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Abstract

Brain responses recorded during fMRI are thought to reflect both rapid,
stimulus-evoked activity and the propagation of spontaneous activity through
brain networks. In the current work we describe a method to improve the
estimation of task-evoked brain activity by first “filtering-out” the intrin-
sic propagation of pre-event activity from the BOLD signal. We do so
using Mesoscale Individualized NeuroDynamic (MINDy; [1]) models built
from individualized resting-state data (MINDy-based Filtering). After
filtering, time-series are analyzed using conventional techniques. Results
demonstrate that this simple operation significantly improves the statistical
power and temporal precision of estimated group-level effects. Moreover,
use of MINDy-based filtering increased the similarity of neural activation
profiles and prediction of individual differences in behavior across tasks
measuring the same construct (cognitive control).Thus, by subtracting the
propagation of previous activity, we obtain better estimates of task-related
neural activity.

Keywords: Resting State fMRI, Neural Dynamics, Causal Modeling,
Recurrent Neural Networks, Cognitive Control

1. Introduction

Task-related analyses in fMRI typically involve statistical general lin-
ear models (GLMs) which seek to identify the amplitude and/or mean
timecourse of (BOLD) evoked-responses after removing nuisance covariates.
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These approaches have proven statistically powerful and characterize much
of the current literature regarding task-induced activation in group-level
fMRI analyses. However, over the past two decades, improvements in fMRI
acquisitions and the rise of resting-state connectomics ([2]) have given rise
to a new literature concerning variability within brain activation across
trials, individuals, and/or contexts. Understanding such variability is key
to precision neuroscience initiatives, as these studies have the potential
to uncover new neural mechanisms and generate stronger brain-behavior
linkages at the level of individuals ([3], [4], [5]).

Previous studies in this domain have generated two key findings relevant
to the current study: 1) individual differences in intrinsic brain networks
predict corresponding differences in BOLD responses ([6], [7], [8], [9]) and 2)
the BOLD signal elicited by a stimulus is dependent upon the previous pat-
tern of brain activity ([10]), including spontaneous fluctuations ([11]). We
use the term “brain activity” in the latter case to indicate that this history
dependence is thought to be neural, rather than solely reflecting potential
nonlinearity in the hemodynamic coupling. The first set of findings indicate
that inter-subject variability in brain responses may be due to the “flow”
([8]) of evoked activity through subject-specific connectomes. The second
set of findings suggest that evoked responses are history-dependent (i.e.
reflects underlying dynamics). Thus, the neural activity associated with
BOLD is increasingly considered as a nonlinear dynamical system—one in
which the spatiotemporal response to an input depends upon its current
state, and further, is determined by a set of rules that dictate its temporal
evolution ([12]). These dynamical “rules” are a function of subject-specific
connectivity and the specific properties local to each brain region ([13],
[14]). The manifestation of these dynamics (i.e. trial-to-trial variability in
BOLD) are thought to be neural and cognitively-relevant as they predict
within-subject behavioral variation ([15]).

This framework contrasts both with current statistical approaches, which
treat the neural activity as a noisy autoregressive signal (most GLMs),
and with Dynamic Causal Modeling (DCM) approaches, which treat the
brain as a linear system (although see [16]). In the current work, we
propose a new technique for modeling intrinsic brain dynamics and their
contribution to task-evoked activation patterns. This approach leverages
MINDy models ([1]) fit to resting-state data for each subject. These models
are akin to an abstracted neural mass model containing hundreds of different
regions (parcels) spanning the whole brain. Regions interact nonlinearly
via a signed, directed connectivity matrix and integrate inputs over time
(i.e. form a nonlinear dynamical system). The BOLD signal is modeled
via region-specific hemodynamic models, and all parameters (neural and
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hemodynamic) are directly estimated from each subject’s resting-state
scans (a process which takes 1-3 minutes). In prior work ([1], [17]), we
have established that MINDy models/parameters are robust, reliable, and
predictive ([1]). In the current work, we use these models to estimate
intrinsic brain dynamics (i.e. predictions based upon resting-state MINDy
models) and subtract them from the observed BOLD, a process which we
term MINDy-based Filtering. This procedure more sensitively identifies
individual differences, and enhances the temporal precision and statistical
power in identifying task effects. We also obtain stronger brain-behavior
linkages and greater similarity in the activation profiles of different tasks
that index a common cognitive construct (cognitive control demand).

1.1. Filtering Intrinsic Dynamics

The current approach rests upon the ability to model the flow of neural ac-
tivity between brain areas, as identified via models fit to resting-state brain
activity. However, rather than seeking to describe the flow of task-related
neural activity (e.g. [8]), our approach acts to censor, or computationally
estimate and remove, the flow of task-unrelated (pre-event) activity. To
be clear, we perform this operation at every time point and use the whole
timeseries for analyses. No information regarding task timing is used in
our filter (Fig. 1A). However we use the notion of “events” to provide an
intuitive motivation for our approach (conversely each timepoint could be
considered an “event”). Likewise, our approach does not require an event-
related design (see SI 7.5 for block-related analyses). At each time point,
the measured neural activity is considered a combination of task-evoked
effects manifest over fast time scales and the propagation of brain activity
emerging at previous time points. By subtracting the modeled propagation
of previously-triggered (e.g. pre-event) activity, we aim to better isolate
the influence of each event (time-point).

