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A B S T R A C T

Neural correlates of decision making under risk are being increasingly utilized as biomarkers of risk for substance
abuse and other psychiatric disorders, treatment outcomes, and brain development. This research relies on the
basic assumption that fMRI measures of decision making represent stable, trait-like individual differences.
However, reliability needs to be established for each individual construct. Here we assessed long-term test-retest
reliability (TRR) of regional brain activations related to decision making under risk using the Balloon Analogue
Risk Taking task (BART) and identified regions with good TRRs and familial influences, an important prerequisite
for the use of fMRI measures in genetic studies. A secondary goal was to examine the factors potentially affecting
fMRI TRRs in one particular risk task, including the magnitude of neural activation, data analytical approaches,
different methods of defining boundaries of a region, and participant motion. For the average BOLD response,
reliabilities ranged across brain regions from poor to good (ICCs of 0 to 0.8, with a mean ICC of 0.17) and highest
reliabilities were observed for parietal, occipital, and temporal regions. Among the regions that were of a priori
theoretical importance due to their reported associations with decision making, the activation of left anterior
insula and right caudate during the decision period showed the highest reliabilities (ICCs of 0.54 and 0.63,
respectively). Among the regions with highest reliabilities, the right fusiform, right rostral anterior cingulate and
left superior parietal regions also showed high familiality as indicated by intrapair monozygotic twin correlations
(ranging from 0.66 to 0.69). Overall, regions identified by modeling the average BOLD response to a specific event
type (rather than its modulation by a parametric regressor), regions including significantly activated vertices
(compared to a whole parcel), and regions with greater magnitude of task-related activations showed greater
reliabilities. Participant motion had a moderate negative effect on TRR. Regions activated during decision period
rather than outcome period of risky decisions showed the greatest TRR and familiality. Regions with reliable
activations can be utilized as neural markers of individual differences or endophenotypes in future clinical
neuroscience and genetic studies of risk-taking.
1. Introduction

Individuals differ in their preferences to engage in behaviors that
involve a certain amount of possible risks and rewards. Neuroimaging
research has attempted to unravel the neural basis of these risk attitudes
in an effort to understand human behavior. Neural correlates of decision
making under risk have been utilized as a brain-based biomarker of
treatment outcomes (Chung et al., 2009; Macoveanu et al., 2014),
investigated as a likely heritable trait (Rao et al., 2018), and examined
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across development (Qu et al., 2015b) to aid our understanding of both
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started to focus on parametrically modulated neural correlates of deci-
sion processes across development in relation to the probability and
magnitude of the choices (Insel and Somerville, 2018; Korucuoglu et al.,
2019).

A key (and often implicit) assumption of the above lines of research is
that neural correlates of risk-taking represent reliable, trait-like mea-
sures. However, without confidence in the stability of individual
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1 We use the term “familiality” (Kendler and Neale, 2009) because MZ twins,
by themselves, are not sufficient to distinguish between heritable (genetic) and
environmental effects.
2 Reliability estimates of the parcels covering the entire brain (unthresholded

parcels analysis) for groups composed of all males and all females yielded very
similar values (see Supplementary Materials Figure S1).
3 We investigated a possible influence of the time interval between the two

scanning sessions on the between session variability in beta estimates for the
parcels covering the entire brain (unthresholded parcels analysis) and did not find
any relationship (see Supplementary Materials Figure S2).
4 History of depression was not assessed, although depression has been

associated with moderate cognitive impairment as well (Rock et al., 2014).
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differences in these measures over time (also known as test-retest reli-
ability, TRR), the differences across measurements cannot be attributable
to the impact of treatment or developmental changes. Using paradigms
other than risk taking, previous TRR studies of task-fMRI showed modest
reliabilities (Bennett and Miller, 2013; Gorgolewski et al., 2013a,
2013b). A recent meta-analysis of 11 fMRI tasks concluded that
commonly used task-fMRI measures have poor reliability and therefore
may be unsuitable for individual differences research (Elliott et al.,
2019). More importantly, the range of these reliabilities varies greatly
across different constructs, making generalization very difficult (Elliott
et al., 2019; Frohner et al., 2019). Therefore, reliabilities of neural acti-
vations need to be estimated for each specific construct and task. Lastly,
investigating systematic changes in the brain responses to increasing
intensity of a stimulus (i.e., degree of risk/reward) requires a design with
parametric modulation. While parametrical fMRI data analytical ap-
proaches could provide valuable information for updating current deci-
sion making models (especially in adolescents), the reliability of
parametrically modulated neural responses has yet to be established.
Although decision making under risk is a highly studied construct in
neuroscience, we are not aware of published studies that investigated the
TRRs of the neural activations underlying decision making under risk.

Another important issue is to determine factors that affect TRRs.
Given that much fMRI research has historically focused on group-level
activations, some studies tested the reliability of group activation maps
(Caceres et al., 2009; Raemaekers et al., 2007). Although Caceres and
colleagues’ study (2009) demonstrated a higher probability of greater
TRRs within highly activated regions in the first session, regions with low
activations and high reliabilities were also identified. However, small
sample sizes in the aforementioned studies (10 and 12 subjects), might
bias the chance of identifying genuine differences across regions or as a
function of other factors in reliability estimates. To determine the extent
to which the group-level magnitude of regional activation predicts reli-
ability of individual differences, in the present study we examined the
relationship between the magnitude of regional activation in the first
scanning session and the TRR of that activation across brain regions.

Furthermore, previous studies of task-fMRI, especially the ones that
studied brain based biomarkers of disease, focused on a selected number
of regions of interest (ROIs). Physical boundaries of these ROIs are
defined differently across different studies (utilizing readily available
parcellation schemes vs. defining the boundaries using the voxels (or
vertices) above a certain threshold, i.e., ‘significant voxels’), each having
their advantages and disadvantages. The use of a parcellation scheme can
provide easy comparison of results across studies and scans for the same
voxels, which is an advantage of favoring parcellation schemes over
activation based ROIs, though only if the inclusion of below-threshold
voxels to the ROIs do not negatively affect the reliabilities. However
this assumption needs to be investigated empirically. Another consider-
ation in favor of investigating reliabilities for regions in a parcellation
scheme in addition to regions identified through significant group-level
activations is that a brain region may be activated only in a subset of
subjects, while other subjects may show no activation or even deactiva-
tion in the same region, leading to modest activation at the group level
that may not reach statistical significance. Nevertheless, individual dif-
ferences in such regions may be reliable. Thus, in an approach focusing
only on significant group-level activations, such regions showing reliable
and potentially meaningful individual differences in activation may be
missed.

Lastly, signal variability and artifacts due to motion is another factor
that impacts the data quality and reliability. Motion itself varies across
different samples (children, adolescents, adults; patients vs controls), and
task designs (task type, scanning duration) (Engelhardt et al., 2017; Zeng
et al., 2014).

In the current study our main goal was to assess long-term (i.e., over 6
months) test-retest reliability of regional brain activations related to
decision making under risk with the use of the Balloon Analogue Risk
Taking Task (BART) in a community-representative adult sample
2

composed of monozygotic twins (MZ). Based on a systematic review of
the fMRI literature utilizing BART (See Supplementary Materials
Table S2), we focused on contrasts that may play a primary (decision
making) or secondary (outcome evaluations) role in risky decision
making, given that different studies may prefer to implement different
contrasts dependent on study specific aims. Note that this selection is not
exhaustive given that individual studies utilized other contrasts to ach-
ieve their distinct goals, e.g. to investigate processes related to loss
aversion (Fukunaga et al., 2012) or bias in decision making due to prior
outcomes (Kohno et al., 2015). We provide TRRs separately on the
whole-brain parcel level, for significant activations, and for a set of
selected parcels. We expected poor to modest reliabilities based on
earlier reliability studies utilizing different constructs (Bennett and
Miller, 2010; Elliott et al., 2019).The inclusion of MZ twins allowed us to
obtain preliminary evidence for familial transmission.1 Evidence for
test-retest reliability is an important prerequisite for genetic studies
because only trait-like individual differences can be heritable, and
test-retest reliability can be viewed as the upper bound for heritability
(Mccrae et al., 2011). To that end, we examined whether test-retest
reliability of regional activations predicted the size of familial in-
fluences on fMRI measures on the whole brain parcel level and aimed to
identify regions with both high reliability and familiality that can be
targeted as candidate endophenotypes in genetic studies. Our second
goal was to examine the factors potentially affecting TRRs including the
strength (magnitude) of regional activation, data analytical approaches
(categorical versus parametric), different methods of defining boundaries
of a region (by using a parcellation scheme versus using significant
vertices within a parcel), and motion.

2. Methods

2.1. Participants

Fifty-six young adults (32 females, age range: 21–24 years, mean ¼
23.27, SD ¼ 0.86) participated in the study. Participants were mono-
zygotic (MZ) twins ascertained through the Missouri Family Registry
maintained at the Department of Psychiatry at Washington University
School of Medicine (WUSM) as part of a larger study - Genetics, Neuro-
cognition, and Adolescent Substance Abuse (GNASA). All 56 participants
in the present study completed the first MRI scanning session (Time1),
and 44 of them (26 females,2 age range: 21–24 years, mean ¼ 23.31, SD
¼ 0.89) completed a second session approximately 6 months later
(Time2, mean interval 7.9 months, ranging from 5.7 to 12.0 months).3

Exclusion criteria included (1) standard MRI contraindications such as
non-removable metal in the body, dental braces, excessive weight,
claustrophobia, current pregnancy, or difficulty lying supine; (2) intel-
lectual or physical impairments or uncorrectable sensory impairment
precluding participation in the laboratory session, (3) known diagnoses
of schizophrenia, autism, bipolar disorder, or epilepsy4 since these dis-
orders are known to be associated with specific cognitive impairments
that may interfere with the administration of experimental tests; (4)
inability to understand English; and (5) history of head trauma with loss
of consciousness for more than 5 min. Before inclusion to the study,
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participants were screened for these exclusion criteria via self-report.
Upon arrival to the lab, they also completed a urine drug test [for
Methamphetamine, Opiates, PCP, Benzodiazepines, Methadone, Barbi-
turates, Amphetamines, Cocaine, TetraHydroCannabinol (THC)] and an
alcohol breathalyzer test. One participant’s session was rescheduled
because of a positive drug test for THC. The Human Research Protection
Office at the Washington University School of Medicine approved the
study. A written informed consent was obtained from all participants.
Participants were compensated for participation in the study.
2.2. In-scanner balloon analogue risk task (BART) description

We used a scanner version of BART modified by Rao et al. (2008)
(also see Fig. 1). Before the actual scanning, participants were placed in a
mock scanner for accommodation to the scanner environment, where
they received instructions and performed a practice version of the
in-scanner tasks (see Supplementary Materials for further details). In the
BART paradigm, participants were given the chance to earn money by
sequentially inflating a balloon without popping it. A maximum of 12
inflations were possible for each balloon with the probability of explo-
sion and possible earnings increasing monotonically (see Supplementary
Materials, Table S1 for probability of explosions and possible earnings by
number of inflations). All balloons had the same sequence of explosion
probabilities. With each inflation participants could earn additional
money or at any time they could stop inflating the balloon and cash-out
the amount accumulated for the current balloon into a virtual bank.
However, the balloons could explode unpredictably at varying degrees of
inflation, in which case the accumulated gain for the current balloon
would be lost (but the amount that had previously been cashed-out into
the bank was unaffected). Thus, this task entailed an approach-avoidance
conflict, such that each subsequent inflation increased the total amount
of possible gain while, at the same time, the risk of losing the accumu-
lated gain of that trial increased as well.

