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ABSTRACT

Psychiatric disorders are complex, involving heterogeneous symptomatology and neurobiology that rarely involves
the disruption of single, isolated brain structures. In an attempt to better describe and understand the complexities
of psychiatric disorders, investigators have increasingly applied multivariate pattern classification approaches to
neuroimaging data and in particular supervised machine learning methods. However, supervised machine learning
approaches also come with unique challenges and trade-offs, requiring additional study design and interpretation
considerations. The goal of this review is to provide a set of best practices for evaluating machine learning appli-
cations to psychiatric disorders. We discuss how to evaluate two common efforts: 1) making predictions that have the
potential to aid in diagnosis, prognosis, and treatment and 2) interrogating the complex neurophysiological mech-
anisms underlying psychopathology. We focus here on machine learning as applied to functional connectivity with
magnetic resonance imaging, as an example to ground discussion. We argue that for machine learning classification
to have translational utility for individual-level predictions, investigators must ensure that the classification is clinically
informative, independent of confounding variables, and appropriately assessed for both performance and general-
izability. We contend that shedding light on the complex mechanisms underlying psychiatric disorders will require
consideration of the unique utility, interpretability, and reliability of the neuroimaging features (e.g., regions, networks,
connections) identified from machine learning approaches. Finally, we discuss how the rise of large, multisite, publicly
available datasets may contribute to the utility of machine learning approaches in psychiatry.
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Psychiatric disorders are complex in their clinical phenome-
nology, with patient profiles often involving heterogeneous
symptoms that change or fluctuate in severity over time. The
neurophysiology underlying psychopathology parallels this
complexity, as brain disorders rarely involve only single brain
structures (1,2). To better describe and understand the com-
plexities of psychiatric disorders, machine learning and other
pattern classification approaches have become increasingly
used to harness the rich information observed with human
neuroimaging (3-7). Machine learning capitalizes on multivar-
iate data, detecting complex patterns in the brain that may
identify abnormalities present in psychiatric disorders. Broadly,
these types of approaches can be categorized into supervised
or unsupervised learning strategies, with supervised learning
using known attributes of individuals to identify relevant brain
patterns, and unsupervised learning using coherent brain
patterns to generate novel attributes or subgroups of patients.

While machine learning holds promise as a tool for studying
psychiatric disorders, these approaches also come with
unique challenges and trade-offs, requiring additional consid-
erations (8-12). In this review, we discuss the importance of
evaluating the application of machine learning to psychiatric

disorders, particularly focusing on supervised learning ap-
proaches. Specifically, we discuss issues that can arise when
using supervised machine learning to 1) make predictions
about individuals and 2) uncover the mechanisms underlying
psychopathology. In part 1, we discuss best practices for
making individual-level predictions about patients with ma-
chine learning, providing guidelines for the use of clinically
informative training labels, appropriate assessment of classi-
fication performance and generalizability, and avoidance or
benchmarking of confounding variables. In part 2, we discuss
best practices for making inferences about the mechanisms
underlying psychiatric disorders using machine learning,
providing guidelines for evaluating the unique utility, inter-
pretability, and reliability of a set of features. This review is
intended to highlight important considerations for interpreting
machine learning results in psychiatry, as an experimenter,
reviewer, or critical reader of the literature.

To ground these points, we discuss specific examples
applying supervised machine learning to functional connec-
tivity magnetic resonance imaging (MRI) data in particular.
Functional connectivity MRI measures the temporal correlation
between the intrinsic [or sometimes task-evoked (13-15)]
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functional MRI activity of pairs of regions (16), yielding a rich
characterization of the brain’s functional network architecture
(17-19). Regions comprising a “functional network” are linked
by strong, positive correlations at rest (e.g., default mode, vi-
sual) (17,18), termed functional connectivity (16). While our
examples focus on functional connectivity, note that most
points of consideration discussed here also apply to machine
learning studies using other neuroimaging measures to un-
derstand psychiatric disorders.

