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Abstract
Objective. For many biophysical systems, direct measurement of all state-variables, in− vivo is not
feasible. Thus, a key challenge in biological modeling and signal processing is to reconstruct the
activity and structure of interesting biological systems from indirect measurements. These
measurements are often generated by approximately linear time-invariant dynamical interactions
with the hidden system and may therefore be described as a convolution of hidden state-variables
with an unknown kernel. Approach. In the current work, we present an approach termed surrogate
deconvolution, to directly identify such coupled systems (i.e. parameterize models). Surrogate
deconvolution reframes certain non linear partially-observable identification problems, which are
common in neuroscience/biology, as analytical objectives that are compatible with almost any
user-chosen optimization procedure.Main results.We show that the proposed technique is highly
scalable, low in computational complexity, and performs competitively with the current
gold-standard in partially-observable system estimation: the joint Kalman Filters (Unscented and
Extended). We show the benefits of surrogate deconvolution for model identification when applied
to simulations of the Local Field Potential and blood oxygen level dependent (BOLD) signal. Lastly,
we demonstrate the empirical stability of Hemodynamic Response Function (HRF) kernel
estimates for Mesoscale Individualized NeuroDynamic (MINDy) models of individual human
brains. The recovered HRF parameters demonstrate reliable individual variation as well as a
stereotyped spatial distribution, on average. Significance. These results demonstrate that surrogate
deconvolution promises to enhance brain-modeling approaches by simultaneously and rapidly
fitting large-scale models of brain networks and the physiological processes which generate
neuroscientific measurements (e.g. hemodynamics for BOLD fMRI).

1. Introduction

A key challenge in neural engineering pertains to
estimating neural model parameters from indirect
observations that are temporally convolved from
source measurements. For example, many imaging
modalities reflect convolution of neural activity with
temporal kernels associated with slower physiological
processes such as blood flow (figure 1(A)), ormolecu-
lar concentrations (table 1). Often, these kernels are
not known, necessitating so-called ‘dual estimation’
of both the latent neural activity and the neuralmodel
(including convolutional kernels) at the same time.
Our paper presents a computational framework for

addressing this problem. Specifically, we assume that
the system can be described in the following form (or
its discrete-time equivalent):

ẋ= f(θ,x, ẑ)+ ε(t) (1)

ẑi(t) = [hi(ηi) ∗ xi](t) (2)

zi(t) = ẑi + νi(t) = [hi(ηi) ∗ xi](t)+ νi(t) (3)

Here, x ∈ Rn are the hidden non-convolutional
state variables and ẑ are the physiological variables
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generated by convolution. We denote unknown para-
meters for the non-convolutional plant as θ ∈ Rq and
for the convolutional plant as ηi ∈ Rri . Each para-
meterized kernel (hi) represents the process gener-
ating the corresponding measurable variable zi via
convolution (denoted ∗). This formulation requires
the assumption that these processes may be well-
approximated by a finite-impulse response function
and that structural priors may be placed on each ker-
nel (i.e. hi is known up to a small number of paramet-
ers: ηi; see section 5.2 for discussion). We denote pro-
cess noise in the hidden state variables by ε(t) ∈ Rn)
and denote measurement noise ν i(t), both of which
we assume to be drawn from stationary distributions,
independently realized at each time step (noise is not
auto-correlated). In the current context, x represents
latent neural state-variables. Themeasurements zi are
multi-dimensional recordings of neural data and ẑ
are the corresponding physiological sources. These
sources can either feed back into the latent system
(e.g. Ca2+ concentration) or be modeled as purely
downstream (as is typical for BOLD). Formally, we
seek to estimate the convolutional kernel paramet-
ers {η} and the neural model parameters θ using
the measurements z (i.e. the ‘dual’ estimation). This
problem formulation is highly relevant to neuros-
cience and neural engineering since it would enable
inferences regarding brain activity via indirect and
uncertain dynamical transformations.

1.1. Relevance to neuroscience and neural
engineering
Whereas many neural models emphasize membrane
potentials, channel conductances, and/or firing rate
as state variables, high-coverage measurements often
consist of the extracellular (‘local’) field potential,
concentration of signaling molecules (e.g. Ca2+ ),
blood-oxygenation (and the derived BOLD-fMRI
contrast) or radionuclide concentrations (e.g. PET).
In all of these cases, the measurements reflect down-
stream, temporally extended consequences of neur-
onal firing (table 1). Thus, in the context of neuros-
cience, the dual-problem consists of simultaneously
estimating the parameters of neural systems, while
inverting measured signals into their unmeasured
neural generators (the state-variables specified by a
given model framework). Often this linkage (from
generator to measurement) is assumed to be a lin-
ear time-invariant (LTI) system so that the relation-
ship can be described via convolution with paramet-
erized kernels. For, example, post-synaptic currents
are often modeled via synaptic ‘kernels’ (e.g. ‘alpha-
synapse’, [1]), kernels for molecular concentrations
(e.g. Ca2+ , [2, 3]) are derived from Markovian
kinetic-schemes [2, 9], and the neurovascular coup-
ling kernel (linkingBOLD-fMRI andneural ‘activity’)
is described by a Hemodynamic-Response Function
(HRF, [4]; figures 1(A) and (B) ). If these functions
are assumed fixed, it may be possible to estimate

the neural state-variables via deconvolution, in which
case, conventional modeling approaches are feasible.
However, in many cases only the general form of the
kernel function is known (e.g. up to a small num-
ber of unknown parameters). This underspecification
results in computationally difficult dual estimation
problems (estimating the neural states and the model
parameters). The current work aims to treat such dual
problems in a computationally efficient, and highly
scalable manner.

1.2. Previous work
Currently, there are several methods to deal with
dual-identification for small systems and these
approaches may be grouped into black-box and grey
box models. However, whereas black-box model-
ing encompasses diverse approaches such as neural
networks [10], Volterra Expansion [11], and Nonlin-
ear Autoregressive Moving Average (NARMA) mod-
els [12]; grey-box identification (model paramet-
erization) has largely centered upon the dual/joint
Kalman-Filters (linear, extended, unscented etc
[13–16]) and related Bayesian methods. Under these
approaches, the convolutional component is conver-
ted into the equivalent linear time-invariant (LTI)
system format and free-parameters are modeled as
additional state-variables. Thus, joint state-space
techniques re-frame the dual-estimation prob-
lem as conventional state-estimation with a fully-
determined model.

However, none of these methods are well
situated to perform dual-identification for large
(grey-box) systems due to the high computational
complexity and data-intensive nature of Bayesian
dual-estimation. These features are particularly lim-
iting to neuroscience applications which typically
feature a large number of connectivity parameters
and potentially few sampling times (e.g. fMRI). These
approaches also increase in complexity with the num-
ber of additional state variables necessary to represent
complex kernels such as the hemodynamic response
function (figure 1(B)).