The total task duration was set to 10 min (acquired over a single run),
during which participants completed as many trials as possible (variable
called Balloons completed). The task started with a fixation period of 30 s.
A trial started with a balloon and a green rectangular cue, during which
subjects had unlimited time to respond (a button press with index finger
to pump the balloon or with the middle finger to cash-out). Following the
response, the balloon remained on the screen for 0, 2, 4, or 6 s during
which the balloon size did not change. The duration of the delay
following the pump was randomly decided and each delay interval was
given an exponentially decreasing weight (weights were 30, 12, 5, and 2,
respectively, for the delay intervals of 0, 2, 4, and 6 s). The participant’s
response led to 3 possible outcomes: (1) if the participant cashed-out, the
text “You Win” was presented for 1 s; (2) if the participant pumped the
balloon and the balloon exploded, an exploded balloon was presented for
0.5 s, followed by the text “You Lose” for 1 s; and (3) if the balloon
inflated successfully, the color of the rectangular cue switched to red for
an equiprobable 1.5, 2, or 2.5 s). During the red cue period, subjects were
Fig. 1. Schematic representation of the Balloon Analogue Risk Task (BART). Ca
the figure. Participants were instructed to give their response during the green recta
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instructed not to give any response. After explosions or cash-outs, but
before the next balloon appeared on the screen, a blank screen was
presented for an equiprobable 2, 3, or 4 s (the inter-stimulus interval;
ISI). The value of the current pump was displayed on the balloon and the
total amount of winnings across task was displayed under the rectangular
cue at all times when the balloon was visible. Participants were paid their
earnings at the end of the task as an extra bonus (average earning amount
for Time1¼ $14.78 across 56 participants and for Time2¼ $15.46 across
44 participants), in addition to the compensation for study participation.

During each scanning session, participants performed six cognitive
tasks in a predetermined order, with the BART task presented as the 3rd
one. The first and the second tasks lasted 12 min each.

2.3. fMRI data acquisition

Echo-planar imaging (EPI) of the whole brain was acquired with a 32
channel head coil on a 3T Siemens MAGNETOM Prisma scanner in the
WUSM Neuroimaging Labs, using Human Connectome Project (HCP)
style acquisitions. The specific sequence implementations and scanning
parameters were the same as those used for the Adolescent Brain
Cognitive Development (ABCD) Study (Casey et al., 2018). Structural
scans included a sagittal magnetization prepared gradient-echo
(MP-RAGE) T1-weighted image (repetition time [TR] ¼ 2500 msec;
echo time [TE] ¼ 2.88 msec; flip angle ¼ 80; voxel size ¼ 1.0 x 1.0 � 1.0
mm) and a sagittal T2-weighted image (T2-SPACE, TR ¼ 3200 msec; TE
¼ 565 msec; voxel-size ¼ 1.0 x 1.0 � 1.0 mm). Both the T1w and T2w
scans utilized embedded volumetric navigators that detected and
compensated for head movement in real-time, with an allowance for
reacquisition of the lines (TRs) in k-space that are heavily corrupted by
motion (up to 24 TRs for the MP-RAGE, and 18 TRs for the T2-SPACE
scan). The combination of real-time motion correction and k-space
reacquisition improves the quality of the structural scans and reduces the
need for rescans, especially for age groups with a higher incidence of
head movement (Tisdall et al., 2012). BOLD contrast for the task was
measured with a gradient-echo EPI sequence (TR ¼ 800 msec; TE ¼ 30
msec; 775 frames; 60 contiguous 2.4 mm transverse slices; 2.4 � 2.4 mm
in plane resolution, multi-band factor 6, posterior-to-anterior phase
encoding). Two brief spin-echo EPI scans with opposite phase-encoding
directions (anterior-posterior and posterior-anterior) were acquired
immediately before the BOLD scan for the purpose of correcting sus-
ceptibility distortion.

2.4. fMRI data processing

The HCP data analysis pipelines (https://github.com/Washi
ngton-University/HCPpipelines, v.3.19.0) were used for the analysis of
fMRI images (Glasser et al., 2013). The following pipelines were used:
three structural preprocessing pipelines (PreFreeSurfer, FreeSurfer, and
PostFreeSurfer), and two functional pipelines (fMRIVolume and fMRISur-
face). The main purpose of the PreFreeSurfer pipeline is to generate an
shed-out (upper panel) and Exploded balloon trials (lower panel) are depicted in
ngular cue period and participant’s response triggers the onset of delay period.

https://github.com/Washington-University/HCPpipelines
https://github.com/Washington-University/HCPpipelines
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undistorted “native” structural volume space for each subject, align the
T1w and T2w images, perform B1 (receive-coil bias field) correction, and
register the subject’s native structural volume space to MNI space. The
FreeSurfer pipeline used FreeSurfer version 5.3.0-HCP. The main purpose
of this pipeline is to construct white and pial cortical surfaces, compute
FreeSurfer’s standard folding-based surface registration, and segment the
subcortical structures. Finally, the PostFreeSurfer pipeline produces all of
the NIFTI volume and GIFTI surface files necessary for viewing the data
in Connectome Workbench, creates myelin maps, and applies the surface
registration (including down-sampling to a lower resolution, common
mesh). Surface registration across subjects used FreeSurfer’s standard
folding-based registration – ‘MSMSulc’ registration (a more gentle
folding-based alignment with less distortion (Robinson et al., 2018)) was
not used because the necessary ‘msm’ binary was not publicly available
at the time we started processing. Following the structural pipelines, all
data underwent careful quality control (see Supplementary Materials). The
fMRIVolume preprocessing pipeline includes correction for gradient
nonlinearities, volume realignment to compensate for subject motion,
EPI distortion correction, bias field reduction, brain-boundary-based
registration of EPI to structural T1-weighted scan, non-linear (FNIRT)
registration into MNI152 space, grand-mean intensity normalization and
masking the data with the final brain mask. The fMRISurface pipeline
transforms the time series from the volume into a CIFTI (Connectivity
InFormatics Technology Initiative) grayordinate standard space (a space
containing cortical gray matter surface vertices, and subcortical gray
matter volume voxels, but excluding white matter and CSF; allowing
combined cortical surface and subcortical volume analysis (Glasser et al.,
2013)). Surface-based registration for the cortical data improves the
alignment of task-evoked data across subjects (Coalson et al., 2018). The
HCP TaskfMRIAnalysis pipeline, which uses FEAT tool (FMRIB’s Expert
Analysis Tool) from FSL v6.0 (Jenkinson et al., 2012), was used to
analyze the cortical and subcortical grayordinate data for task modeling.
The first eight frames were discarded from further analysis to allow for
equilibrium of the longitudinal magnetization.

For task modeling, we used two distinct approaches, which were
based on previous studies utilizing BART in the scanner, so that we could
report reliabilities for well-studied contrasts: categorical modeling of
BOLD responses to different event types (categorical design) and para-
metric modeling in which the probability of explosion was used as
parametric modulator (parametric design).5 In the results section we
report TRR estimates for both the main and modulator regressors, how-
ever due to lower reliabilities of brain activations obtained using the
modulator regressors, the main focus of the discussion is on the analysis
using the categorical modeling of BOLD responses. Fig. 1 demonstrates
the sequence of events and EVs in the task for cashed-out and exploded
balloons. The categorical model included 3 choice related and 4 outcome
related regressors. Choice related regressors included ‘ChooseInflate-
Gain’ and ‘ChooseInflate-Explosion’ regressors preceding pumps – one
for balloons that were subsequently cashed-out (gain) and one for bal-
loons that were subsequently exploded (explosion) – and a ‘Choose-
Cashout’ regressor. Outcome related regressors included
‘OutcomeExplosion’ and ‘OutcomeWin’ regressors, plus ‘OutcomeInflate-
Gain’ and ‘OutcomeInflate-Explosion’ regressors for successful pumps,
for balloons that were subsequently cashed-out vs. balloons that subse-
quently exploded, respectively. The ‘ChooseInflate-Explosion’ and ‘Out-
comeInflate-Explosion’ events were included in the model as ‘conditions
5 Explosion probabilities were used as the parametric modulator in the current
study, consistent with previous BART studies using the same task (Fukunaga
et al., 2012; Hulvershorn et al., 2015; Rao et al., 2008). Using reward value as
the modulator would be another option, however given that the correlation
(Pearson r) between P[explosion] and reward value was 0.99, both modeling
approaches would effectively yield the same results. Note that pump number has
also been used as the parametric modulator in some of the previous research
using a different scanner version of BART (Kohno et al., 2015; Qu et al., 2015a).

4

of no interest’. The reason that the ‘ChooseInflate-Explosion’ and
‘ChooseInflate-Gain’ events were modeled with separate regressors is
that using a single regressor to model all pumps preceding explosions
would have resulted in the inclusion of trials in which participants were
forced to stop pumping because of the explosion itself.

Choice related regressors were modeled with a duration (prior to
convolution with the hemodynamic response function) equal to the in-
terval from the onset of the green rectangular cue until the response. The
‘ChooseInflate-Gain’ regressor preceding cash-outs included all pumps
except the cash-out button press. Similarly, the ‘ChooseInflate-Explosion’
regressor included all pumps before the explosion; this included the last
inflated balloon presentation before explosion. ‘OutcomeInflate-Gain’
and ‘OutcomeInflate-Explosion’ regressors were modeled with a duration
equal to the red rectangle cue presentation. The ‘OutcomeExplosion’
regressor included the duration of the presentation of exploded balloon
plus the presentation of the ‘You Lose’ feedback (i.e., 1.5 s total). The
duration of the ‘OutcomeWin’ regressor was always 1 s (the duration of
the ‘You Win’ feedback).

The categorical model included 4 contrasts, each defined from a
single regressor, thus each representing a comparison to the baseline
(fixation periods at the beginning and at the end of the task (each 30 s), as
well as the delay periods following inflations, cashouts, explosions and
win outcome). These were: (1) ChooseInflate (preceding cash-outs; i.e.,
the ChooseInflate-Gain regressor); (2) ChooseCashout; (3) OutcomeInflate
(the presentation of inflated balloon, preceding cash-outs; i.e.,
OutcomeInflate-Gain regressor)); (4) OutcomeExplode (i.e., Out-
comeExplosion regressor).