Supervised machine learning identifies relationships be-
tween multivariate features (e.g., functional connections) and
subject labels (e.g., patient vs. healthy control subject) using a
learning algorithm (e.g., support vector machines). When
applied to psychiatry, training labels are often different di-
agnoses (e.g., Tourette syndrome vs. healthy, tic-free) but can
also be different states within a patient (e.g., depressed vs.
remitted) or different task conditions (e.g., viewing happy vs.
fearful faces). A number of supervised learning algorithms (e.g.,
k-nearest neighbor, support vector machines, decision trees)
combine information across features in different ways. Algo-
rithm selection depends on many factors including the
research question, type of data, and nature of the training data
(20). In general, machine learning procedures involve training
(i.e., feature selection, feature weight optimization, and cross-
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generalizability). The patterns of features that best classify in-
dividuals in the training set according to their labels are
weighted and combined in a resulting classifier that can be
applied to a distinct set of individuals in the testing phase.
While “classifier” often implies a binary model (e.g., patient or
healthy control subject), here we use “classifier” to describe
any trained multivariate model (i.e., binary, categorical, or
continuous). For a review of the general procedures involved in
supervised machine learning strategies and their applications
to neuroimaging data, see Figure 1 and other reviews
(3,21-23).

PART 1: EVALUATING PREDICTION WITH MACHINE
LEARNING IN PSYCHIATRIC DISORDERS

Machine learning is well poised to address a major goal in
psychiatry: making predictions about individual patients. For
example, will a given child go on to develop a psychiatric
disorder? Will treatment A or B work better for this individual
patient? In most cases, this level of clinical utility has yet to be
reached. Barriers to clinically useful, neuroimaging-based
classifiers include classifier predictions that do not go
beyond known information (e.g., current diagnosis), ambig-
uous metrics of classifier performance, poor model generaliz-
ability to future datasets, and predictions that are correlated
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Figure 1. Overview of machine learning compo-
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dividuals collected at the same time as the training

TRAINING

Build a classifier using data from the training set only

TESTING
Use the trained classifier to predict labels for the data
in the testing set and/or validation set

set but kept completely separate from training.
Reporting performance in a testing set can provide
evidence of classifier generalizability. The validation

features training set ‘ labels ! set is a group of individuals collected separately from
s P R ms:r g the training set (e.g., different site, different scanner,

L: Feature || Feature Weight :J features ‘ Cfa)tl:‘re predicted separate study). Reporting performance in a valida-

i| selection || Optimization |} e \—Ie'g 2 labels tion set provides additional evidence of classifier

: eioseifer 1 set classifier validity. Each of these datasets comprises features
e and labels. Features are the multivariate data that, in

| k-fold Cross-validation aggregate, are used to build and make predictions
Fold #1 with a classifier. Labels are binary, categorical, or

il Ul ! §'°ﬂ LBt loft out sot within-sampl continuous characteristics of individuals that are
l _____ - l - porkirmsios used to train a classifier and are subsequently pre-

r : L ek classifier generalizability dicted. Machine learning procedures involve training

fea“"es-: clEediior :- labels validation set extemal (red box) and testing (blue box). Training identifies

Fold #2 Fold #2

¢ 3

o ——

features ’: :ﬁ labels

¢ 3

————

Fold #3

’ predicted
labels

relationships between multivariate features (e.g.,
functional connections) and subject labels (e.g., pa-
tient vs. healthy control subject) using a learning al-
gorithm (e.g., support vector machines). The patterns
of features that best classify individuals in the
training set are then weighted and combined in a
resulting classifier. Training can also involve feature

predicted X R . .
selection, data- or hypothesis-driven selection of a

labels

]

features Wy : :ﬁ labels

reduced set of features. Training procedures should
only be performed in the training set (and separately
across folds of cross-validation). Testing involves
applying the trained classifier to new individuals
never used in training. Commonly, classifiers are
assessed using k-fold cross-validation. For each
fold, a portion of individuals is left out of the training
set (left-out set), and a classifier is built using the remaining individuals in the training set. The trained classifier is then used to classify the left-out set of
individuals and, if available, the independent testing and validation sets. Cross-validation can assess whether the performance and feature weights of a
classifier depend upon which individuals are in the training set.