Neural systems present two challenges to the cur-
rent status quo: the dimensionality of the neural sys-
tem/parameters and the complexity of the convolu-
tional kernel. Neurobiological recordings are often
high-dimensional, containing dozens or hundreds
of neurons/neural populations. Moreover, the num-
ber of free parameters often scales nonlinearly with
the number of populations (e.g. quadratically for
the number of connectivity parameters). Current
dual-estimation approaches such as joint-Kalman-
Filtering are computationally limited in these settings
due to their high computational complexity in terms
of both the number of state variables and the number
of parameters estimated.

Previous approaches are also limited in terms
of kernel complexity. Since joint-Kalman-Filtering
employs a state-space representation, convolutional
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Table 1. Common neuroimaging measures subject to convolution.

Modality Physiology Popular Kernels Interpretation

fMRI BOLD Signal Di-Gamma Hemodynamic
[4] Response

PET Radionucleotide Multi-Exponential Exchange,
Concentration [5, 6] Radio decay

Ca2+ Ca2+ Multi-Exponential Diffusion
Imaging Concentration [2, 3] +Kinetics
LFP Membrane Multi-Exponential/ K+ Leak
(low freq.) Potential Alpha [7] +Kinetics
Dendritic Post-Synaptic Multi-Exponential/ K+ Leak
Recording Potential Alpha [1, 8] +Kinetics

Figure 1. General Approach. (A) The brain is an example of a convolutional system when viewed through BOLD fMRI. Dynamics
among brain regions are highly non-linear and usually cannot be directly observed. (B) Measurements made using fMRI reflect
latent brain activity passing through a hemodynamic response function (HRF). (C) Surrogate Deconvolution workflow: a
deconvolution surface is estimated by sampling the time-series deconvolution across a variety of kernel parameters (left). A
separate surrogate model is formed for each time-point using basis regression to approximate this surface (middle). The
combined surrogate models then represent the deconvolution process during parameter estimation.

variables are implicitly generated via linear time-
invariant (LTI) systems. This issue is not inherently
problematic, as many neural models contain simple
exponential kernels which are easily converted to an
additional LTI variable (e.g. table 1). However, spe-
cific domains feature higher-order kernels such as
the Hemodynamic Response Function (HRF) that
relates latent neural activity and observed BOLD sig-
nal in fMRI. Approximating theHRF through a linear
time-invariant (LTI) system requires multiple addi-
tional layers of state-variables which greatly increases
the difficulty of estimating neural activity and also
increases the overall computational burden.

2. Approach

Wepropose to treat this problem by directly perform-
ing optimization within the latent state-space using
Surrogate Models to replace the state-estimation step

(figure 1(C)). Surrogate functions comprise a means
to approximate computationally intensive functions,
typically through a linear combination of a priori
specified non-linear bases (e.g. polynomial families,
radial-basis functions etc). In the current case, we
propose using surrogate models to explicitly estim-
ate latent variables by deconvolving the measured
time-series by the current estimate of the convolu-

tional kernel at each iteration. Deconvolution is typ-
ically performed either by iterative algorithms such
as the Richardson-Lucy algorithm [17, 18], Altern-
ating Direction Method of Multipliers (e.g. [19];
ADMM) or explicit transformations in the Four-
ier domain. The proposed surrogate techniques are
compatible with any combination of deconvolution
algorithm and additional signal processing that are
smooth with respect to the kernel parameters. In a
later example with empirical fMRI data, we use the
Wiener-deconvolution [20] coupled with variance
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normalization in the time-domain:

xi(t)≈
w(zi(t),hi(ηi),Ki)

σ(w(zi(t),hi(ηi),Ki))
(4)

w(zi(t),hi(ηi),Ki) := F−1

[
F∗[hi(ηi)]F [zi(t)]

|F [hi(ηi)]|2 +Ki

]
(5)

with w(zi,hi(ηi),Ki) denoting the Wiener deconvo-
lution of zi with respect to kernel hi(ηi) and noise-
factor K i equal the mean power-spectral density of
the measurement noise ν i(t) divided by the mean
power spectral density of zi.We denote standard devi-
ation by σ and F ,F∗ denote the Fourier transform
and its complex conjugate, respectively. Through
deconvolution, we reduce the dual-estimation prob-
lem to conventional system identification with the
convolutional kernel as an additional free parameter.
Using surrogate models we reduce deconvolution-
algorithms into simple, differentiable functions of the
kernel parameters (figure 2(A)). Thus rather than
solving the dual estimation problem:

argminθ̂,η̂,̂xt

(
J(θ̂, η̂, x̂t,zt)

)
(6)

for some loss function J, we solve the parameter-
estimation problem:

argminθ̂,η̂

(
J(θ̂, η̂,S(t, η̂),zt)

)
; S(t, η̂)≈ h(η̂) ∗−1 zt

(7)
for which S denotes the Surrogate Deconvolution
model and ∗−1 is a user-defined deconvolution
algorithm, potentially incorporating priors on the
distribution of ν i(t) and further signal processing
(e.g. normalization or additional filtering). In later
experiments, we set J as the mean-squared error of
1-step predictions, e.g.

J= Et∈T

[
∥zt+1 − f(θ,St({η}),zt)∥22

]
(8)

with T denoting the set of initialization times dur-
ing training. The surrogate model S is a linear
combination of smooth, non-linear bases and is
therefore smooth for both iterative deconvolution
algorithms, such as Richardson-Lucy, and for expli-
cit transformations. Thus, algorithms which are nat-
ively nonsmooth due to randomization or stopping
criteria (e.g. Richardson-Lucy) are converted to an
accurate, but differentiable form via the Surrog-
ate representation (e.g. figure 2(B)). The remaining,
(surrogate-assisted) fitting problem is thus amenable
to highly scalable techniques such as gradient-based
optimization.

2.1. Contributions
Our contribution in this regard is generating surrog-
ate models to explicitly approximate the deconvo-
lution process in a computationally-efficient closed
form. To our knowledge, previous approaches have
not sought to estimate non linear models using para-
meterized deconvolution.We do so in a two-step pro-
cess. First, we build a surrogatemodel of the deconvo-
lution process (deconvolving zi(t) by hi(ηi) as a dir-
ect function of the kernel parameters ηi). We fit one
surrogate function per measurement in the decon-
volved space: the value of a deconvolved channel eval-
uated at a specific time. For a fixed basis, this repres-
entation may be fit rapidly at scale. For example, the
empirical brain data treated later requires nearly two
million surrogate functions per subject (419 brain
regions× 4444 time points), all of which can be fit in
seconds as the only computation of non linear com-
plexity is shared across time points (equation (9)). In
the second step, we directly integrate the surrogate
model into optimization algorithms. By doing so, the
time-course of each latent state-variable is expressed
as a direct, easily differentiable, function of the kernel
parameters (η).