In the parametric model, the probabilities of explosions [P(explode)]
were included as a parametric modulator with each event type (EV) re-
gressor. The parametric model included all the same regressors and
contrasts as the categorical model, except the ‘OutcomeWin’ regressor
was included as non-parametric regressor, because the probability of
explosion was no longer applicable at this point.

Group level grayordinate-wise statistical maps were created, for
Time1 and Time2 separately, by using permutation statistics as imple-
mented in the PALM toolbox, version alpha101 (Permutation Analysis of
Linear Models, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALMWinkler et al.,
2014), using just the participants that completed scanning at both time
points (n¼ 44). Multi-level exchangeability blocks (Winkler et al., 2015),
which limit the permutations within block level (i.e., between two MZ
siblings), were used to account for the shared variance between twins.
False discovery rate (FDR) corrected activation maps for all contrasts
separately for Time1 and Time2 (n ¼ 44) are provided in the Supple-
mentary Materials (see Figure S3 and Figure S4, for significant activations
in the categorical and parametric designs, respectively). We did not
correct for the multiplicity of contrasts.

2.5. Parcellation/segmentation of the fMRI data

Test-retest reliabilities were calculated on the mean BOLD response
magnitudes (“beta weights”, i.e., contrast estimates computed by
TaskfMRIAnalysis pipeline) extracted from the following three sets of
ROIs: (1) the whole-brain grayordinates divided into 360 cortical parcels
and 19 subcortical segmentations without regard to activation level
(referred to as unthresholded parcels); (2) activations significant at the
group level divided into anatomical parcels (872 and 463 parcels in the
categorical and parametric designs, respectively) (referred to as thresh-
olded parcels); (3) a subset of the thresholded parcels (106 and 24 parcels in
the categorical and parametric designs, respectively), representing the
regions that are most prominent in the decision making literature
(referred to as the thresholded subset). Unthresholded parcels were used to
study the relationship between familiality and TRRs and to investigate
potential factors that affect the TRRs (i.e., magnitude of activation at
Time1, categorical versus parametric fMRI analytical approaches, mo-
tion, tSNR). The thresholded parcels and thresholded subset were used to
investigate reliabilities in task related active regions and to identify

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM


Table 1
Summary statistics for the behavioral outcome variables of the in-scanner BART
task.

Variables Paired Samples T-Test Results TRR Familiality

Na Time1 (m,
SD)

Time2 (m,
SD)

p (ICC) Na ICC

Balloons
completed

42 21.86
(2.47)

21.81
(2.45)

.75 .56*F 27 .12

N pumps per
balloon

43 5.55 (.74) 5.58 (.71) .72 .62*G 27 .06

RT pumps (ms) 44 794.72
(286.29)

767.46
(282.66)

.41 .71*G 27 .23

% Explosion Rate 44 40.18
(13.41)

38.88
(16.40)

.57 .50*F 27 .15

N Cash-outs 43 13.30
(4.19)

13.49
(4.61)

.75 .62*G 27 .17

N pumps
preceding
cash-outs

44 5.58 (.88) 5.60 (.89) .84 .67*G 27 .07

RT cash-outs
(ms)

44 780.73
(400.16)

681.65
(323.75)

.02 .73*G 26 .47*

RT pumps
preceding
cash-outs

44 798.65
(285.91)

776.06
(284.17)

.53 .65*G 27 .25

N Explosions 44 8.68
(2.68)

8.39
(3.26)

.55 .40*F 27 .08

N pumps
preceding
explosions

43 5.51 (.85) 5.48 (.72) .81 .42*F 27 .10

RT explosions
(ms)

42 760.20
(323.00)

712.63
(293.63)

.32 .52*F 26 .39*

RT pumps
preceding
explosions
(ms)

41 738.80
(251.65)

699.53
(234.36)

.27 .58*F 25 .40*

Note.
* significant test-retest reliability/familiality based on 95% quantile of permu-
tations, including control for multiple comparisons.

a Number of subjects per variable varies due to the outlier detection/exclusion
procedure, see methods for details; (m, SD): mean, standard deviation; RT: re-
action time; N: number; ms: millisecond; F: fair ICC values (.4<ICC<.59), G: good
ICC values (.6<ICC<.74), based on (Cicchetti, 1994).
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potential endophenotypes that can be targeted in future genetic studies.
Moreover, to determine whether different approaches to defining ROIs
affect test-retest reliabilities, we compared TRRs of the unthresholded
parcels with the TRRs of the thresholded parcels. This allowed us to
meaningfully compare results from whole parcels (i.e., without regard to
activation) to parcels that included only group level significant grayor-
dinates. This comparison was tested for all parcels that contained sig-
nificant activations.

2.5.1. Parcellation/segmentation of all grayordinates (unthresholded
parcels)

Grayordinate-wise beta weights were divided into 360 parcels using
the Human Connectome Project Multi-Modal Parcellation, version 1.0
(MMP1.0, Glasser et al., 2016) and the Freesurfer-derived 19 structure
subcortical segmentation (Fischl et al., 2002) embedded into the CIFTI
output by the HCP Pipelines.

2.5.2. Parcellation/segmentation of significant group activation maps
(thresholded parcels)

Based on the Time1 maps (n ¼ 44), the whole-brain grayordinate-
wise FDR corrected maps were used to define significant clusters for each
contrast as groups of spatially contiguous grayordinates exceeding
80mm2/120 mm3 (surface/volume for cortical and subcortical regions,6

respectively). The FDR corrected significant clusters were further divided
into anatomical parcels using the parcellation/segmentation scheme
described above. Throughout the text, the term “thresholded parcels” is
used to refer to the conjunction between a parcel/segment and the FDR
corrected significant clusters. Thus, all thresholded activations respected
the parcellation boundaries (and were entirely inside one of the parcels),
but only contained above threshold vertices/voxels.

2.5.3. Selection of the thresholded activation maps (thresholded subset)
The purpose of selecting a subset of regions was to report reliabilities

for regions that are of particular theoretical importance due to their re-
ported associations with decision making processes. In this selection
process, we applied a stepwise procedure: starting with the thresholded
parcels, we first identified all regions that had a moderate-to-high effect
size (for a complete description of selection protocol, see below); then we
further selected the subset of those regions that were reported in two
meta-analyses of risk taking/decision making [regions listed in Table 2
and 4 of Krain et al. (2006) study; regions listed in Table 2, 3, and 4 of
Silverman et al. (2015) study] or in previous BART fMRI studies (for a
complete list of these regions, see Supplementary Table S2).

Specifically, among the thresholded parcels at Time1, regions were
selected if they (a) had a Cohen’s d value > 0.35 (small/medium effect
size) for cortical and >0.2 (small) for subcortical regions for the cate-
gorical design and Cohen’s d > 0.2 for the cortical and subcortical
6 80 mm2 and 120 mm3 correspond to projection of 20 voxels (2mm � 2mm
� 20voxels) on the surface for cortical regions and 15 voxels of volume
(2mmX2mmX2mmX15voxels) for subcortical structures, respectively. These
values were selected upon visual inspection of cluster extent in activation maps
and also taking into account that the cortical areas by definition are larger as
compared to subcortical structures.
7 These effect size thresholds were selected after the inspection of the acti-

vation maps in order to select spatially confined regions with the largest effect
size. We used different effect size thresholds for cortical and subcortical regions
and for the two designs (categorical and parametric) because of large differences
in the overall activation magnitude and effect size (cortical greater than
subcortical, categorical greater than parametric). Using the same effects size
threshold would preclude the identification of discrete regions. For example,
applying a threshold that is optimal for discrimination of subcortical regions to
the cortical regions would result in clusters of activation spanning >50% of a
hemisphere. Conversely, applying thresholds that are optimal for differentiating
cortical activation to subcortical regions would have resulted in missing virtu-
ally all significantly activated subcortical regions.

5

regions identified by the parametric design (according to Cohen’s effect
size classification, d ¼ 0.2 is a “small” effect, and d ¼ 0.35 is midway
between the small and the “medium” effect of d ¼ 0.5)7; (b) had signif-
icant activation present in >50% of the parcel/segment8; (c) had been
reported in previously published risk taking/decision making meta-
analyses or fMRI studies of the BART. Any regions in the primary vi-
sual cortex were excluded as non-task specific regions of activation
consistently observed in most visual tasks. Notably, none of the subcor-
tical segments passed criteria (b) in either design (categorical or para-
metric), and thus the only subcortical data is from the unthresholded and
thresholded parcels analyses.
2.6. Estimation of motion, temporal signal-to-noise ratio (tSNR), and
contrast-to-noise (CNR) ratio

The rotation and translation motion parameters per volume9 were
estimated by the HCP fMRIVolume pipeline (using FSL’s MCFLIRT tool).
8 Note that all regions that had significant activation present in >50% of the
parcel/segment also had Cohen’s D > 0.35 for the cortical and >0.2 for the
subcortical regions in the categorical design and Cohen’s D > 0.2 for the cortical
and subcortical regions in the parametric design. Thus, the Cohen’s criterion
turned out to not have any practical impact on the selection of regions for the
thresholded subset analysis.
9 ‘prefiltered_func_data_mcf.par’ output file.



Table 2
Test-retest reliabilities (TRR ICCs) and familiality (MZ twin correlations) for task
related active regions (thresholded parcels) and thresholded subset (in bold). Only
parcels that passed significance testing for the test-retest ICCs are listedb.

Contrasts HCP-
MP1.0
parcel
name

Corresponding Desikan-
Killiany Atlas

TRR
ICC

Familiality

CATEGORICAL DESIGN
ChooseInflate R_VMV3 fusiform .66 .58
Thresholded
Parcels

R_FFC fusiform .66 .66a

Cutoff TRR ICC ¼
.49

L_VVC fusiform .65 .52

Cutoff familiality
¼ .62

R_LO1 lateraloccipital .64 .28

L_FFC fusiform .62 .55
Thresholded Subset L_PIT fusiform, lateraloccipital .62 .41
Cutoff TRR ICC ¼
.41

R_V4 lateraloccipital,
fusiform, lingual

.61 .55

Cutoff familiality
¼ .52

L_V2 lingual, lateraloccipital,
cuneus

.60 .45

L_IPS1 superiorparietal .59 .16
L_V3B inferiorparietal,

superiorparietal,
lateraloccipital

.58 .31

R_PH lateral occipital,
fusiform, inf. temp.