Fold #k %
————
features ’: :ﬁ labels|

predicted
labels

792 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging August 2020; 5:791-798 www.sobp.org/BPCNNI


http://www.sobp.org/BPCNNI

Best Practices for Machine Learning

with confounding variables. Below, we discuss these chal-
lenges as well as recommendations to facilitate research
aimed at developing clinically relevant multivariate classifiers.

Clinically Informative Training Labels

Early work applying supervised machine learning approaches
to study psychiatric disorders has provided a solid proof of
concept, predicting known patient characteristics (e.g., diag-
nosis, symptom severity) from concurrent neuroimaging data.
For example, we and others have demonstrated that functional
connectivity can be used to successfully classify individuals by
diagnosis (i.e., patient vs. healthy control subject) in a number
of  psychiatric  disorders, including attention-deficit/
hyperactivity disorder (24), autism (25), depression (26),
schizophrenia (27,28), and Tourette syndrome (29,30). Addi-
tionally, predicting age or other normative characteristics of
individuals may be clinically informative. In the case of age,
many psychiatric disorders have developmental origins (31,32)
and are often interpreted in terms of developmental progress
[e.g., brain immaturity (33,34)]. Such interpretations have led to
research questions aimed at understanding deviations from
normative developmental trajectories as risk factors for psy-
chopathology. Thus, predicting the developmental status of
patients may illuminate features about the disorder, especially
when it involves atypical brain development. Several studies of
typical development have shown that patterns of functional
connectivity can successfully predict an individual’s age
(35-41). Capitalizing on these results, we found that a classifier
trained to predict age in typical development can elucidate
atypical development in children and adults with Tourette
syndrome (30). Furthermore, brain age predicted from func-
tional connectivity under different contexts (rest, implicit pos-
itive/negative emotion task) has been linked to an individual’s
risky behavior outside of the scanner (40).

Of course, classification of known characteristics, such as a
person’s diagnostic status, alone does not provide clinical
utility. Therefore, there is a growing amount of literature on
using machine learning methods with prospective imaging
studies, in which neuroimaging data are collected before the
emergence of distinguishing behaviors or symptoms (e.g.,
before treatment outcome or clinical diagnosis) to determine
whether patterns of neuroimaging features can predict sub-
sequent diagnosis, prognosis, or treatment efficacy. Several
studies that have prospectively collected functional connec-
tivity data have been able to predict future psychiatric out-
comes (25,42,43). For example, functional connectivity was
successfully used to classify which 6-month-old infants at high
risk for developing autism were subsequently diagnosed with
autism at 24 months (25) and to predict which individuals
seeking treatment for substance abuse subsequently
completed an intensive rehabilitation program (42).

Another important issue is that diagnosis alone may not fully
capture the heterogeneity in psychiatric disorders, potentially
leading to clinically less informative classifiers. Thus, cate-
gorical or continuous training labels that encompass sub-
groups or dimensionality of psychiatric symptoms [e.g.,
Research Domain Criteria (44)] may yield classifiers that better
represent underlying symptomatology (45). Furthermore, un-
supervised learning strategies may provide additional clinical
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utility by identifying novel subgroups of patients with cate-
gorically different patterns of neuroimaging features. These
subgroups may exhibit different treatment outcomes or
symptom trajectories. For example, subtypes of depression
generated using unsupervised machine learning and functional
connectivity were subsequently able to predict responsiveness
to transcranial magnetic stimulation therapy (46).

Performance and Generalizability

Classifier success is typically assessed by testing how well a
classifier can predict the labels of a set of individuals never
used for training, either across folds of cross-validation or in an
independent testing set (Figure 1). For binary or other cate-
gorical classifiers, total accuracy (percentage of patients and
healthy control subjects correctly labeled) is often reported but
may not sufficiently convey a classifier's performance. Clas-
sifier bias (e.g., classifying all individuals as patients) and
imbalanced training sets (e.g., 75% patients, 25% healthy
control subjects) can obfuscate whether a binary classifier
(e.g., patient vs. healthy control subjects) that accurately
classifies more than 50% of individuals in the test set is
actually performing better than chance. Nonparametric tests
like permutation testing (i.e., randomizing the labels in the
training set) can establish an appropriate null for evaluating
whether a classifier performs better than chance.