We present these results as follows. First we intro-
duce surrogate methods and the proposed technique,
Surrogate Deconvolution, in which surrogate models
of the latent variable are directly integrated into the
optimization procedure. In the next section we con-
sider the special case of gradient-based optimization
and demonstrate how error-gradients are efficiently
back-propagated through the Surrogate Model. We
then test Surrogate Deconvolution in two sets of
experiments. First, we consider a low-dimensional
case (a small LFP model) in which existing tech-
niques for dual-estimation remain tractable. This
simplified setting allows us to benchmark Surrogate
Deconvolution’s accuracy in parameter/state estima-
tion relative the joint-Extended Kalman Filter and the
joint-Unscented Kalman Filter. Results demonstrate
that Surrogate Deconvolution is competitive even
within theKalman Filter’s operating domain.We then
consider more complicated fMRI models in which
current dual-estimation techniques are not applic-
able due to high-dimensionality and kernel com-
plexity. We demonstrate that Surrogate Deconvolu-
tion is robust to spatial variation in the HRF kernel
in contrast to state-of-the-art non-dual approaches.
Lastly, we demonstrate the approach’s feasibility to
empirical fMRI data. Thus, Surrogate Deconvolution
performs competitively within the scope of current
dual-estimation approaches and enables robust dual-
estimation for amuch larger set of problems than pre-
viously considered.

3. Surrogate deconvolution

Our procedure contains two parts. First, we construct
a surrogate function for each channel and time-point,
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Figure 2. Surrogate surfaces for performing deconvolution. (A) Example fMRI time-series deconvolved by hemodynamic models
with different values for the kernel parameters (α,β). The inset equation is the hemodynamic response function (kernel).
Subplots show the surrogate surfaces for four sequential time-points (e.g. the deconvolved signal amplitude at that time as a
function of kernel parameters). Note that the surrogate surfaces at a fixed time-point are smooth, whereas the variation in
deconvolved signal across time is much less regular. (B) Performance in reconstructing the iterative Richardson-Lucy
deconvolution of the same signal across an 81x81 grid (same range as (A) using third-order bivariate polynomials (appendix
section A.4). Inset shows a representative stretch of 200 points (144 s).

a process which can bemassively parallelized, if neces-
sary. We use the surrogate construction to express the
estimation of unobserved state variables as a direct
function of η. The surrogate function then replaces
unobserved variables in a user-chosen identification-
algorithm for fully observable systems. This process is
advantageous as it enables direct calculation of how
changing parameters η influence the final estimate of
unobserved state variables (for the current set of para-
meters) as opposed to techniques such as the dual
Kalman Filter which do not ‘look-ahead’ to see how
changing downstream parameters will affect state
estimates (since∇ηf= 0 without a surrogate model).

The key insight underlying surrogate deconvo-
lution regards the effect of varying a kernel para-
meter. As demonstrated in figure 2, changing a ker-
nel parameter produces intricate effects upon decon-
volved estimates when viewed from the time-domain.
Even when these effects can be expressed analytically
(as in the Wiener deconvolution) they are not read-
ily reduced to a temporally-local calculation using
first-principles. However, when the kernel is lower
frequency than the signal (as usually happens in
biology), the effect of kernel variation on a single
estimate is often quite smooth with respect to the
kernel parameter. Thus, the effect of kernel vari-
ation on a single deconvolved estimate is very well-
approximated by simple functions of the kernel para-
meter. Together, these functions comprise the surrog-
ate model.

3.1. Building surrogate representations
We efficiently define and evaluate surrogate models
by storing coefficients in tensor format. For a vector
of mi stacked basis functions Pi(ηi) : Rvi → Rmi we
define the 3-tensor C defined for each channel (‘i’)
and a prior distribution on η:

Ci,t,: = Eηi [wi(t)P
T
i ]Eηi [PiP

T
i ]

−1. (9)

Thus, C stores the coefficients of regressing the
basis functions Pi on the deconvolved time series wi

(one of Pi’s bases should be [Pi]j = 1,∀ηi to provide
the intercept). For clarity of presentation, we have
reduced the input arguments of wi to time alone. By
Eηi we denote the expectation taken over some prior
distribution on ηi. In practice, the choice of prior is
not usually impactful, as an arbitrarily fine sampling
of the response surface can be quickly computed in
parallel and the surrogate goodness-of-fit can be sim-
ilarly increased by adding additional (linearly inde-
pendent) basis functions. In all later examples, we
simply assume a uniform distribution over reason-
able bounds. The tensor C holds coefficients of each
time-point’s surrogate model with Ci,t,j denoting the
coefficient of basis j in predicting the deconvolution
of channel i at time t in the deconvolved time-domain
(which is shifted from the measurement times). We
evaluate the surrogate functions in parallel by defin-
ing the following product between 3-tensor C and a
2-tensor-valued function [P({η})]i,j := [Pi(ηi)]j:

[P({η}) ⋆C]i,t =
∑
j

[Pi(ηi)]jCi,j,t ≈ xi(t)|ηi (10)

with the right-hand side denoting the optimal estim-
ate of xi(t) (e.g. in the least-squares sense for Wiener
deconvolution) given ηi,zi(t) and any fixed priors
used to define the chosen deconvolution. In principle,
this technique could be used for system identifica-
tion objectives in which errors are defined in terms
of predicting xt or zt or both. In practice, however,
we have found that including xt predictions within
the objective function leads to a moving-target prob-
lem in which identification algorithms enter peri-
ods of attempting to maximize auto-covariance (by
changing η). Therefore, we assume that objectives are
given of the form:

J=
∑
k∈k̂

(
Jk
(
[zt+k]Actual, [z̄t+k|θ,zt,{η}]

)
. (11)

The final cost function J is a sum of the sub-costs
Jk evaluated at the time-steps k ∈ k̂. Here, k̂ denotes
the user-determined time steps at which to evaluate
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the cost function J which potentially varies by time-
step (e.g. choosing to weight temporally distant pre-
dictions less). The right-hand side denotes the current
estimate (z̄) of zt+ k given θ, {η}, and zt . Thus, the new
cost function incorporates the actual measurements
and their prediction. However, unlike conventional
dual approaches, the predictions are a direct, expli-
cit function of previousmeasurements, rather than in
terms of both measurements and an iteratively estim-
ated latent variable.

3.2. Deploying surrogate models
To evaluate the cost function, we make forward pre-
dictions in the latent-variable (deconvolved) domain
and then convolve those predictions forward in time
to evaluate error in terms of observations. For k-step
predictions and kernel length τ , this corresponds to:

z̄t0+k|t0 := h ∗ [fk(xt0−τ ,z|η) fk(xt0−τ+1,z|η)...]
(12)

=
τ∑

k=1

(
h1+τ−k ◦ ft−t0

(
P({η}) ⋆Ct0+k−τ ,z

))
(13)

We use z̄t0+k|t0 to denote the estimate of zt+ k

using initial conditions for the convolutional variable
(z) and latent variable (x) prior to t0. The operator ◦

denotes the Hadamard product (element-wise multi-
plication). In the latter equation, we have condensed
notation for the effect of z on f as follows:

fk+1(xt,z) := f( fk(xt,z),zt+k) (14)

with f(xt,z) := f(xt,zt). Thus, f k is not a proper iter-
ated composition when it accepts both xt and zt as
arguments, since only one variable (xt+ 1) is output.
However, we abuse this notation for clarity of present-
ation. For brevity, we also use ∗̂ to indicate convolu-
tion over initial conditions as indicated in the variable
indices. Hence the earlier equation (equation (13))
condenses to:

z̄t|t0 := h∗̂ft−t0(P({η}) ⋆C[t0−τ,t0],z) (15)

As a general technique for re-representing dual
estimation problems, Surrogate Deconvolution is
compatible with most estimation techniques. How-
ever, the approach is particularly advantageous for
gradient-based estimation as the deconvolution pro-
cess is replaced with an easily differentiable surrogate
form. For single-step prediction, the resulting error
gradients for the non linear plant’s parameters (θ)
and the convolution kernel parameters ({η}) are as
follows:

∂J

∂θ
=
∂J

∂z̄

(
h({η})∗̂∂f(θ,P ⋆Ct,zt)

∂θ

)
(16)

∂J

∂{η}
=
∂J

∂z̄

[
∂h

∂{η}
∗̂f+ h∗̂

(
∂f

∂x

[
∂P

∂{η}
⋆Ct

])]
.