.57 .59a

R_PIT fusiform, lateraloccipital .57 .39
R_VVC fusiform .57 .56
R_8BM superiorfrontal .56 .33
R_PGp inferiorparietal .56 .58
R_LO2 lateraloccipital .56 .34
R_V3B inferiorparietal,

superiorparietal,
lateraloccipital

.55 .50

L_LIPd superiorparietal .55 .41
L_V4 lateraloccipital,

fusiform, lingual
.55 .52

L_V3 superiorparietal,
lateraloccipital, lingual

.55 .55

L_AAIC insula .54 .22
L_TE2P inferiortemporal .54 .62a

L_LO2 lateraloccipital .53 .36
R_6a superiorfrontal/caudal

middlefrontal
.52 .38

R_PFm Inferiorparietal,
supramarginal

.51 .37

R_V3 superiorparietal,
lateraloccipital, lingual

.50 .46

L_7 PC superiorparietal .50 .30
L_SCEF superiorfrontal .50 .27
R_p32pr superiorfrontal .50 .11
R_46 rostralmiddlefrontal .49 .35
R_MIP superiorparietal .50 .46
L_IP1 inferiorparietal .44 .44
R_IP1 inferiorparietal .43 .54a

ChooseCashout L_AIP superiorparietal,
supramarginal

.72 .69a

Thresholded
Parcels

R_IP0 inferiorparietal .67 .39

Cutoff TRR ICC ¼
.52

R_23d posterior cingulate .66 .43

Cutoff familiality
¼ .66

L_RSC posterior cingulate,
isthmuscingulate

.66 .34

L_MIP superiorparietal .65 .66a

Thresholded Subset L_PFt supramarginal,
postcentral

.64 .39

Cutoff TRR ICC ¼
.44

R_V2 lingual, lateraloccipital,
cuneus

.63 .39

Cutoff familiality
¼ .55

R_PHT middletemporal,
inferiortemporal

.63 .50

R_V8 fusiform .63 .37
R_IP1 inferiorparietal .63 .40
R_V4 lateraloccipital,

fusiform, lingual
.62 .49

Table 2 (continued )

Contrasts HCP-
MP1.0
parcel
name

Corresponding Desikan-
Killiany Atlas

TRR
ICC

Familiality

R_V1 lateraloccipital, lingual,
pericalcarine, cuneus

.62 .48

R_LO1 lateraloccipital .62 .28
L_POS2 Precuneus,

superiorparietal
.61 .44

R_IPS1 superiorparietal .61 .16
R_PIT fusiform, lateraloccipital .60 .40
L_DVT Superiorparietal,

precuneus
.60 .12

L_IP0 inferiorparietal .58 .39
L_7 PL superiorparietal .57 .50
L_LIPv superiorparietal .57 .56
L_IPS1 superiorparietal .57 .44
R_V3 superiorparietal,

lateraloccipital, lingual
.56 .38

L_TE2p inferiortemporal .56 .34
R_IFSa rostralmiddlefrontal,

parstriangularis
.56 .66a

R_PH lateral occipital,
fusiform, inf. temp.

.56 .34

R_TE1p Middletemporal,
inferiortemporal

.56 .41

R_RSC posterior cingulate,
isthmuscingulate

.55 .13

R_31a Posterior cingulate .55 .25
R_FST middletemporal,

lateraloccipital, inf.
temp.

.55 .49

R_PFm inferior parietal,
supramarginal

.55 .28

R_VVC fusiform .55 .50
L_PH lateral occipital,

fusiform, inf. temp.
.54 .36

R_d23ab Posteriorcingulate,
istmuscingulate

.54 .56

L_IP2 supramarginal,
inferiorparietal

.52 .43

L_PGs inferiorparietal .52 .41
L_TE2a Inferior/middle

temporal
.52 -.14

R_MIP superiorparietal .48 .34
L_IP1 inferiorparietal .47 .30
R_d32 superior frontal,

rostral anterior
cingulate

.47 .31

L_a9_46v rostral middle frontal .46 .45
R_AIP superiorparietal,

supramarginal
.44 .28

OutcomeInflate R_V3 superiorparietal,
lateraloccipital, lingual

.56 .53

Thresholded
Parcels

R_V1 lateraloccipital, lingual,
pericalcarine, cuneus

.54 .48

Cutoff TRR ICC ¼
.47

R_V2 lingual, lateraloccipital,
cuneus

.53 .47

Cutoff familiality
¼ .59

R_8C rostral/caudal middle
frontal

.50 .25

R_V4 lateraloccipital,
fusiform, lingual

.49 .37

Thresholded Subset L_V2 lateraloccipital, lingual,
cuneus

.49 .46

Cutoff TRR ICC ¼
.33

Cutoff familiality
¼ .43

OutcomeExplode L_V3B inferiorparietal,
superiorparietal,
lateraloccipital

.64 .21

Thresholded
Parcels

R_LO1 lateraloccipital .57 .33

R_TE2p inferiortemporal .53 .13

(continued on next page)
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Table 2 (continued )

Contrasts HCP-
MP1.0
parcel
name

Corresponding Desikan-
Killiany Atlas

TRR
ICC

Familiality

Cutoff TRR ICC ¼
.52

Cutoff familiality
¼ .65

L_9a superior frontal, rostral
middle frontal

.53 -.01

L_PIT fusiform, lateraloccipital .52 .31
Thresholded Subset L_PGp inferiorparietal .47 .27
Cutoff TRR ICC ¼
.45

Cutoff familiality
¼ .56

PARAMETRIC DESIGN
ChooseCashout L_FST middletemporal,

lateraloccipital, inf.
temp.

.53 -.10

Thresholded
Parcels

L_IPS1 superiorparietal .52 .47

Cutoff TRR ICC ¼
.47

R_V1 lateraloccipital, lingual,
pericalcarine, cuneus

.49 .34

Cutoff familiality
¼ .62

L_IP0 inferiorparietal .48 .52

R_MIP superiorparietal .45 .45a

Thresholded Subset
Cutoff TRR ICC ¼
.15

Cutoff familiality
¼ .32

OutcomeInflate R_PIT fusiform, lateraloccipital .51 .14
Thresholded
Parcels

Cutoff TRR ICC ¼
.45

Cutoff familiality
¼ .58

Thresholded Subset
Cutoff TRR ICC ¼
.22

Cutoff familiality
¼ .42

OutcomeExplode L_PGp inferiorparietal .56 -.02
Thresholded
Parcels

R_PH lateral occipital,
fusiform, inf. temp.

.33 -.03

Cutoff TRR ICC ¼
.54

Cutoff familiality
¼ .68

Thresholded Subset
Cutoff TRR ICC ¼
.30

Cutoff familiality
¼ .55

Notes. n for the twin correlations ranged from 19 to 27, due to outlier detection
procedure (see Outlier Detection and Exclusion section).

a Regions with significant test-retest reliability and MZ twin correlations,
which are good candidate regions for phenotypes for future genetic studies. For
the thresholded subset analysis, the permutation-based cutoffs were lower than for
the thresholded parcels analysis due to fewer total regions, and thus a less severe
correction for multiple comparisons.

b Note that among thresholded parcels, only in the categorical design, parcels
L_V8 (familiality ¼ .67, TRR ICC ¼ .43) during ChooseInflate, L_6v (familiality ¼
.66, TRR ICC ¼ .51) and L_FOP2 (familiality ¼ .65, TRR ICC ¼ .52) during
ChooseCashout, and R_LIPd (familiality ¼ .64, TRR ICC ¼ .16) during Out-
comeExplode contrasts showed statistically significant familiality but non-
significant TRR ICCs.
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The average of the frame-to-frame movement for each run10 was calcu-
lated for Time1 and Time2, and then averaged across Time1/Time2 for
each person.

In consideration of previous research showing a relationship between
temporal SNR and TRRs (Raemaekers et al., 2007), we investigated
whether differences in tSNR were able to explain the differences in TRRs
across parcels and across categorical and parametric designs and if this
was moderated by the level of motion. Temporal SNR for each grayor-
dinate was calculated as the mean over time divided by the square root of
the variance estimated from the residuals after model fitting,11 for
Time1. Grayordinate-wise tSNR values were first parcellated (values
across grayordinates within each parcel/segment were averaged) and
then averaged across subjects (full sample of 56 subjects). Since our data
showed that tSNRs for the subcortical regions were significantly smaller
than the cortical regions in both designs and at both time-points (all p <

.001), we present our findings for the untresholded parcels separately for
the cortical and subcortical regions.

Contrast-to-Noise (CNR) ratios for Time1 were also calculated for
each unthresholded parcel. Grayordinate-wise variance estimated from the
residuals after model fitting was first parcellated (values across grayor-
dinates within each parcel/segment were averaged), then square root of
that mean was taken. CNR for a parcel was calculated as the mean beta
weights per parcel within a contrast divided by the square root of the
variance described above; which provided us with information on
sensitivity of each specific contrast separately.

2.7. Outlier detection and exclusion

Each behavioral variable, mean BOLD response magnitude of
unthresholded and thresholded parcels, motion, tSNR and CNR estimates
were analyzed for outliers in R Core Team (2018) (https://www.R-pro
ject.org/). This procedure was applied to the whole sample, separately
on the Time1 (n¼ 56) and Time2 (n¼ 44) data. For the outlier detection
procedure only, raw values were converted to Z-scores, and then values
greater than three standard deviations from zero were recoded as missing
values. This procedure was reiterated 10 times as outlier removal
changes the shape of the distribution, allowing for the emergence of new
outliers. With this exclusion procedure, 1% of the behavioral data (on
average from Time1 and Time2 data altogether) was replaced with
missing values, 1.71% and 4.42% of the unthresholded parcelsmean BOLD
data, 1.7% and 5.11% of the thresholded parcels mean BOLD data, 6.95%
and 6.97% of the unthresholded parcels variance estimated from the re-
siduals in the categorical and parametric designs, respectively. 7.14% of
the motion at Time1, none of the motion at Time2, 2.41% of the tSNR at
Time1, and 0.24% of tSNR at Time2 were also replaced with missing
values.

2.8. Test-retest reliability estimates

Test-retest reliabilities (TRRs) were estimated for the behavioral
measures and the unthresholded and thresholded parcels data. Although,
intraclass correlation (ICC) is one of the most commonly used test-retest
reliability measures in the neuroimaging field (Bennett and Miller,
2010), there are several other methods to assess reliability, such as
Pearson correlation, coefficient of variation, Cohen’s kappa index, and
Kendall’s W. It is noteworthy that ICC estimates are specific to the dataset
under investigation, which limits the generalizability of ICCs estimated
in controls to clinical samples. It is important to note that with two
time-point “consistency” ICC used in the present study, the ICC values
were highly convergent with the Pearson correlation between the two
measurement occasions. ICCs are typically calculated as the ratio of the
between-subject variance and total variance (Shrout and Fleiss, 1979)
10 ‘Movement_RelativeRMS_mean.txt’ output file.
11 tfMRI_*_Atlas.mean.dscalar.nii/√sigmasquareds.dtseries.nii.

https://www.R-project.org/
https://www.R-project.org/


Table 3
Correlations between measures of test-retest reliability (TRR ICCs), effect sizes (Cohen’s d), Time1 activation (beta weights, mean and std across participants), and familiality (MZ twin correlations) for the unthresholded
parcels analysis (i.e., whole brain parcellation/segmentation)..