For regression models, metrics of success include the nu-
merical accuracy of predictions (e.g., mean squared error) and
the relational accuracy of predictions (e.g., R?). If interested in
the accurate prediction of a specific individual (e.g., identifying
an individual with vulnerability to psychopathology), metrics
that quantify the numerical accuracy of predictions should be
used. Alternatively, if interested in the prediction of the vari-
ance in the sample (e.g., determining whether variance in
treatment response is represented in neuroimaging data),
metrics that quantify relational accuracy are sufficient. As in
assessing binary or categorical classification accuracy,
regression models can be assessed with permutation testing
to establish an appropriate null for the amount of error ex-
pected by chance.

Beyond evaluating performance, it is critical to determine
how well a trained classifier can generalize to data from novel
subjects. Assessment of performance through cross-validation
is a reasonable first step, yet alone it is not sufficient to
demonstrate generalizability. Importantly, to avoid inflation of
performance metrics, all procedures used to train the classifier,
such as feature selection, model selection, and parameter
optimization, should be conducted only in the training set and
separately across folds of cross-validation. For most studies it
is feasible to provide evidence of generalizability by setting
aside a group of subjects for testing at the start, building a
classifier with data in the training set, and then reporting per-
formance of the classifier in the testing set. Ultimately, external
validation with an independently collected validation set is best.

Poor generalizability, when a trained (and often published)
classifier does not accurately classify new subjects, might
arise for a variety of reasons. First, cross-validation (as just
discussed) can be prone to poor generalizability. For example,
leave-one-out cross-validation, in which a single individual is
left out of the training set in each fold, has been shown to
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produce less reliable estimates of classification accuracy than
k-fold cross-validation, in which a percentage of individuals
(e.g., 10%) are left out of the training set in each fold (47).
Second, the quality of the data used in training can affect the
resulting classifier; unreliable neuroimaging data might
contribute to poor generalizability. For example, the reliability
of functional connectivity is impacted by artifact correction,
subject arousal, and the amount of functional MRI data
collected (48-50), and thus these factors may also affect the
reliability of a classifier. Third, a classifier will theoretically
generalize best when trained with precise and ecologically
valid labels. Because diagnosis alone may not fully capture the
heterogeneity in psychiatric disorders, training labels that
encompass the dimensionality of psychiatric symptoms as well
as other ecological factors like comorbid diagnoses or medi-
cation use may also improve the ultimate performance of a
classifier in a real-world setting (2,51). Finally, the number of
subjects used for training can affect the resulting classifier
(52,58), although there is currently no prescriptive sample size
for generalizable performance.

In some unique cases, poor generalizability can be infor-
mative of the nature of a disorder. In previous work, we trained
a classifier to distinguish children with Tourette syndrome from
healthy control subjects with functional connectivity (30). This
classifier generalized to an independent test set of children but
not to an independent test set of adults. Similarly, a classifier
trained to distinguish adults with Tourette syndrome from
healthy control subjects could not accurately classify diag-
nosis in children. Poor generalizability across age groups
suggested that different patterns of functional connectivity
underlie childhood and adulthood Tourette syndrome. Thus,
cross-sample classifiers may illuminate the nature of atypical
functional connectivity in psychiatric disorders.