(17)

Thus, surrogate deconvolution re-frames dual-
estimation problems into conventional parameter-
estimation problems which are amenable to gradient-
based approaches. The analogous gradients formulti-
step prediction are derived by augmenting the one-
step prediction gradients with back-propagation
through time. We demonstrate the power of surrog-
ate deconvolution by reconstructing large brain net-
work models from either simulated data or empirical
recordings.

4. Data-drivenmodel identification

We present two applications to brain discovery to
illustrate the advantage of surrogate deconvolution-
enhanced methods for both state-estimation
(Kalman-Filtering) and grey-box parameter identi-
fication. Both examples are dual-estimation problems
(state and parameter), but we assess their perform-
ance in the state and parameter components separ-
ately to make comparisons with existing work which
may be particularly designed for either domain. For
instance, dual-estimation using the joint unscented
KalmanFilter has been particularly successful in para-
meterizing black-box models for filtering (e.g. [15]),
but requires further modification in somemore com-
plicated grey-box models. To demonstrate the adapt-
ability of surrogate deconvolution we consider two
different simulated system identification /estimation
problems and one empirical application.

4.1. Modeling and isolating local activity from the
LFP
Our first example compares performance across
methodologies designed for state-estimation. This
simulated problem consists of identifying the wiring
of a neural system and subsequently reconstructing
cellular activity from simulated extracellular record-
ing of the ‘local’ field potential (LFP). This sig-
nal is primarily generated by the combined currents
entering into the local population of nerve cells as
opposed to the currents directly generated by neural
firing. Thus, themeasured LFP reflects the temporally
extended effects of input into a brain region rather
than the current population activity (figure 3(A)). To
describe this process, we use a three-level discretized-
model combining 10 coupled neural-mass models
(npop = 10) with passive integration of post-synaptic
currents:

xt+1 = aζ(byt)+
xt
τ
+ c+ ϵt (18)
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Figure 3. Surrogate deconvolution’s performance in inverting a neural-mass model of Local Field Potential. (A) Model schematic:
output signals from each population arrive at post-synaptic terminals. Electrode measurements primarily reflect the post-synaptic
potentials generated from synaptic activity. (B) Bench-marking total error in identifying the synaptic time-constants and network
connectivity. Surrogate deconvolution is compared to the current gold-standard: joint-Kalman Filters (Unscented and Extended).
(C) Same as (B), but displaying performance in terms of correlation rather than mean-square-error. (D) Performance in
reconstructing local spiking activity from electrode measurements using the identified system models for a variety of
state-estimation techniques. (E) State estimation performance for a representative case (the simulation with median jUKF+UKF
performance). (F) Computational complexity of system identification methods in terms of the number of brain regions
considered. The top inset shows the run-time and least-squares fit on rescaled x-axes (n4pop) to demonstrate theO(n4pop)
complexity of Kalman-Filtering in terms of the number of brain regions (npop). The bottom inset is the same, but for surrogate
deconvolution andO(n2pop). Calculations were performed single-core on an Intel Xeon 10−5−2630v3 CPU.

yt+1 = S ◦ yt +Wxt +ωt (19)

zt = yt + νt (20)

Here, x is the synaptic-gating variable which
describes neural activity. The sigmoidal transfer-
function is denoted ζ(x) := (1+ exp[−x/5])−1 with
scaling coefficient a= 3. The time constant of x is
denoted τ and baseline drive to x is denoted c. The
parameters a, τ ∈ R and c ∈ Rnpop are assumed known
as are the covariances of process noise ϵt,ωt andmeas-
urement noise ν t (see appendix). Thus, the unknown
parameters are the connections between neural pop-
ulations (W) and the synaptic time-constants S. We
considered two general approaches to system identi-
fication: either using the current gold-standard (joint
Kalman estimation) or using surrogate deconvolu-
tion for least-squares optimization. The joint Kal-
man filter and associated variants operate identically
to the original Kalman filter, except that the state-
space model is augmented with unknown parameters
being treated as additional state-variables with trivial
dynamics (e.g. Wt+1 =Wt + ϵ̂t and similarly for S).
The ‘noise’ terms ϵ̂t for parameter state-variables are
assumed i.i.d. and with a user-defined variance that
determines the learning rate. Based upon numer-
ical exploration, we found that the best performance
for both EKF and UKF was with an initial prior on

parameter variance var[ϵ̂] = .001. Every 50 time-steps
we decreased the variance prior by 5% of its current
value.

For comparison with existing techniques we used
both the joint-Extended Kalman Filter (jEKF) which
linearizes the non-linear portion of dynamics and
the joint-Unscented Kalman Filter (jUKF) which dir-
ectly propagates noise distributions through nonlin-
earities using the Unscented Transformation [14].
We compare these traditional methods with sys-
tem identification through surrogate deconvolution.
The benefit of surrogate deconvolution is the abil-
ity to apply a wide variety of optimization tech-
niques to partially-observable identification prob-
lems which can decrease computation time over con-
ventional techniques (figure 3(F)) and expand the
scope of problems whichmay be tackled. For this first
example, we have chosen a relatively simple case (low-
dimensional, single-exponential kernels) so that con-
ventional methods (Kalman Filtering) apply. There-
fore, the goal of this test is not to demonstrate an over-
whelming advantage of surrogate deconvolution over
Kalman Filtering, but to show that the proposed tech-
nique can perform competitively in cases for which
Kalman-Filtering is applicable, but imperfect. Sub-
sequent exampleswill consider cases inwhichKalman
Filtering is not tenable.