CORTICAL MMP PARCELLATION SUBCORTICAL FREESURFER SEGMENTATION

CATEGORICAL DESIGN Choose Inflate ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 .46** .51** .38** .40** ICC 1 .29 .08 -.52 -.09
CohensD 1 .94** .31** .23** CohensD 1 .93** -.09 .24
MBetas 1 .54** .25** MBetas 1 .28 .31
SDBetas 1 .28** SDBetas 1 .43
Familiality 1 Familiality 1

Choose Cashout ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 .60** .60** .42** .46** ICC 1 .15 .47* .68* .61**
CohensD 1 .94** .42** .52** CohensD 1 .88** .29 .48*
MBetas 1 .66** .54** MBetas 1 .70** .69**
SDBetas 1 .35** SDBetas 1 .64**
Familiality 1 Familiality 1

Outcome Inflate ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 .01 .07 .22** .19** ICC 1 -.005 -.002 .04 -.21
CohensD 1 .97** .12* .19** CohensD 1 .92** .28 .30
MBetas 1 .23** .19** MBetas 1 .63** .27
SDBetas 1 .10 SDBetas 1 .01
Familiality 1 Familiality 1

Outcome Explode ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 .40** .48** .40** .16** ICC 1 -.18* -.12 .37 .16
CohensD 1 .92** .13* .06 CohensD 1 .95** -.29 .01
MBetas 1 .42** .15** MBetas 1 -.003 .06
SDBetas 1 .23** SDBetas 1 .31
Familiality 1 Familiality 1

PARAMETRIC DESIGN Choose Inflate ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 -.08 -.07 .02 -.04 ICC 1 .13 .18 -.42 .16
CohensD 1 .98** -.01 -.02 CohensD 1 .98** -.11 -.08
MBetas 1 -.15** -.02 MBetas 1 -.19 -.14
SDBetas 1 .06 SDBetas 1 .47*
Familiality 1 Familiality 1

Choose Cashout ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 .41** .41** .13* .31** ICC 1 .12 .31 .47* .54*
CohensD 1 .88** .16** .46** CohensD 1 .89** -.09 .21
MBetas 1 .54** .41** MBetas 1 .33 .20
SDBetas 1 .03 SDBetas 1 .20
Familiality 1 Familiality 1

Outcome Inflate ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 .28** .27** .04 .25** ICC 1 -.12 -.19 -.33 .24
CohensD 1 .97** .03 .18** CohensD 1 .89** -.23 -.06
MBetas 1 .16** .19** MBetas 1 .19 .08
SDBetas 1 -.03 SDBetas 1 .10
Familiality 1 Familiality 1

Outcome Explode ICC CohensD MBetas SDBetas Familiality ICC CohensD MBetas SDBetas Familiality
ICC 1 .38** .40** .04 -.04 ICC 1 .17 .07 -.24 .19
CohensD 1 .86** -.26** .01 CohensD 1 .83** -.54* .61**
MBetas 1 .19** .04 MBetas 1 -.14 .59**
SDBetas 1 .06 SDBetas 1 -.15
Familiality 1 Familiality 1

Notes. ICC: Intraclass correlation coefficients; CohensD: effect sizes based on Time 1 data (mean/SD of beta weights across subjects -based on full sample except outliers-, calculated per parcel); MBetas: mean of Time 1 beta
weights; SDBetas: standard deviation of Time 1 beta weights; Familiality: correlations of beta weights between monozygotic twins. The FDR corrected significant clusters were further divided into anatomical parcels using
the HCP-MMP1.0 (Human Connectome Project Multi-Modal Parcellation version 1.0) cortical parcellation (Glasser et al., 2016) and Freesurfer subcortical segmentation (Fischl et al., 2002). Pearson correlations, *< 0.05,
**<0.01. Also see Supplementary Figure S21, for scatterplots depicting the correlations between mean beta weights at Time1 and ICCs across cortical parcels and subcortical segments together.
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and represent the stability of individual differences in the degree of
activation over time. In this study, reliability was quantified as the degree
of consistency between the Time1 and Time2 measurements, under the
assumption of a two-way mixed model, which is known as ICC(3,1)
(Shrout and Fleiss, 1979), or alternatively ICC(C,1) (McGraw and Wong,
1996). The relevant mean squares were estimated using method of mo-
ments estimators and a Matlab function (‘ICC.m’

12) based on ICC(C,1)
with the use of formulas provided by (McGraw and Wong, 1996)
(referred as ‘TRR ICC’ in text). Note that this estimator allows for nega-
tive ICCs, which were retained in the data to maintain the overall dis-
tribution of reliabilities.

Cicchetti (1994) proposed that ICCs are considered poor, fair, good,
and excellent when ICC<0.4, 0.4<ICC<0.59, 0.6<ICC<0.74,
0.75<ICC<1, respectively. The ICC estimates obtained from a study are
only an expected value of the true ICCs. Koo and Li (2016) recommended
not only to decide the degree of reliability (poor, fair, good etc.), but also
to determine the reliability of ICC estimates themselves using statistical
inference, their suggested methods were mainly based on parametric
assumptions. Termenon et al. (2016) instead recommended the use of
permutation tests rather than parametric assumptions (F-test) to deter-
mine whether ICCs are significantly different from zero, since the use of
parametric approaches for assessing the significance of ICCs can be too
restrictive with small samples or when the sample distribution does not
conform with parametric assumptions (e.g., independence and gaus-
sianity). Therefore in this study, we implemented a permutation method
(5000 permutations) to determine the significance of ICC estimates,
which also provided a convenient mechanism to control for the testing of
multiple hypotheses (i.e., across all behavioral variables and across all
parcels/segments). In this procedure, the Time2 data were randomly
permuted – i.e., relabeled as the Time2 for a different participant
(without regard to twinship) – and ICCs were re-calculated for each of the
5000 permutations. A null distribution was created by selecting the
highest ICC (across behavioral measures or parcels/segments) in each
permutation. ICC values greater than or equal to the 95th quantile of this
null distribution were considered as statistically significant. Permuta-
tions were completed separately for the behavioral variables, unthre-
sholded parcels, thresholded parcels and for the thresholded subset (for the
distribution of permuted ICCs, see Supplementary Materials, Figures S5,
S6, S7 and S8). Only parcels with significant ICCs are reported in this
paper; however ICCs of the full unthresholded parcels, and thresholded
parcels can be found in the BALSA repository for neuroimaging data: https
://balsa.wustl.edu/study/show/87PP9.

2.9. Familial influences

Since the present sample included MZ twins, we examined the degree
of twin resemblance (intrapair twin correlations) with respect to the
magnitude of task-related activations and compared it with the test-retest
reliability estimates. MZ twin correlation represents a direct measure of
familiality of individual differences (familial transmission) that includes
genetic factors (both additive and non-additive) and shared environ-
ment. We expected that more reliable regions would also show higher
degree of familiality, since familiality is inherently bounded by
reliability.

Estimates of twin correlations may be subject to bias due to the
randomness of assigning twin pairs to “twin 1” and “twin 2”. Contrary to
some alternative methods of quantifying twin correlations, ICC values are
not affected by this random assignment, therefore twin correlations in
this study were calculated using the same ICC(C,1) estimator used for the
TRR estimation (see section, Test-Retest Reliability Estimates). This esti-
mate of ‘familiality’ was based on the Time1 data (n ¼ 27 pairs), which
allowed us to estimate twin correlations with the maximum number of
12 https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass
-correlation-coefficient-icc.
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twin pairs. The same permutation approach that was utilized for the
significance testing of the ICCs (see section, Test-Retest Reliability Esti-
mates) was also applied for the significance testing of the twin correla-
tions, except in this case, the sibship assignment of “twin 2” was
randomly permuted. Twin correlations greater than or equal to the 95th
quantile of permuted null distribution were considered as significant.
Permutations were completed separately for the behavioral variables,
unthresholded parcels, thresholded parcels and for the thresholded subset (for
distribution of permuted twin correlations, see Supplementary Materials,
Figures S5, S9, S10, and S11).

3. Results

3.1. Performance results

Mean values of behavioral outcome variables measured with the in-
scanner BART did not change significantly over time, except that the
reaction time for cashing out (risk averse decision) decreased from Time1
to Time2 (see Table 1). Overall, between session test-retest reliability for
behavioral measures was moderate-to-high (ICCs > 0.40). ICC correla-
tions were slightly higher for the outcome variables of cash-outs
compared to the outcome variables of balloon explosions. The main
behavioral outcome measure of risk-taking (average number of pumps
before cash-outs) showed a good test-retest reliability (ICC ¼ 0.67, p <

.01). However, with the exception of a few reaction time measures, fa-
milial correlations were generally low, even for variables showing high
reliability.

3.2. fMRI results

3.2.1. Test-retest reliability of unthresholded parcels, thresholded parcels,
and thresholded subset

Fig. 2 displays the ICC values for the unthresholded parcels with TRR
ICCs > 0.2. Moreover, Supplementary Table S3 lists cortical parcels and
subcortical segments with significant ICCs for all task conditions and
both designs for the same unthresholded parcels.

ICC values tended to be greater in the categorical design compared to
the parametric design (see Supplementary Materials Figure S12). More-
over, ICC values tended to be greater for the cortical parcels compared to
the subcortical segments. Within the categorical design, the Choose-
Cashout contrast tended to have the largest ICC values (mean TRR ICC ¼
0.25), followed by the ChooseInflate (mean TRR ICC ¼ 0.22), Out-
comeInflate (mean TRR ICC ¼ 0.11) and OutcomeExplode (mean TRR ICC
¼ 0.11) contrasts. Within the parametric design, OutcomeInflate contrast
tended to have the largest ICC values (mean TRR ICC ¼ 0.16), followed
by ChooseCashout (mean TRR ICC ¼ 0.14), OutcomeInflate (mean TRR
ICC ¼ 0.13) and OutcomeExplode (mean TRR ICC ¼ 0.08) contrasts.