Confounding Variables

Another important concern when evaluating a classifier is
whether the resulting predictions are confounded by other
uninteresting variables. For example, one problematic and
commonly observed confounding variable in functional con-
nectivity data is head motion in the scanner (54-56). Movement
(even submillimeter) in the scanner has been shown to be
significantly correlated with several demographic variables
(e.g., body mass index, tobacco use, education), behavioral
and cognitive abilities (e.g., fluid intelligence, emotion recog-
nition, vocabulary, spatial orientation), and subthreshold clin-
ical symptoms (e.g., impulsivity, antisocial, somatosensory
problems) (57,58). Machine learning algorithms are very sen-
sitive to any differentiating characteristics, and hence, a
diagnostic classifier may detect motion-related differences in
functional connectivity rather than, or in addition to, disorder-
related differences. Fortunately, several strategies can help
mitigate these effects. First, strategies to reduce the amount of
head movement during data collection include real-time mo-
tion monitoring (59), behavioral interventions (60), and stabi-
lizing padding (e.g., CaseForge head cases [CaseForge, Inc.,
Berkley, CA]). Second, processing strategies have been
developed and benchmarked to reduce motion-related arti-
facts in functional connectivity and are particularly useful for
mitigating between-group differences in motion (54,61). Finally,
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matching the amount of head motion between groups in the
training set (even after motion denoising) reduces the likeli-
hood that head motion can be used by a classifier. One
strategy that we have used to assess the impact of head
motion is to intentionally train a classifier to predict individual
differences in head motion. We demonstrated that the perfor-
mance of a head motion classifier was dramatically affected by
adequate motion denoising (before denoising: R? = .50, after
denoising: R? = .04) (35). As head motion also affects volu-
metric, tractography, and task-evoked brain estimates (62-65),
these effects should be adequately addressed when using
machine learning with other neuroimaging data, along with
other potentially confounding variables (e.g., scanner
sequence, amount of data).

PART 2: EVALUATING INTERPRETATIONS OF
NEURAL MECHANISMS UNCOVERED WITH
MACHINE LEARNING

In addition to prediction, investigators hope that machine
learning can provide insight into the complex neural mecha-
nisms underlying psychiatric disorders, revealing which re-
gions, connections, networks, or other neuroimaging
measures are disrupted. Determining the specific neural cir-
cuitry involved, how these features are affected, and how
disruption relates to symptom severity or vulnerability has the
potential to inform targets for treatment. Generally, two ap-
proaches are used to interrogate which features can classify
psychiatric disorders: feature selection and feature weight
interrogation. When interpreting results from these ap-
proaches, it is important to consider the unique utility, inter-
pretability, and reliability of the identified set of neuroimaging
features (regions, networks, connections, etc.). Below, we
provide suggestions for making inferences about neural
mechanisms when using machine learning techniques.

Unique Utility of a Set of Features

Many machine learning approaches involve feature selection.
The resulting reduced set of features is often reported, visu-
alized, and interpreted as the archetypal set of features un-
derlying classification, and hence the disorder being studied.
However, before inferring that specific features characterize a
disorder, it is important to compare the performance of these
features with the performance of an appropriate null, as the
utility of these features may not be unique. For example, when
investigating typical development with machine learning and
functional connectivity (35), we used a common, data-driven
strategy to select functional connections with the strongest
univariate relationships with age (i.e., feature ranking). Age
prediction using this feature selection strategy was fairly suc-
cessful (R? = .45 for the top 1000 features). However, this
performance was not unique to the selected connections, as a
classifier trained to predict age using randomly selected con-
nections was just as successful (average R? = .42 = .05). In
this study, the top ranked features, which are typically inter-
preted as the most important, performed no better than
randomly selected features. This result highlights that classifier
performance using a reduced feature set must be evaluated
against an appropriate null to claim the unique utility of those
features.
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Figure 2. Comparing classifiers using features from different functional networks is confounded by feature number. Performance of classifiers improved with
increasing numbers of features; performance of classifiers built from a single functional network was poorer than classifiers built from randomly selected
functional connections. Support vector machine learning approaches were used to identify patterns of functional connectivity that (A) related to age in a
training set of typically developing individuals (n = 129, 7-31 years), (B) distinguished individuals with Tourette syndrome from healthy control subjects (n =
156, 7-35 years), and (C) categorized individuals by both age group (child, adult) and diagnosis (Tourette syndrome, healthy control subject) (n = 156, 7-35
years). For each case, classifiers were built using either the functional connections associated with a single functional network (e.g., within the default mode
and between the default mode and other networks) or randomly selected sets of functional connections that ranged from 100 to 20,000 features.