To implement Surrogate Deconvolution, we first
reformulate this problem as a convolutional equation

7
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through the change of variable rt :=Wxt:

rt+1 = aWζ(yt)+
rt
τ
+Wc+Wϵt (21)

yt+1 = S ◦ yt + rt +ωt (22)

or, equivalently,

rt+1 =
rt
τ
+W[aζ([(r+ω) ∗P(S)]t)+ c+ ϵt] (23)

zt = [(r+ω) ∗P(S)]t + νt (24)

with P(S) denoting the discrete-time kernel formed
from polynomials of S to a suitably long length
[0 1 S S2 S3...] analogous to exponential decay for
continuous-time systems. In this form, the paramet-
ers can be estimated using traditional least-squares
methods, optimizing over W and S. However, by
leveraging the tensor representation of surrogate
models, this equation can be reduced into a single
equation in S by representing the optimal choice of
W for a given S as a direct function of S. To do so we
define the matrix

Ft := aζ(zt)+ c (25)

and the associated 3-tensor

Mi,j,p = (Et[(Ct+1,p −Ct,pτ
−1)FTt ]Et[FtF

T
t ]

−1)i,j.
(26)

Each n× n page of this tensor (e.g. the mat-
rix formed by holding p constant) stores the coeffi-
cients of the least squares solution for W in predict-
ingCt+1,p −Ct,pτ

−1 from Ft for the pth basis function.
Since r∗t (S) = Ct ⋆ P(S), for a given synaptic decay
term S we use the notation r*(S) to denote the estim-
ate of r produced through Surrogate Deconvolution
of measurements z with the kernel P(S). This pro-
duces the least-squares estimate for W as a direct
function of S:

argminW||r
∗
t+1(S)− (WFt + r∗t (S)τ

−1)||2F = P(S) ⋆M,
(27)

zt+2 ≈ Szt+1 + [P(S) ⋆M]Ft + [P(S) ⋆Ct]τ
−1 (28)

Thus, in this case, surrogate deconvolution
enables the approximation of 2npop difference equa-
tions containing npop(npop + 1) unknown paramet-
ers (W and S) using only npop difference equations
with npop unknownparameters (only S). The resultant
model (from equation (28)) is also compatible with a
wide variety of optimization techniques. For simpli-
city, we fit the parameters S through ordinary least-
squares optimization in terms of predicting zt+ 2

as in equation (28). Optimization was performed

using Nesterov-Accelerated AdaptiveMoment Estim-
ation (NADAM; [26]) with both NADAM memory
parameters set equal to .95, and the NADAM regu-
larization parameter set to .001. Training consisted
of 15 000 iterations with each minibatch containing
1000 time points. The step size (learning rate) of
updates was .0001.

All methods were able to retrieve accurate estim-
ates of the synaptic decay term S (figures 3(B) and
(C)). The best-performing method varied by sim-
ulation (e.g. for different true values of W, S), but
the mean error was greater for surrogate deconvo-
lution than Kalman Filtering methods (Unscented
and Extended) which performed near-identically. By
contrast, surrogate deconvolution always provided a
more accurate estimate of the connectivity weight
parameter (W) and the advantage relative Kalman-
Filtering was substantial (figures 3(B) and (C)). The
poor performance of the Kalman Filter for identific-
ation in this case is not surprising as the Kalman Fil-
ter is known to be non-robust for large systems [24]
and theW parameter adds 100 additional latent state-
variables to the joint Kalmanmodel as opposed to the
10 state-variables added by S.

4.2. Reconstructing firing-rate from LFP
We next examined the ability of each method to
recover the time series of neural activity xt using the
previously generated state-space models. During this
stage, models produced during the previous identi-
fication step were used to estimate the latent state
variable xt (figures 3(D) and (E)). It is important to
distinguish between state-estimation techniques (e.g.
UKF) which we used to estimate xt from previously-
fit models and the techniques used to fit those initial
models (e.g. jUKF) as these steps need not ‘match’
(e.g. UKF-based state-estimation from a surrogate-
identified model). Measurements consisted of simu-
lated extracellular voltages zt generated by resimulat-
ing the same ground-truth model (i.e. the same para-
meters, but new initial conditions and noise realiza-
tions). As in the identification stage, we considered
two general approaches to recovering the latent vari-
able xt : either through deconvolution or Kalman Fil-
tering (unscented and extended). Kalman filtering in
this setting produces direct estimates of xt and yt . By
contrast, deconvolving zt ≈ yt produces an estimate
of rt , so deconvolution estimates of xt were produced
by premultiplying the deconvolved time series with
W−1

est (the inverse estimated connectivity parameter).
We considered deconvolution applied either directly
to the raw measurements (zt) or to the estimates of yt
produced by Kalman filtering zt with the estimated
models (both unscented and extended Kalman fil-
ters were considered). Noise covariance estimates for
Kalman filtering at this stage were the same as those
assumed in the initial stage: a value close to the mean
tendency, rather than the true values which were ran-
domly selected for each simulation.

8
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We found that the type of Kalman Filter used
for state-estimation had no appreciable effect upon
accuracy (figure 3(D)). Likewise, the technique used
for system identification (surrogate deconvolution
vs. EKF/UKF) had little effect, although surrogate
deconvolution was slightly more accurate on aver-
age. However, model performance differed greatly
for deconvolution-based state-estimation (using xt ≈
W−1[P(S) ∗−1 yest]t). Models estimated using joint-
Kalman Filtering (jEKF/jUKF) performed worse
using deconvolution-based estimation of xt than
Kalman-based estimation (figure 3(D)). This result
is unsurprising as the deconvolution-based estim-
ate additionally requires the inverse weight para-
meter W−1 and both jUKF and jEKF poorly estim-
ated W. Interestingly, however, estimation accur-
acy for surrogate-identified models decreased when
using deconvolution of the raw, unfiltered measure-
ments, but increased for the UKF+decconvolution
hybrid. The former result is not surprising as pure
deconvolution is clearly suboptimal in not consid-
ering the noise covariance. The latter result was
unexpected and it suggests the possible benefit of
using a two-stage estimation procedure in which
Kalman-Filtering first dampens measurement noise
and improves estimates ofmeasurable state-variables.
Then, subsequent deconvolution might improve the
estimate of latent state-variables by considering the
impact of estimates across time, rather than just the
directly subsequent measurement. However, these
benefits are likely situation-dependent and therefore
require more study. In any case, results indicate that
state-estimates from models produced by surrogate-
deconvolution are at least as accurate as those pro-
duced by Kalman-Filtering and potentially more so
depending upon the state-estimation procedure (fig-
ures 3(D) and (E)).

4.3. Computational efficiency
Surrogate deconvolution is also computationally effi-
cient as it scales linearly with the number of meas-
urement channels (O(n)) in both forming and eval-
uating surrogate functions which is also parallelizable
across channels. However, since Surrogate deconvo-
lution is not a system identification procedure in and
of itself, time-savings depend upon how the tech-
nique is used (e.g. which optimization scheme it is
coupled to). The advantage of surrogate deconvolu-
tion is that it can be combined with a wide-variety
of optimization techniques which are otherwise ill-
suited to partially-observable problems. In this first
simulation, for instance, the number of parameters
scale with npop(npop + 1) and the number of state vari-
ables (in the native space) scale with 2npop. Thus, the
dominant complexity of joint-UKF and joint-EKF is
greater than O(n4pop) as joint-UKF/EKF are O(n2) in
the number of parameters and at least O(n2) in the
number of native (non-parameter) state-variables.
By contrast, the gradient approaches applied with

surrogate deconvolution have approximatelyO(n2pop)
complexity (figure 3(F)). However, surrogate decon-
volution is not limited to gradient-based approaches.
The main effect is to simplify error functions to a
direct equation in the measurable variables so sur-
rogate deconvolution is compatible with a wide vari-
ety of non-gradient techniques, as well (e.g. heuristic-
based or Bayesian). As such, surrogate deconvolution
presents the opportunity to identify significantly lar-
ger partially-observable systems than previously con-
sidered.