Significant ICC values across parcels ranged from 0.51 to 0.77 and
from 0.52 to 0.60 for the categorical and parametric designs, respec-
tively. Regions with the largest ICCs included the superior/inferior pa-
rietal area (range TRR ICCs ¼ 0.54-0.77), lateral occipital area (range
TRR ICCs¼ 0.52-0.64), the fusiform gyrus (range TRR ICCs¼ 0.54-0.64),
and superior/inferior temporal regions (range TRR ICCs ¼ 0.54-0.60) in
all of the contrasts. Within the subcortical regions, the right caudate had
the highest test-retest reliability (TRR ICC ¼ 0.63). Lastly, in order to
investigate a potential bias in reliability estimates due to dependencies in
the data (MZ twin correlations), reliabilities of the unthresholded parcels
were re-estimated for two unrelated groups, by assigning Twin 1 and
Twin 2 of our twin pairs to separate groups. This analysis revealed that
reliabilities of the unthresholded parcels in the average of the two sub-
samples of unrelated individuals were highly correlated with those
derived from the full sample (all r’s > 0.96, all p’s < 0.001, see Supple-
mentary Materials, Fig. S20).

Table 2 lists the regions with significant ICCs among all task-related
active parcels (thresholded parcels) and among the thresholded subset
(also see Fig. 3). Overall, areas activated during risky and risk-averse

https://balsa.wustl.edu/study/show/87PP9
https://balsa.wustl.edu/study/show/87PP9
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc


Fig. 2. Test-retest reliabilities (ICCs) for the whole
brain MMP cortical parcels and Freesurfer
subcortical segments (unthresholded parcels anal-
ysis) varied from none-to-high. ICCs are plotted
separately for the categorical and parametric designs
during the decision making and outcome (feedback)
phases of the BART. Regions with ICC<.2 (“low”

correlation) are of little interest and are masked by
gray color. ICCs for all cortical and subcortical regions
were lower than 0.8 and 0.6, respectively. L: left, R:
right.
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decisions tended to have the largest ICCs.
Within broader task related active regions (thresholded parcels),

lingual, inferior temporal, fusiform, lateral occipital, superior and infe-
rior parietal areas had the largest ICCs during both risky decisions
(ChooseInflate) and risk-averse decisions (ChooseCashout). The superior
frontal and insula were the other two regions with high reliabilities in the
risky decision condition. Rostral middle frontal, posterior cingulate,
precuneus, middle temporal and supramarginal areas had high re-
liabilities during risk-averse decisions.

Within the thresholded subset, in the categorical design, superior pa-
rietal, inferior parietal, lateral occipital and fusiform showed the highest
TRRs during risk taking (ChooseInflate). Superior and inferior parietal,
lateral occipital, rostral middle frontal, and pars triangularis areas
showed the highest reliabilities during risk-averse decisions (Choose-
Cashout) and inferior parietal during evaluation of negative outcomes
(OutcomeExplode). In the parametric design, superior parietal (Choose-
Cashout) and inferior parietal/lateral occipital/fusiform (Out-
comeExplode) areas showed the highest reliabilities. No other regions
were identified as significantly reliable in the other contrasts of the
parametric design in the thresholded subset analysis.

3.2.2. Familiality and its relationship with test-retest reliability
(unthresholded parcels)

Fig. 4 shows the relationship between TRR (ICCs) and familiality (MZ
twin correlations) at Time1 for the unthresholded parcels. The spatial
distribution of the MZ twin correlations is also presented in the Supple-
mentary Figure S13. Across all parcels, familiality ranged from �0.60 to
0.80 and tended to be larger in the ChooseInflate and ChooseCashout
contrasts of the categorical design. Regions with both significant ICCs
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and significant familiality were identified in the ChooseInflate (risky de-
cision) and ChooseCashout (risk-averse decision) contrasts with the use of
categorical design, and included the right fusiform, right rostral anterior
cingulate (ACC), and left superior parietal regions.

Table 3 provides an overall summary of correlations between mea-
sures of test-retest reliability and familiality (MZ twin correlation),
separately for the cortical and subcortical regions. These correlations
show the extent to which reliability predicts familiality. In the categorical
design, across the cortical parcels, familiality correlated with the mea-
sures of test-retest reliability moderately in the ChooseInflate (r ¼ 0.40, p
< .01) and ChooseCashout (r ¼ 0.46, p < .01) contrasts and weakly in the
OutcomeInflate (r¼ 0.19, p< .01) and OutcomeExplode (r¼ 0.16, p< .01)
contrasts. For the subcortical regions, familiality was correlated with test-
retest reliability only in the ChooseCashout contrast (r¼ 0.61, p< .01) for
the categorical design. In the parametric design, familiality showed
weak-to-moderate across-parcels correlations with the measures of test-
retest reliability in the cortical parcels in the ChooseCashout (r ¼ 0.31,
p < .01) and OutcomeInflate (r ¼ 0.25, p < .01) contrasts only. In
subcortical regions, familiality moderately correlated with the test-retest
reliability in the ChooseCashout contrast (r ¼ 0.54, p < .05) of the
parametric design.

3.2.3. Factors potentially affecting test-retest reliability

3.2.3.1. Does the magnitude of activation predict test-retest reliability?. To
address this question, we computed correlations across parcels/segments
of the effect size (Cohen’s d) and magnitude (mean beta) of unthre-
sholded activation within a parcel with the TRR of the mean beta weights
within that parcel (Table 3). In the categorical design, and across the



Fig. 3. Test-retest reliabilities (ICCs) of significant
task-related activations varied from none-to-high
across different parcels. The FDR corrected signifi-
cant clusters were further divided into anatomical
segments using the Human Connectome Project Multi-
Modal Parcellation (MMP1.0) and the Freesurfer
subcortical segmentation. ICCs were mapped sepa-
rately for the decision making and outcome (feed-
back) phases of the BART for the categorical and the
parametric designs. On cortical surface view, Gray
outlines depict the boundaries of the MMP1.0 cortical
parcellation and Black outlines depict the thresholded
subset. Cortical parcels with negative ICC values are
not plotted. On subcortical volume view, Black out-
lines depict the Freesurfer segmentation. All cortical
and subcortical ICCs were lower than 0.8. L: left, R:
right.
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cortical parcels, effect size and magnitude of the Time1 activations
showed moderate-to-strong positive correlations (ranging from r ¼ 0.40
to 0.60) with the test-retest reliability for all contrasts (except for the
OutcomeInflate contrast; i.e., outcome evaluation of risky decisions).
Across the subcortical segments the effect size and the magnitude of
Time1 activations were not related to the measures of test-retest reli-
ability, except a moderate correlation between the magnitude of Time1
activations in the ChooseCashout contrast (r ¼ 0.47). In the parametric
design, the effect size and magnitude of the Time1 cortical activations
predicted test-retest reliability across the cortical parcels in all contrasts
(range of r ¼ 0.27 to 0.41), except for the ChooseInflate contrast (risk-
taking). In subcortical regions, there were no significant correlations
between the TRR and the effect size or magnitude of Time1 activations
for the parametric design. Overall as the magnitude of beta weights
(unthresholded activations) increases, the TRR increases as well; how-
ever this affect is mostly driven by cortical regions. Moreover parcels
with greater magnitude of activation also had greater variability, which
would result in greater between subject individual differences in these
parcels. With increasing beta weights, we also observed greater tSNRs
(see Supplementary Figure S17), and subcortical regions were at lower
end of the spectrum on both beta and tSNR measures, which explains the
observed low reliabilities in subcortical structures.

3.2.3.2. Do ‘thresholded parcels’ show greater test-retest reliability than re-
gions defined without regard to activation?. Fig. 5 depicts the relationship
between test-retest reliability for the thresholded parcels and unthresholded
parcels. Overall, ICCs for the thresholded parcels were significantly greater
11
than the unthresholded parcels in the categorical design only (p < .001).
However, ICC values for these two approaches to defining a region
correlated strongly in both designs (r ¼ 0.77 in the categorical and r ¼
0.62 in the parametric design), suggesting that regions with high and low
TRRs were largely consistent across different ways of defining the
boundary of a region. However, it is relevant to note that while some
regions had higher reliability when their boundaries were defined
without regard to activation (unthresholded parcels), some others had
greater reliability when they were defined based on the overlap of the
thresholded activation maps and a parcellation scheme (thresholded
parcels). Per contrast correlations between thresholded and unthresholded
parcels can be found in Fig. 5.

3.2.3.3. How does in-scanner motion affect the consistency of estimated
activation?. Since test-retest reliability (ICCs) is computed across a set of
participants, it is not possible to correlate reliability with per-participant
motion. Instead, we examined the relationship between the average
amount of motion across the two sessions (Time1 and Time2) for each
participant and the disparity in beta weights from Time1 to Time2 for
each participant (quantified as the absolute difference in beta weights
across sessions) averaged over all unthresholded parcels (Fig. 6). This
analysis revealed a moderate correlation between motion and inconsis-
tency of regional activation across sessions (ranging from 0.25 to 0.53
across contrasts and designs, all ps < .05, except for the ChoseInflate
contrast: r¼ 0.01, p¼ .99 and OutcomeInflate contrast: r¼ 0.25, p¼ .1 in
the categorical design), suggesting that a greater amount of average
motion predicts larger within-subject disparity across two sessions, i.e.,



Fig. 4. Test-retest reliability moderately predicts Familiality during risky decisions (ChooseInflate) and risk-averse decisions (ChooseCashout). Moreover,
reliable and heritable regions were identified in the same contrasts. Scatterplots display test-retest reliabilities (ICCs) and familiality (MZ twin correlations) for
the whole brain cortical MMP parcels and subcortical brain regions (unthresholded parcels analysis) for categorical and parametric designs during the decision making
and outcome (feedback) phases of the BART. Note that each data-point represents a parcel/segment. Regression lines and correlations are calculated based on the
joined cortical and subcortical data. Black: Cortical parcels; Red: Subcortical segments; Blue: R-p24 ¼ Rostral ACC; Green: R_FFC ¼ Fusiform area; Cyan: L_MIP ¼
superior parietal area. Dashed lines mark the significance cutoff (95% quantile of permuted null distributions) for the TRR ICC and familiality.

Fig. 5. Thresholded parcels show
greater test-retest reliability than re-
gions defined by cortical parcellation
and subcortical segmentation
schemes only. Relationships between
ICC values for the thresholded parcels and
unthresholded parcels analyses for all
significant task-related activations
across all contrasts in the categorical (n
¼ 872 parcels) and parametric (n ¼ 463
parcels) designs (right panel).
Note. ICC_thresh: ICC values for the
average beta values of significant
grayordinates within a parcel, i.e., the
overlap between a parcel/segment and
the significant clusters defined from the
whole-brain graydordinate-wise FDR
corrected maps (thresholded parcels
analysis); ICC_unthresh: ICC values for
the average beta values of all the
grayordinates in the same parcel/
segment (unthresholded parcels analysis);
*p < .05, **p < .01.
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lower within-subject consistency.
Next, we examined whether this moderate relationship between

motion and inconsistency in activation beta weights across two sessions
at the whole-brain level would manifest for specific parcels among the
selected ROIs based on the prior literature as well. We examined the
influence of average motion on regions with moderate TRR (fusiform and
superior parietal, ICCs ¼ .36 to .59) and low TRR (insula, ACC, ICCs ¼
0.02 to 0.36) for the ChooseInflate, ChooseCashout, and OutcomeExplode
contrasts in the categorical design, as an example. (Activations in these
regions did not survive thresholding in the OutcomeInflate contrast only).
Fig. 7 suggests that although the degree of motion moderately affects the
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consistency of activation on a broad scale (i.e., when averaged across all
parcels), the degree of this influence on individual parcels seems to be
lower, and with no obvious difference between regions with low or high
reliabilities.