Another approach, hypothesis-driven feature selection, in-
volves comparing the performance between classifiers that use
different a priori feature sets (e.g., functional connections from a
particular network, like the default mode network). Such com-
parisons require careful consideration of potential confounds
between feature sets in addition to evaluation against a null as
discussed above. We compared the performance of classifiers
trained using functional connections selected from different
functional networks optimized for age prediction in typical
development (regression model) (Figure 2A), diagnostic classi-
fication of Tourette syndrome (binary model) (Figure 2B), and
categorization of children and adults with and without Tourette
syndrome (categorical model) (Figure 2C). While performance
did vary by network in each case, performance was highly
correlated with network size, i.e., the number of features used
for training (e.g., the default mode network is the largest and
performed the best). Similarly, when trained with randomly
selected functional connections, performance increased with
feature number, regardless of network identity. Therefore, we
could not determine whether certain functional networks carried
more relevant information due to their identity or due to their
size. Feature number is one example, but other potential con-
founds must be carefully considered when comparing the per-
formance of classifiers using a priori feature sets.

Feature Weight Interpretability and Reliability

Another approach used to investigate which features are most
affected in a disorder is feature weight interrogation, in which
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features that are strongly weighted by a classifier are exam-
ined. However, the interpretability of feature weights is not
always straightforward. First, feature weight interpretability
differs across learning algorithms depending on how features
are combined (11). Linear regression, support vector ma-
chines, and artificial neural networks (i.e., deep learning) all
involve the linear weighting of features, but they differ in the
number of nonlinear steps (support vector machines: class
loss penalties; deep learning: hidden layers, activation func-
tion). There is a trade-off [see Figure 1 in Bzdok and loannidis
(11)], as models with added nonlinearities can better fit com-
plex training data, but the feature weights derived from these
models cannot be easily mapped onto digestible descriptions
of the underlying mechanism (e.g., increased/decreased
functional connectivity in patients) (66). Furthermore, this
additional complexity may not be necessary to describe the
training data—deep neural networks (more complex) and
kernel regression (less complex) achieve comparable accu-
racies for functional connectivity prediction of behavior and
demographics (67). Second, the feature weights from a trained
classifier reflect a multidimensional pattern, and thus, consid-
eration of individual feature weights is inappropriate. Classifier
performance relies upon the combination of all selected fea-
tures, from the most strongly weighted to the most weakly
weighted. While it may be enlightening to determine if strongly
weighted features are organized by a biological principle, such
as belonging to a particular functional network, these features
should not be interpreted as the only functional connections
responsible for classification/prediction.
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Interrogating feature weights can also be problematic if
those feature weights are unreliable. Unreliable feature weights
can occur if a model is not generalizable, as discussed in part
1, or if it overfits the training data. Another possible contributor
to this poor reliability is the collinearity of neuroimaging mea-
sures. In fact, we demonstrated that functional connections
that were most strongly related to the training labels (in our
case, age) were also more intercorrelated than expected by
chance (35). Intercorrelated features provide redundant infor-
mation, potentially explaining why randomly selected features
predicted age as well as top ranked features. Two features that
alone carry equally relevant information may be weighted
differently based on the environment of other features, and
hence, the distribution of feature weights will be unreliable.
Functional connectivity data may be particularly susceptible to
such redundancies, in part by definition, as functional networks
are composed of regions with similar patterns of connectivity
(17,49).

Dimensionality reduction may mitigate this redundancy but
may not improve interpretability. Data-driven dimensionality
reduction techniques (e.g., principal component analysis) yield
orthogonal components, but these components reflect a
weighted combination of individual features. Thus, when these
components are subsequently weighted by a classifier, the
underlying pattern is much less transparent. Alternatively,
knowledge-driven dimensionality reduction, reducing features
according to an organizing principle (e.g., averaging connec-
tions within/between separate functional networks), may
reduce redundancy and maintain interpretability. Unfortu-
nately, for functional connectivity (and other neuroimaging
measures), which organizing principle best captures the vari-
ance related to psychiatric disorders (e.g., areas, functional
networks, connector hubs) has not yet been determined.