4.4. Reconstructing Connectivity and
Hemodynamics in Simulated fMRI
For our second example, we considered the abil-
ity to correctly parameterize large-scale brain mod-
els from simulated fMRI data. Brain regions were
modeled through the continuous-valued asymmet-
ric Hopfield model [25] and simulated fMRI signals
were produced by convolving the simulated brain
activity with randomly parameterizedHemodynamic
Response Function (HRF) kernels [4]:

xt+∆t =W[tanh(b0 ◦ xt)]∆t+(1−∆t)Dx+ ϵt
(29)

zt = [x ∗ h(α,β)]t (30)

hi(α,β, t) =
tαi−1e−βitβαi

i

Γ(αi)
− t15e−t

6(16!)
(31)

Parameter distributions for simulation are
detailed in the appendix. Simulations were integ-
rated at ∆t = 100 ms and sampled every 700 ms
(mirroring the Human Connectome Project’s scan-
ning TR of 720 ms [27]). Simulated HRF’s (hi) were
independently parameterized for each brain region
according to the distributions αi ∼N (6,σ2) and
βi ∼N (1,(σ/6)2) in which the variability termσwas
systematically varied. Each HRF can be well approx-
imated by a finite-length kernel and therefore can be
represented as a discrete-time linear plant. However,
doing so, in this case, requires multiple hidden state-
variables per region which impairs Kalman-based
dual-estimation procedures. Instead, most current
procedures to deal with fMRI-based systems iden-
tification at scale ignore inter-regional variability
in hi and instead seek to retrieve xt by fixing HRF
parameters (e.g. [30, 31]) to the so-called ‘canon-
ical HRF’ (e.g. α= 6,β= 1). In this example, we
demonstrate the potential pitfalls of this assumption
and the benefits accrued by efficiently fitting hemo-
dynamics through Surrogate Deconvolution. To do
so, we attempted to reconstruct W using Mesoscale
Individualized NeuroDynamics (MINDy) in either
its base form (which assumes a canonical HRF) or
in an augmented form in which the predictions are
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Figure 4. Incorporating HRF surrogate-deconvolution into MINDy. (A) Without HRF modeling, connectivity estimates degrade
with spatial variability in the neurovascular coupling. Fitting the HRF through surrogate deconvolution preserves performance.
(B) Same as (A) but for the asymmetric component of connectivity. (C) HRF parameter estimates from HCP data are reliable
across scanning days and subject-specific. (D) Spatial map of the mean α parameter estimate across subjects. (E) Same as (D), but
for the second HRF parameter (β). (F) Spatial map of the mean time-to-peak in the fitted HRF’s.

calculated as in equation (13). MINDy model fit-
ting consists of using NADAM-enhanced gradient
updates [26] to minimize the following cost function:

J=
1

2
ET[∥(xT+∆t − xT)− [(WS +WL)ψγ(xt)−DxT]∥22]

+λ1∥WS∥1 +λ2Tr(|WS|)+λ3(∥W1∥1 + ∥W2∥1)

+
λ4
2
∥WL∥22 (32)

in which the estimated weight matrix Ŵ is decom-
posed into the sumof estimated sparse (WS) and low-
rank (WL) components satisfying:

Ŵ=WS +WL =WS +W1W
T
2 (33)

for some WS ∈Mn×n and W1,W2 ∈Mn×k. The
hyperparameter k< n determines the rank of the
low-rank component WL and the regularization
hyperparameters {λi} define statistical priors on each
of the weight matrix components (Laplace prior for
WS,W1,W2 and a normal prior for WL :=W1WT

2 ).
This decomposition has been shown useful to estim-
ating large brain networks [30]. The non linear func-
tion ψ is parameterized by the parameter vector γ ∈
Rn with

ψγ(x) =
√
γ2 +(bxt + .5)2 −

√
γ2 +(bxt − .5)2

(34)

For the Surrogate-Deconvolution, however, these
analyses are performed in the original space to
prevent the afore-mentioned moving target prob-
lem. Hyper-parameter determination and simulation
parameters are detailed in the appendix.

Results demonstrated a clear benefit for addi-
tional modeling of the local hemodynamic response

(figures 4(A) and (B)).When hemodynamics differed
only slightly between simulated brain regions both
methods produced highly accurate estimates of the
connectivity parameterW. However, past σ= .4 (the
SD of spatial variation in one of the HRF para-
meters), the accuracy of estimated connectivity rap-
idly decreased for conventional methods, while only
slightly decreasing for surrogate deconvolution. In
addition, the hemodynamic parameter estimates also
became increasingly accurate. Thus, surrogate decon-
volution enables accurate system (brain) identifica-
tion when the downstream plants (hemodynamics)
are variable and unknown.

4.5. Empirical dual estimation with the human
connectome
Lastly, we tested the effects of using Surrogate Decon-
volution in fitting MINDy models to data from the
Human Connectome Project [27]. By using empirical
data, this analysis demonstrates that human hemo-
dynamics are spatially variable and that account-
ing for this variability produces more nuanced and
reliable brain models. Data consists of one hour of
resting-state fMRI per subject spread across two days
(30 minutes each). Data were processed according to
the recommendations of Siegel and colleagues [29]
and divided into 419 brain regions [28] +19 sub-
cortical. We then fit MINDy models either with or
without surrogate deconvolution to this data using
the same fitting procedure and hyperparameters [30]
as before. Results indicated the the parameters which
describe the hemodynamic response function are reli-
able across scanning days and reliably differ between
individuals (figure 4(C)). Each of the two HRF
parameters had a stereotypical spatial distribution
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(figures 4(D) and (E)) as did the time-to-peak of
the recovered HRF kernels (generated by substitut-
ing in the recovered kernel parameters). Time to peak
was slowest for anterior prefrontal cortex, particularly
in the right hemisphere (figure 4(F)). Because cur-
rent knowledge of the ‘true’ hemodynamic response
is limited, future study establishing ground-truths for
HRF variation across human cortex is needed to facil-
itate more rigorous empirical validation.

5. Discussion and conclusion

5.1. Generalizability of the problem framework
The methods that we propose are dependent upon
the problem satisfying two criteria: 1) unmeasured
variables can be related to measured ones via con-
volution and 2) the form of the convolutional ker-
nels are known up to a small number of parameters
per kernel. These assumptions are satisfied in many
areas of neuroscience (see table 1) in which meas-
urements have high spatial precision relative to the
underlying models. These kernels can also be derived
by analytically reducing large state-space models to a
smaller convolutional form (see section A.5). In state-
space formulation, these problems all contain more
state-variables than recording channels, but they all
still contain one channel per anatomical unit (region,
population, cell etc depending upon the model). In
other words, the inverse-problem from these scen-
arios results from mechanistic undersampling (i.e.
only measuring one type of variable) rather than spa-
tial undersampling.