3.2.3.4. Does the tSNR affect test-retest reliability?. Next, we investigated
if differences in TRR (ICC) across designs or between cortical and
subcortical regions were related to differences in tSNR per parcel.
Figure S14 displays the scatterplots for the ICC values and the average
tSNR (across participants) at Time1 for all unthresholded parcels. Although
there was a significant relationship between ICC and tSNR (r ranging



Fig. 6. In-scanner movement predicts intra-individual variability of activation averaged across whole parcels across sessions. Scatterplots of average
movement (across run and Time1 and Time2) and disparity in beta weights (absolute difference across Time1 and Time2, from the unthresholded parcels analysis) for
all contrasts in the categorical and parametric design of BART. Each data-point represents a participant.
Note. Units of movement (mm).
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from 0.10 to 0.39, all p’s ¼< 0.05), this relationship was present in all
contrasts and in both the categorical and parametric designs. Interest-
ingly, the correlation between ICC and tSNR at Time1 disappeared after
regressing motion at Time1 from tSNR at Time1 (see Supplementary
Figure S15), indicating that the effect of tSNR on the reliability estimates
are in part moderated by the motion. Any effort that would decrease the
amount of motion in the data would increase test-retest reliabilities
partially by increasing the tSNR in the data.

4. Discussion

The aims of this study were to estimate test-retest reliability of neural
correlates of decision making under risk, identify regions with high
reliability and familiality of individual differences that can be used as
candidate regions (endophenotypes) in clinical and genetic studies, and
to examine the factors potentially affecting test-retest reliabilities. In our
results, the most important concept is the reliability of task related ac-
tivations (thresholded parcels analysis) and selected regions (thresholded
subset). Therefore, we discuss those findings first (see section 4.2), fol-
lowed by the discussion of whole-brain parcellated results (unthresholded
parcels analysis, see sections 4.3 and 4.4). We have identified reliable
regional activations related to risky decisions and positive outcome of
risky decision, including bilateral fusiform, bilateral rostral middle
frontal, bilateral superior parietal, right lateral occipital, right rostral
ACC, left inferior parietal, left caudal ACC, and left inferior temporal
regions. Among those reliable regions, right fusiform, right rostral ACC
and left superior parietal also showed high familiality as well. Overall,
regions with greater magnitude of task-related activations showed higher
reliability, and reliabilities were greater for beta weights extracted from
significant grayordinates within a parcel, compared to the reliabilities for
beta weights across the whole parcel. However, some strongly activated
task-relevant regions showed only modest reliabilities (parcels over-
lapping with parts of the ACC, lateral orbitofrontal, superior frontal, and
13
rostral middle frontal regions). In-scanner movement had a moderate
negative effect on reliability.
4.1. TRR of behavioral measures

Behavioral measures showed fair to good test-retest reliabilities
(ranging from 0.40 to 0.73). Explosion-related outcomes showed lower
TRRs, which may be explained in part by the limited number of balloon
explosion trials compared to cashout trials. It is important to note that
cashout trials may be better suited to capture trait-like risk attitudes.
Explosions occur probabilistically; therefore the total number of
consecutive risky decisions (number of pumps) available to the subjects
in trials ending with an explosion is censored and may not be fully
representative of risk-taking behavior. Although reliable behavioral
measures of risk taking can be used as markers of individual differences,
investigation of neural correlates is important for understanding the
spatial localization and mechanisms of individual differences in decision
making under risk. Since maladaptive decision-making and heightened
risk-taking propensity is observed across a range of psychiatric disorders
including addiction, a better knowledge of the underlying biobehavioral
mechanisms and identification of reliable and heritable individual dif-
ferences can inform prevention efforts and potentially help to identify
novel medication targets.
4.2. TRR and familiality of task-related brain activations

TRRs of brain activation magnitude were affected by the analytical
approach to the modeling of the BOLD response (categorical vs. para-
metric). Significant task related activations identified using the cate-
gorical design (that looked at average of the event) showed low to good
reliabilities across cortical parcels (ICCs ranging from zero to 0.72),
whereas most of the activations yielded by the parametric design (that
looked at parametric modulation of that event with explosion



Fig. 7. In-scanner movement does not predict intra-individual variability of activation for ROIs with ‘moderate’ (top row) and ‘low’ (bottom row) ICC
across sessions. The horizontal axis shows average amount of motion, the vertical axis shows within-subject instability of beta weights (absolute difference between
Time1 and Time2) for right Fusiform (PH parcel) and left Superior Parietal regions (IPS1 parcel) (ICCs ranging from 0.36 to 0.59) and for right Insula (AVI parcel) and
right ACC regions (a32pr parcel) (ICCs ranging from 0.02 to 0.36) in the ChooseInflate, ChooseCashout and OutcomeExplode contrasts of the categorical design. Note that
activation in these regions did not survive whole-brain grayordinate-wise FDR correction in the OutcomeInflate contrast only. Each data-point represents a participant.
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probabilities) had non-significant reliabilities. Therefore, for the task-
related activations, we focus our discussion on TRR findings in the cat-
egorical design contrasts (see below for a discussion of possible expla-
nations for the lower TRRs of the parametric design).
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In the categorical design, regions that were of a priori theoretical
importance due to their reported associations with decision making (i.e.,
insula, OFC, ACC, DLPFC, and caudate) showed significant task-related
activations but poor reliabilities. Specifically, only 21 out of 106
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selected regions across all four contrasts in the categorical design showed
statistically significant reliabilities (when correcting for multiple com-
parisons). Except for higher reliability observed for the parcel that
overlaps with parts of the left anterior insula (AAIC, TRR ICC ¼ 0.54),
other parcels that intersect with the insula (left and right FOP4, left and
right AVI) had reliabilities ranging from none to poor (0.03–0.32) during
risky decisions (ChooseInflate). The insula has been reported as one of the
most prominent region involved in risky decision making. The same re-
gion was also active during risk-averse decisions (ChooseCashout, right
MI and right FOP4) and had poor reliabilities (ranging from 0.22 to
0.40). One study that looked at ICCs in three ROIs during a Monetary
Incentive delay task (n ¼ 13) reported ICCs ranging from 0.47 to 0.63
across different task conditions, but only for the right anterior insula
activity (Wu et al., 2014). Parcels that intersect with ACC (a24pr, a24,
p24) were active during risky and risk-averse decisions and during
evaluation of negative outcomes (OutcomeExplode) with reliabilities
ranging from poor-to-fair (0.20–0.47). Previous research looking at the
ICC in a priori ROI of ACC region during an Emotional Faces Interference
Task (n ¼ 23) reported poor stability under angry distractors conditions
(ranging from �0.005 to 0.022 across high and low perceptual load) but
moderate stability under fearful distractors in the low perceptual load
condition (ICC 0.54), but not under high perceptual load (Bunford et al.,
2017). Parcels that intersect with the DLPFC region (left and right IFSa)
were active only during risk-averse decisions and evaluation of negative
outcomes and had poor-to-good reliabilities (ranging from 0.34 to 0.56).
Other parcels that intersect with DLPFC (9_46d and 46) were active in all
contrasts and had poor-to-good reliabilities (parcel 46 TRR ICCs ¼ 0.12
to 0.49, parcel 9_46d TRR ICCs ¼ 0.08 to 0.41). Similarly, Qu et al.
(2015a) showed poor reliability of an a priori selected the DLPFC region
in adolescents (n¼ 23) when receiving rewards (ICC¼ 0.34). Besides the
regions with a priori importance listed above, superior frontal (during
risky decisions), posterior cingulate, rostral middle frontal, parstriangu-
laris (during risk averse decisions), rostral/caudal middle frontal (during
positive outcome evaluation), and superior/rostral middle frontal (dur-
ing negative outcome evaluation) had the highest test-retest reliabilities
(all TRR ICCs >0.5).

Among all regions that showed significant task-related activations,
the fusiform, superior and inferior parietal, and lateral occipital areas had
the largest TRRs overall (ranging from moderate-to-high) and were
among the ones with high familiality during risky and risk-averse de-
cisions. Interestingly, activations in these regions were not contrast
specific and were seen in multiple contrasts. Thus, they may represent
non-task specific regions of activation consistently observed in most
sensory motor tasks requiring visual attention. Regions with high reli-
ability and familial effects were mostly identified during risky (Choo-
seInflate) and risk-averse decisions (ChooseCashout) with the use of the
categorical design. These regions included right fusiform, right rostral
ACC and left superior parietal regions. More interestingly, although most
of the parcels with significant activations had greater TRRs (and also
parcels with the greatest TRRs often showed significant task related ac-
tivations), only a fraction of these parcels with task-related significant
activations were among those selected as region of interests based on the
prior literature.

The majority of previous decision making studies selected their re-
gions based on theoretical importance (i.e., ACC involvement in conflict
processing), rather than their reliabilities. However our findings suggests
that majority of literature based ROIs have less than ideal reliabilities.
Therefore, studies restricting their analysis to a few regions based on
published studies of the task of interest may be basing their conclusions
on regions with inherently low reliabilities. In contrast, the regions that
are proposed in the current manuscript are based on their reliabilities.
With that in mind, although we estimated reliabilities for the regions
utilized in previous literature, we did not limit our analysis to a set of
theoretical ROIs, but also provided reliabilities for the whole brain at
parcel level (see Section 4.3).

It is relevant to note that most of the BART studies are conducted with
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small (~10) to medium (~70) sample sizes. Individual differences
studies that utilize the regions identified in studies with small samples as
brain-based biomarkers in studies heritability, development, neuro-
degeneration or treatment outcomes may result in the use of regions that
have unstable of inhomogeneous activity patterns. In addition to reli-
ability studies such as ours, ongoing big-data initiatives in neuroimaging
field (such as the Adolescent Brain Cognitive Development and the
Human Connectome Project) may contribute to the identification of re-
gions with robust activation patterns and higher reliabilities.

