limitations

We were able to demonstrate the characteristics of HF-motion, likely
due to respiration, and their association with different participant factors
across multiple diverse populations, scanner sequences, and sites.
Moreover, we proposed an approach to address HF-motion that could
lead to significant additional data retention (again, replicated across
multiple datasets). Finally, we conducted a rigorous analysis of the
consequences of HF-motion on FC analysis, demonstrating that our
filtering approach did not reintroduce motion contamination into FC.

However, none of the datasets analyzed in the current study included
respiratory measures. Therefore, we cannot conclusively demonstrate
that HF-motion in these datasets is respiratory-related. Instead we rely on
inference from other related studies (Fair et al., 2020; Power et al., 2019).

A second limitation is that some of the findings were not consistent
across datasets. For example, the typical frequency of HF-motion varied
across datasets. These differences may have been associated with
different baseline respiration rates and body sizes across participants
(who were of different ages and fitness levels). Given our lack of respi-
ratory data it is not possible to exclude other causes. In addition, dif-
ferences in TR (from 2 to 2.5) likely would alter the aliasing of the
respiratory signal to slightly different frequencies across datasets. The
relationship between HF-motion and age was also only present in two out
of three datasets tested with a linear approach. However, encouragingly,
the two consistent datasets showed a similar magnitude of relationship
and all three datasets showed upward trends with age when using non-
linear fits (Supp. Fig. 4) along with slight downward trends in the old-
est ages. We speculate that as studies recruit participants into older ages,
they may increasingly select for a particularly healthy/active subset of
older adults, and this may have been exacerbated in the UIUC Lifespan
dataset due to its smaller size and multi-session nature. Additional
findings related to sex and diagnosis (and interactions between all of
these different factors; reported in the Supp. Table 3 and Supp. Fig. 5)
were also inconsistent across datasets. Future studies will be needed to
better understand these aspects of variation.

Finally, given the retrospective nature of this work, we were only able
to examine relationships between HF-motion and demographic measures
that were collected in each dataset. In all cases this included age and sex,
but only in two datasets (Dallas Lifespan, UIUC Lifespan) was BMI data
collected, and only one dataset included additional measures of cardio-
respiratory fitness (UIUC Lifespan). Moreover, age, BMI, and cardiore-
spiratory fitness only explain a moderate amount of the variance in HF-
motion. Thus, in addition to these variables, it is likely that other de-
mographic/behavioral factors (such as baseline respiratory rates, levels
of anxiety in the scanner - which may, in turn, affect respiratory rates –
and lung volume) also influence HF-motion. It will be interesting to
examine HF-motion in additional studies/datasets that target collection
of these additional measures.

5. Conclusions

We analyzed multiple datasets to demonstrate that fMRI motion
measures can be contaminated by factitious respiratory effects, even in
conventional single-band fMRI. This contamination was strongest in the
phase encoding direction and was relatively stable over sessions, which,
together with past reports, is consistent with a relationship to respiration.
Moreover, the high frequency contamination varied with participant
characteristics, being more prominent in older adults, those with higher
BMI, and those with lower cardiorespiratory fitness. We demonstrate that
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filtering motion parameters corrects for this high frequency modulation
and saves substantial amounts of data in most datasets, while still
adequately addressing motion biases in functional connectivity esti-
mates. These results suggest incorporating HF-motion filtering will
improve analysis of fMRI datasets, especially those acquired from older
and less fit individuals.
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