The relationship between the measured and
unmeasured variables can be either unidirectional
(e.g. neural activity influencing BOLD but not vice-
versa) or bidirectional (e.g. neural activity and syn-
aptic currents influencing each other) and this for-
mulation covers a large number of empirically relev-
ant scenarios. However, the assumption of full spa-
tial precision (relative the model) also limits our
approach to specific modalities (see table 1). As
presented, our technique is not applicable to sensor-
level EEG or MEG recordings since each channel’s
signal reflects a (weighted) summation of activity at
many anatomical locations. By contrast, other tech-
niques such as the joint Kalman Filters (with which
we compare ourmethod) are applicable to these scen-
arios and simultaneously perform spatial-inversion
and model parameterization. Thus, the proposed
techniques only cover specific classes of modeling
scenarios which are but a subset of problems in which
the joint Kalman Filters are applicable. However, as
we have demonstrated in the results, our approach
scales much better with model size. Thus, our tech-
nique is generalizable in terms ofmodel scale, whereas
the Kalman Filter is more general with respect to
model type.

5.2. The Role of priors in deconvolution
A second assumption of our technique is that the
convolutional kernels are known up to a relatively
small number of parameters each, thus constituting
semi-blind deconvolution. This assumption holds in
a wide variety of scenarios in which prior empirical
evidence suggests an approximate functional form
(e.g. the double-gamma HRF [4]). However, there
remain cases in which the general form of the kernel
is unknown, or the form contains many unknown
parameters (e.g. an unknown kinetic scheme with
many conformations). Fortunately, several statist-
ical approaches to blind deconvolution exist, many
of which require few assumptions regarding the
kernel’s form (e.g. [32, 33]). The Richardson-Lucy
algorithm [17, 18, 32] is one popular example for
both blind and semi-blind deconvolution when the
noise statistics are Poisson. These approaches can also
be applied to unknown kernels which span both time
and space, whereas our technique only considers con-
volution in the temporal domain. For these reasons,
blind-deconvolution algorithms have been previously
applied to a variety of neuroscience domains (e.g.
[34, 35]). The primary drawback of statistical blind-
deconvolution algorithms, however, is that solutions
are at most unique up to an unknown lag for each
channel so it may not be possible to discern the order
of latent events between channels. By contrast, the
proposed method considers the dynamical relation-
ship between channels. As a result, solutions identify
the relative timing of latent neural events across chan-
nels.

5.3. Conclusion
Data-driven modeling remains one of the key chal-
lenges to neuroengineering and computational neur-
oscience. Although a wealth of theoretical model
forms have been produced, the state-variables of these
models (e.g. neuronal firing rate) are often diffi-
cult to directly measure in− vivo which complic-
ates system-identification (model-parameterization).
Instead, many clinical and experimental contexts
record proxy variables which reflect the physiologic-
ally downstream effects of neuronal activity (e.g. on
blood oxygenation, signaling molecules, and synaptic
currents). In the current work, we aimed to para-
meterize conventional neural models using indir-
ect measurements of neural activity. This problem
involved simultaneously estimating the generative
neural model as well as the latent neural activity thus
comprising a dual-estimation problem. Through sur-
rogate models, we approximated the state-estimation
step as a parameterized deconvolution„ thus reducing
computationally challenging dual-estimation prob-
lems to a closed-form, conventional identification
problem. The primary advantage of this approach is
speed/scalability.

Current approaches to model-based dual-
estimation emphasize the joint/dual Kalman Filters
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and related Bayesian approaches (e.g. [16]). These
approaches suffer, however, in terms of scalability and
data quantity. As demonstrated in numerical simu-
lations, the computational complexity of Kalman-
Filtering limits application to relatively small mod-
els (figure 3(F)), whereas Surrogate Deconvolution
enables optimization techniques that scale well with
the number of parameters (figure 3(F)). However,
despite requiring orders of magnitude fewer com-
putations, Surrogate Deconvolution performs com-
petitively with Kalman Filtering in estimating system
parameters (figures 3(B) and (C)) as well as estim-
ating states (latent neural activity; figures 3(D) and
(E)). Thus, the computational advantages of Surrog-
ate Deconvolution do not compromise accuracy.

Scalability is particularly salient in empirical
neuroimaging, as several recent approaches have
eschewed detailed modeling of physiological meas-
urements (e.g. [30, 31]) in order to increase the spatial
coverage of models. However, ground-truth simula-
tions indicate that these reductions potentially com-
promise accuracy (figures 4(A) and (B)). By con-
trast, methods augmented with Surrogate Deconvo-
lution maintained high levels of performance (accur-
acy) even for extreme spatial variation in physiolo-
gical signals. Interestingly, hemodynamic variation
appeared to be a reliable feature in empirical data
with consistent differences across individuals (figure
4(C)) and brain regions (figures 4(D)–(F)) which can
potentially lead to systematic biases (as opposed to
random error) when these features are not modeled.
Thus, for neuroimaging in particular, it may be crit-
ical to parameterize both the generative neural model
and the measurement models to account for these
biases. Surrogate Deconvolution provides a means to
parameterize suchmodels without compromising the
detail of either component.
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Appendix A. ‘Local’ Field Potential
Simulations

The ‘local’ field potential recordings from section 4.1
were simulated using the discrete-time neural mass

model:

xt+1 = aζ(byt)+
xt
τ
+ c+ ϵt (A1)

yt+1 = S ◦ yt +Wxt +ωt (A2)

zt = yt + νt (A3)

The paramaters a= 3, b= 1/5, and τ = 2 were
fixed. For each simulation, the remaining neural-
mass model parameters were redrawn from fixed,
independent distributions: c ∈ Rnpop ∼N (−1, .252)
and S∼N (.5, .22)∩ [.2, .8]. The connectivity para-
meterW was sampled using a two-step procedure:

W0 ∼N (0, .12) W=W0 + 2(W0 −WT
0 ). (A4)

This exaggerated asymmetry serves to ensure
solutions have nontrivial dynamics in the absence
of noise. The noise processes εt , ωt , and ν t were
all independent, white Gaussian processes with the
same variance for each population. For each simu-
lation the standard deviations of εt , ωt , and ν t were
drawn from .25+ .5|N (0,1)|, .05+ .1|N (0,1)|, and
.1+ .2|N (0,1)|, respectively. The variances assumed
by Kalman Filtering were .5, .1, and .2 for εt , ωt , and
ν t , respectively.