In regard to the BART task, our results indicate that neural activations
during the decision period of risk taking in general had greater re-
liabilities and might be more suitable for addressing the aforementioned
research questions, especially when the analysis is not limited to a
handful of ROIs. Traditional approaches of ROI selection procedures can
go beyond the application of region selection solely based on the theo-
retical importance of the region and can take into account other factors
that affect reliabilities, as discussed in the following sections where we
pivot to discussing the results from the unthresholded parcels analyses.
4.3. TRR of whole-brain parcellation and its relationship to familiality

Earlier research focusing on ICCs of task fMRI measures revealed a
wide range of reliability estimates (mean ICCs ranging from �0.16 to
0.88), with the mean ICC across tasks being 0.5 (Bennett and Miller,
2010). It is quite possible that this mean is biased upwards by a selection
bias to report ROIs with higher ICCs among the reviewed studies. While
consensus for evaluating ICCs in imaging data does not exist, it seems
that values of 0.4–0.5 (or higher) are generally considered an “accept-
able” level of reliability for fMRI measures. It is important to note that
reliability estimates in most studies are based on a selected number of
ROIs, shorter test-retest intervals and a smaller number of subjects
compared to the current investigation, in which the whole-brain parcel
level reliability averaged about 0.2.

Our study revealed that choice related contrasts had greater number
of parcels with moderate reliabilities compared to outcome related
contrasts. Within two choice related contrasts, majority of the same
parcels showed moderate reliabilities, ones with the highest reliabilities
including superior parietal, lateral occipital regions, fusiform, posterior
cingulate areas. One possible explanation for greater reliability in the
choice related contrasts might be due to a greater number of trials
modeled in the fMRI. To investigate that possibility we examined the
correlations between the number of trials included in each contrast and
the stability of beta weights (i.e. absolute difference in betas between
Time1 and Time2) from the unthresholded parcels analysis in each cor-
responding contrast (see Supplementary Materials Figure S16). We ex-
pected increased stability as the number of events increased. This was
indeed the case for the OutcomeExplode contrast in both the categorical
and parametric designs. However, a statistically significant relationship
in the other direction was observed for the OutcomeInflate and both of the
choice contrasts in the parametric design, which was unexpected and not
easily explained. Overall, the relationship between number of events and
beta stability seemed variable and contrast dependent. The contrast
specificity of the observed moderately reliable regions might be due to
how activation changes over sessions for different processes and is an
interesting subject to study in future studies. Moreover, the only
subcortical region with reliability that passed significance thresholding
was the right caudate during risk averse decisions (ChooseCashout
contrast).

At the whole brain level (across all parcels/segments), the overall
degree of reliability was correlated with the overall degree of familiality.
However, not all parcels that had high reliability also had high fami-
liality. In the categorical design, cortical regions showing higher re-
liabilities also showed stronger familial effects for risky and risk-averse
decisions; and subcortical regions showing higher reliability also showed
stronger familial effects for the risk-averse decisions.
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4.4. Factors affecting test-retest reliabilities of neural activations

The first factor that was investigated was the comparison of the
reliability estimates of activations from the categorical vs parametric
designs. Regardless of how the TRRs were estimated (at parcel level or for
specific activated regions), brain activations identified with the cate-
gorical design tended to have greater test-retest reliabilities compared to
the parametric design, and this difference was statistically significant for
the unthresholded parcels analysis (Since the thresholded parcels do not
exactly agree across the two designs, a statistical comparison could not be
performed for that analysis). Use of the parametric design in the BART
task allows detection of brain activation modulated by the explosion
probability. However, parametric designs in general might be less sen-
sitive (also known as low contrast to noise ratio, CNR). As can be seen in
Figure S18 (Supplementary Materials), the CNR values were greater in the
categorical compared to the parametric design, in all contrasts. The de-
gree of systematic change across different levels of a factor would be
expected to be much smaller than the difference between the average
activity for that factor versus baseline. One factor that might play a role is
that the relationship between experimental parameters and the hemo-
dynamic responsemay have a non-linear relationship or may vary region-
to-region (Buchel et al., 1998). Therefore, although the use of parametric
designs allows us to investigate the modulated intensity of the cognitive
process (Amaro and Barker, 2006), researchers that aim to compare
neural activity across multiple sessions with the use of parametric designs
may need to try to increase poor reliabilities of the neural activations by
improving the sensitivity of parametric designs with approaches such as
alternative modeling of hemodynamic response (i.e., nonlinear re-
gressors), collecting more data, or other approaches.

The second factor that we investigated was the level of activation at
first scan. Themagnitude and the effect size of regional activations at first
scan were correlated with TRRs of cortical parcels in all conditions except
the evaluation period of positive outcomes (OutcomeInflate contrast) in
the categorical design and risky decisions (ChooseInflate contrast) in the
parametric design. The magnitude and effect size were not correlated
with reliabilities in subcortical regions, perhaps due to the lower tSNR in
subcortical regions. These findings are in line with the findings of Caceres
et al. (2009) showing a relationship between activation level and re-
liabilities, albeit in a region dependent manner. Moreover, Raemaekers
et al. (2007) investigated the mechanisms of how temporal
signal-to-noise ratio (tSNR) can influence reliability estimates and
demonstrated that between subject variation in brain activation can be
explained to some degree by between subject variations in tSNRs (r
ranging from 0.73 to 0.91, dependent on contrast), with intra-subject
tSNRs highly reliable. Analogously, the reliability differences across
parcels observed in the current study showed moderate positive corre-
lations with the tSNR differences across these parcels. More interestingly,
after regressing average motion from the parcel level tSNRs, the rela-
tionship between ICCs and tSNR disappeared (see Supplementary
Figure S15), suggesting that this relationship was in part driven by dif-
ferences in the amount of motion. With increasing levels of motion, the
tSNR decreased and square root of the variance across timepoints
increased across the whole brain (see Supplementary Materials
Figure S19), which in return resulted in lower reliabilities.

Our finding that regions with greater activation had greater re-
liabilities complements our finding that parcels containing only active
grayordinates had greater reliabilities compared to the reliabilities esti-
mated for the whole parcel. Earlier research has shown that ICC values
are greater for larger parcels/segments compared to smaller ones (Shah
et al., 2016). This may be driven by the fact that larger parcels/segments
have a greater number of data points for averaging, possibly increasing
signal-to-noise ratio in the averaged measure. In our study, activated
clusters were further divided into anatomical parcels/segments, there-
fore all of our thresholded parcels were smaller in size than the unthre-
sholded parcels. However, despite this size difference, our results showed
that thresholded parcels had greater ICCs compared to unthresholded
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parcels. Therefore, the choice of method for defining an ROI (by using
parcel boundaries only versus limiting the ROI to the significant activity
within the parcel) should be evaluated on a case by case basis (i.e., the
spatial extent of the ROI, tSNR in the parcel, type of parcellation -
structural vs functional). Overall, our findings indicate that the magni-
tude of activation is at least one of the factors that contribute to TRR.

Lastly, we investigated the effect of motion on consistency of acti-
vation magnitude. Overall, motion had a moderate negative affect on the
consistency of beta values across sessions, therefore studies in which
greater subject movement is anticipated (e.g., studies including children,
or individuals with ADHD) might aim to implement more advance mo-
tion detection and correction algorithms. It is important to note that the
effect of motion on the consistency of brain activations, while broadly
evident across the whole brain, was weaker for individual parcels,
regardless of whether the individual parcels had high or low reliabilities.

4.5. Limitations

We acknowledge that given the lack of dizygotic twin pairs in our
study, we cannot distinguish between genetic and environmental in-
fluences in our estimate of ‘familiality’. Another concern is that the de-
pendencies in the data introduced due to the MZ twins could potentially
bias the ICC estimates, since the ICC model did not concurrently model
the sibships. In order to investigate this possibility, we re-estimated re-
liabilities by assigning Twin 1 and Twin 2 of our twin pairs to separate
groups, which resulted in two samples with no dependencies (unrelated
individuals). The ICC values averaged over the two independent samples
were very similar to those derived using the full sample, with a regression
line nearly indistinguishable from the line of identity, indicating that
there was no evidence that the MZ twins biased the ICC estimates in any
systematic fashion (Supplementary Figure S20). Lastly, since ICCs are
always inherent to a specific sample, we acknowledge that our TRR es-
timates will be dependent on our study cohort, study design (event-
related), duration between sessions, and scanning parameters and may
not generalize to other populations, studies utilizing block designs or an
entirely different scanning or analysis protocol. Nonetheless, our results
importantly inform the expected reliability of the BART specifically, and
other fMRI decision/risk paradigms more generally.

5. Conclusions

Maladaptive decision making has been implicated in many psychi-
atric disorders, including substance use disorder, depression, bipolar
disorder and schizophrenia, but is also related to poor real-life outcomes
in healthy individuals (Caceda et al., 2014). The reliable regions iden-
tified in this study are good candidate for use in clinical neuroscience
research. The range of reliabilities of fMRI measures varies greatly across
constructs. Therefore, reliabilities of fMRI measures reported in this
study are specific to the BART task. Future individual differences studies
are advised to choose a paradigm for which reliable neural markers have
been identified in adequately powered test-retest reliability studies. With
the recent trend toward collaborative, large-sample studies aimed at the
generation of “big data”, this step can help to ensure that the resulting
data are adequate for addressing research questions that assume the
existence of reliable inter-individual differences in brain activation. For a
novel paradigm, an estimation of test-retest reliability is recommended
before a paradigm is used in a genetic, clinical, or developmental study.

However we also acknowledge that it is not always feasible for every
fMRI study to estimate their own reliabilities. Therefore we now provide
general recommendations based on the BART study. Based on the factors
investigated in this study, we recommend that decision making para-
digms utilize the activations identified in the contrast that taps into the
decision rather than outcome related processes for use as brain-based
biomarkers in studying heritability, development, neurodegeneration
and treatment outcomes. We base this recommendation on the fact that
there were considerably more regions with good reliability in the choice
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related contrasts compared to the outcome related contrasts. Notably, the
only subcortical region with a significant reliability was the right caudate
(in the ChooseCashout contrast). The generally poor reliabilities of the
subcortical regions in our study is possibly a consequence of the low
temporal SNR subcortically (Figure S17), which itself is primarily a
consequence of the acquisition voxel size. Moreover, individual differ-
ence studies using fMRI paradigms for which the reliability is not
explicitly known should take into account reliability estimates reported
in previous studies as part of their ROI selection (rather than just theo-
retical relevance), and can also benefit from estimating tSNRs and
selecting regions with the highest activation levels. We recommend that
the reliability of task-related brain activations, particularly in parametric
designs, be firmly established before they are employed for studies
concerned with individual differences such as investigation of correla-
tions between brain activation and behavioral or clinical variables, or
longitudinal studies.

In assessment of TRR itself, one special concern might be in regard to
developmental studies and studies focusing on cognitive decline, in
which fMRI measures might appear less stable due to nonlinear changes
in decision making or differences in an individual’s position along
developmental or degenerative trajectories, which becomes more of an
issue the farther the test and retest sessions are separated in time. To
overcome that, developmental studies can implement a careful recruit-
ment protocol, matching for age or pubertal status via a developmental
biomarker. Studies focusing on cognitive decline in aging might benefit
from considering the neurodegenerative trajectory of their subjects.
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