TRADITIONAL UNIVARIATE VS. MACHINE LEARNING
APPROACHES

For certain research questions, multivariate machine learning
approaches can provide significant advances over traditional
univariate approaches. By combining information across many
features, machine learning approaches can often detect dif-
ferences in neuroimaging data that might not be detected with
traditional univariate approaches. Testing for differences
among thousands of functional connections using standard
statistical approaches can be too conservative with multiple
comparisons correction. Additionally, machine learning ap-
proaches prevail for work that aims to make predictions for a
single individual rather than describing the central tendency of
the group. These types of approaches align well with many
goals in psychiatry targeting early diagnosis and individualized
treatment.

Not all questions are best suited for machine learning (11).
While machine learning approaches are well suited to classify
and make predictions, they can only indirectly test hypotheses
about neurobiological mechanisms. In theory, machine
learning methods provide an unbiased approach to identifying
disrupted brain mechanisms in psychiatric disorders. However,
machine learning algorithms value the utility rather than the
relevance of the features used for classification (68), i.e., a
feature may be relevant to a psychiatric disorder (e.g., differ
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between patients and healthy control subjects) but carry
redundant information that reduces the utility of any single
feature for multivariate classification. Thus, the feature weights
of a classifier are not designed to and may not necessarily
reveal a complete picture of the brain features affected in
psychiatric disorders. Traditional statistical univariate (or
multivariate) approaches (e.g., t test, analysis of variance,
linear regression) prevail in interpretability and may be more
appropriate for research questions in which understanding the
underlying mechanisms is the primary outcome. Nevertheless,
careful use of machine learning methods can provide insight
into the nature of atypical brain features, sparking hypotheses
for future study with traditional statistical approaches (69,70).

The rise of very large, publicly available datasets, such as
the NIH Human Connectome Project (>1000 adults) and the
Adolescent Brain Cognitive Development study (>11,800
children), may shift the relative utility of traditional univariate
and machine learning approaches. These very large samples
will be useful for determining reasonable standards, such as
the number of subjects required to produce reliable classifiers.
Additionally, large multisite samples like the Adolescent Brain
Cognitive Development study can provide a unique resource
with which data collected at different sites or across different
waves can be used for external validation to demonstrate
generalizability. These classifiers trained with very large sam-
ples can then be applied to smaller patient samples to identify
atypical brain patterns. Finally, it is possible that with the large
amount of training data provided by these unprecedented
neuroimaging samples, machine learning may be able to un-
cover a more reliable picture of the complex relationships
among features. While these large datasets are accompanied
by many advantages, there are also challenges such as con-
founding variables that must be overcome. Since functional
connectivity from the Adolescent Brain Cognitive Development
study systematically varies according to acquisition site and
scanner manufacturer (71), proper harmonization (72,73)
should precede the application of machine learning
techniques.

Conclusions

In this targeted review, we have discussed how machine
learning can be a useful tool for identifying patterns in multi-
variate data that have the potential to aid in diagnosis, prog-
nosis, and treatment and to uncover complex mechanisms
underlying psychopathology. These goals can only be ach-
ieved if best practices are followed. A classifier with the most
promise for clinical utility will be one that successfully gener-
alizes to new, independent data and does not rely upon con-
founding features. While our discussion has focused on
examples from functional connectivity MRI, the points raised
here apply to other neuroimaging measures and even non-
neuroimaging data that share key characteristics, such as
large numbers of features (e.g., genes, microbiome, blood
biomarkers) or attempts to combine data of many different
types. Applying best practices that enhance the likelihood of
generalization and replicability, reduce the potential influence
of confounds, and increase the interpretability of the data will
help machine learning approaches move the field forward in
informative and useful ways.
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