Appendix B. Randomized Networks and
MINDyHyperparameters for simulated
fMRI

Ground-truth simulations for BOLD fMRI (section
4.4) were produced by a 40 node Hopfield-type
[25] recurrent neural network with asymmetric con-
nectivity:

xt+∆t =W[tanh(b0 ◦ xt)]∆t+(1−∆t)Dx+ ϵt.
(A5)

Here, the timescale of integration was ∆t = .1 s
andmeasurement occurred every 700ms. The process
noise εt was Gaussian (σ2 = .625) and independent
between channels. The simulation parameters and
generic MINDy fitting hyperparameters were gen-
erally identical to those in the original 40-network
MINDy simulations [30]. Ground-truth connectivity
parameters (W) for the simulations were generated
by a hyperdistribution characterized by four hyper-
parameters which scale the reduced-rank magnitude
(σ1), sparseness (σ2), degree of asymmetry (σa), and
degree of population clustering (p̂). These hyperpara-
meters are distributed σ1,σa ∼N (4, .12) and σ2 ∼
N (3, .12). The hyperparameter p̂ is either 1 or 2 with
equal probability. These parameters were used to gen-
erate three matrices (M1,M2,M3) distributed as fol-
lows:

M1 ∼ [N (0,1/σ2
1)+N (0,1/σ2

1)
3]40/p̂ × 40/p̂ (A6)
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M2 ∼ [N (0,1/σ2
2)

3]40×40 (A7)

M3 ∼ [N (0,1/σ2
1)+N (0,1/σ2

1)
3]40×5 × ...

[N (0,1/σ2
1)+N (0,1/σ2

1)
3]40×5 (A8)

To generate population clustering we use the ones
matrix 1p̂×p̂ and define M̂1 := 1p̂×p̂ ⊗M1 in which⊗
denotes the Kronecker product. The final connectiv-
ity matrix (W) for each simulation is formed as fol-
lows:

Q := M̂1 +M2 +M3 W= Q+(Q−QT)/σ1.
(A9)

The slope vector b0 ∈ R40 is distributed b0 ∼
N (6,(.5)2) and the diagonal decay matrix D
has (diagonal) elements i.i.d. distributed Di,i ∼
N (.4, .12)∩ [.2,∞]. Deconvolved time series were
z-scored. Base MINDy regularization paramet-
ers for the 40-node simulation were generated by
rescaling the empirical fMRI regularization para-
meters (λ̂1 = .075, λ̂2 = .2, λ̂3 = .05, λ̂4 = .05) by
1/rn,1/rn,1/

√
rn,and1/r2n, respectively with rn = 10

is the approximate ratio between the number of
empirical brain regions (419) and those used in
the simulation (40) [30] which used the method
described below (section A.3). The maximum-rank
of the low rank componentWL was 15. Initial values
for MINDy parameters were distributed as in [30].
The NADAM update rates for the HRF parameters
α and β were 5× 10−4 and 2.5× 10−4, respectively
for the 40-node simulation. Surrogate deconvolu-
tion used the third-order bivariate polynomial basis
{1,α,β,α2,αβ,β2,α3,α2β,αβ2,β3} which was fit
to the z-scored deconvolution surfaces.

Appendix C. Empirical Selection of
MINDyHyperparameters

The MINDy hyperparameters we used were previ-
ously determined [30] by pseudo-optimization of
empirical Human Connectome Project [27] fMRI
data. In the former study, values were chosen to max-
imize cross-validated goodness of fit while retaining a
test-retest correlation (reliability) of at least .7 for each
type of estimated parameter (W,α,D). In brief, val-
ues were sampled from a grid over the 4-dimensional
space and used to fit models to a set of 10 left-out
subjects with test-retest data (none of these subjects
were reused in our analyses). The gridded fits determ-
ined the likely vicinity of local minima and the final
values were chosen based upon iterated coordinate-
descent with a fixed resolution (.005). More sophist-
icated approaches for hyperparameter selection also
exist [23] and may be more efficient in future applic-
ations.

Appendix D. HCPData for Surrogate-HRF
MINDy

For the empirical data, MINDy used the original
regularization parameters (λ̂i). NADAM update
rates were 2.5× 10−4 for α and 2.5× 10−5 for β.
Resting-state fMRI from the Human Connectome
Project (HCP; [27]) was preprocessed according
to Siegel and colleagues [29] and smoothed via
nearest-neighbor. Deconvolution was performed
using Wiener’s method with noise-signal-ratio =
.002. On each minibatch, next-step predictions
were made for 250 sequential frames using an
HRF kernel length of 30 TRs (21.6 s) and para-
meter updates were performed using NADAM for
6000 minibatches. As before, surrogate deconvolu-
tion used the third-order bivariate polynomial basis
{1,α,β,α2,αβ,β2,α3,α2β,αβ2,β3} to approximate
the z-scored deconvolved time-series. For fitting sur-
rogate coefficients, α was assumed uniform on [5, 7]
and β was assumed uniform on [.5, 1.5]. Expected
values were taken by sampling this two-dimensional
space along an evenly-spaced 10× 10 rectangular
grid.

Appendix E. Derivation of Kernels from
Partially-Observable State-Space Models

Convolutional representation can reduce differen-
tial/difference equation models of large, hierarch-
ical systems into much smaller (integro-differential)
forms. These systems are hierarchical in the sense
that they contain a small set of nonlocal (potentially
non-linear) state-variables (xt ∈ Rn) with an equal
number of recording channels (zt ∈ Rn). Each of

these interconnected state-variables (x(i)t ∈ R), how-
ever, can have several coupled local state-variables
which produce linear intrinsic dynamics (y(i) ∈ Rki).
In neuroscience applications, this scenario typically
corresponds to one channel per brain area with
each area defined by multiple state-variables (e.g.
physiological mechanisms):

xt+1 = f(xt,yt)+ ηt, (A10)

y(i)t+1 = Aiy
(i)
t+1 + bix

(i)
t . (A11)

Thus, the state-variables y(i) evolve according to
the matrix Aki×ki . We assume that the A matrix is
stable in the discrete-time sense (eigenvalues have
absolute values strictly less than one) which prevents
‘exploding’ solutions and guarantees the existence of
an equivalent convolutional form. We note that the
local state-variables (y(i)) do not need to be the same
size for each x(i) (e.g. brain area) and they are only
defined to be local in terms of input: y(i) can directly
influence x( j̸=i), but not vice-versa. Themeasurement
from each channel z(i)t is a noisy linear summation of
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ki+1 state-variables: x(i)t ∈ R and y(i)t ∈ Rki+1. Thus,
at each instance n channels measure a system with
n+

∑
ki (partially) coupled state-variables.

z(i)t+1 = cTi y
(i)
t+1 + aix

(i)
t + νt+1. (A12)

Due to the linear intrinsic dynamics of y(i)t , meas-
urements can be re-written in convolutional form:

z(i)t = [hi ∗ x(i)]t + νt (A13)

hi = [ai cTi bi cTi Aibi cTi A
2
i bi · · · ]. (A14)

The unknown kernel parameters can factor into
any of the local terms (bi, Ai, ci, or ai). When little is
known regarding these parameters a-priori, the map-
ping from state-space parameters onto the kernel (hi)
is not always invertible, so there are cases in which the
parameterization problem is well-posed in convolu-
tional form but not in state-space form (e.g. if Ai is
symmetric and both ci, bi are unknown). Analogous
results hold for the continuous-time case:

ẏi(t) = Ayi(t)+ bixi(t) (A15)

hi(τ) = aiδ(τ)+ cTi e
Aiτbi (A16)

with A now required to be Hurwitz-stable (all eigen-
values have negative real-part), δ denoting the Dirac
function, and eAiτ denoting thematrix-exponential of
Ai multiplied by the lag τ .
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