Our approach is conceptually-similar to a previous study by Fox and
colleagues ([11],[18]) which suggested that estimated task-effects could be
improved by subtracting spontaneous activity. They demonstrated this pos-
sibility in a motor task by subtracting the recorded BOLD in contralateral
motor cortex from the task-implicated motor hemisphere. However, the
Fox et al. approach ([11],[18]) has not been applied more broadly, since it
requires identifying region pairs which are strongly correlated at rest, but
only one of which is recruited during task. This dissociation is key as it
enabled Fox and colleagues ([11]) to measure intrinsic brain activity (via
the contralateral cortex) separately from task-evoked activity in the other
hemisphere. By contrast, the current literature overwhelmingly suggests
that, for most brain regions and networks, coactivation during resting-state
fMRI predicts coactivation during task (e.g. [6], [8], [7]).
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By contrast, we propose to filter out the intrinsic component of brain
activity using model-based predictions. We predict brain activation at each
time-point by applying MINDy models derived from resting-state activity
([1],[17]) to the previous time-step (i.e. 1-step forward predictions) and
subtract these predictions to better identify task-evoked changes. Thus, we
better isolate event-related brain changes by filtering out the propagation
of pre-event activity. As mentioned previously, we use the notion of task
“events” to provide an intuitive understanding of why our approach improves
fMRI analyses. Our filter does not utilize any prior information regarding
task structure (events) and is compatible with any task design (not just
event-related designs; see Fig. 1B).

1.2. Previous Approaches using DCM

Dynamic Causal Modeling (DCM), by contrast, incorporates the tem-
poral evolution of brain activity and thus can consider the propagation of
neural activity through brain networks. Each DCM contains an effective
connectivity matrix and a set of extrinsic inputs that describe how task
events impinge upon each node of the network ([19]). Many implementations
also contain region-specific hemodynamic models and/or an interaction be-
tween task events and effective connectivity (i.e., the effective connectivity
is parameterized by task events). Although the original DCM models were
strongly limited in size, modern implementations ([20], [21]) can consider
a much larger number of brain regions (although the computation cost
still remains considerable; [20], [1]). However, the DCM methodology also
presents several constraints which limit its application. Estimating a DCM
model requires pre-specifying the time-series of task effects. This assump-
tion precludes analyses which explore the temporal dynamics of task effects
such as Finite Impulse Response (FIR) modeling or nuanced task GLMs,
such as those featuring nuisance regressors (e.g. motion). In addition, all
DCM implementations that support whole-brain models (i.e., more than a
few regions; [20]) are dependent upon the assumption of stationary linear
dynamics ([1]).

1.3. Filtering Instead of Parameterizing

In the current work, we aim to strike a balance between the mecha-
nistic inferences made by DCM and the flexibility of standard analysis
techniques. To do so, we generate dynamical systems models of the brain
and neurovasculature (as is done in DCM). However, our approach differs
substantially from DCM in how we build and utilize these models. Instead
of fitting models of the brain and tasks, we propose to fit dynamic models
to independent resting-state data for each subject. We then use these
models to generate a mathematical filter for each subject that removes, or
“partials out”, the effects of intrinsic dynamics from BOLD timeseries. The
approach uses no information regarding task events and thus functions as
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a preprocessing step, as opposed to explicitly modeling task events. This
feature is advantageous, as the proposed techniques can be inserted into any
data preprocessing pipeline with minimal effort, provided that sufficient
amount of resting state data (e.g. >15 minutes [1]) has been collected to
build MINDy models.

2. Approach

In our approach we predict future BOLD measurements, while modeling
biological activity at the neural (i.e., deconvolved) level. Generative models
are parameterized according to resting-state data. The MINDy-Filtered
data is defined by the difference between measured and model-predicted
BOLD. Our procedure thus contains two stages: (1) parameterizing resting-
state MINDy models; and (2) using these models to perform MINDy-based
Filtering. We begin by reviewing the resting-state MINDy model.

2.1. Resting-State MINDy Modeling

The MINDy model ([1],[17]) is a phenomenological extension of neural-
mass type models which operates at timescales commensurate with fMRI.
Like neural-mass models, MINDy models contain three components: a
signed, directed weight matrix of estimated effective connectivities (W ),
a sigmoidal transfer function (ψ) which relates local activation to the
strength of outward signaling, and the region-specific decay rate (time-
constant) D which describes how quickly a stimulated region will return
to baseline levels of activity. MINDy models operate at two time-frames:
the time-frame of neural activity (denoted τ) and the time-frame of BOLD
measurements (denoted t) which we assume are linked by region-specific
hemodynamic-response-function hβ. The resting-state neural activity (xτ )
evolves according to the discrete-time dynamical system:

xτ+1 = f(x) := Wψα(xτ ) + (1−D)xτ + ητ (1)

with process noise ηt assumed uncorrelated between parcels. The transfer
function ψ is parameterized by the curvature vector α which dictates
regional-differences in the shape of ψ:

ψα(xτ ) :=
√
α2 + (bxτ + .5)2 −

√
α2 + (bxτ − .5)2 (2)

with b = 20/3 a fixed, global hyperparameter. These neural equations are
linked to the observed BOLD measurements via the convolutional HRF
model. We model HRFs using a parameterized version of the canonical
double-gamma model with vector-valued parameters β1, β2:

hβ(t) :=
tβ1−1e−β2tββ12

Γ(β1)
− t15e−t

6(16!)
(3)
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BOLDt = [hβ ∗ x]t + νt (4)

MINDy quickly and simultaneously solves for W,α,D, and β using a unique,
regularized optimization method ([1],[17]). Neural states are inverted
from BOLD using the Wiener deconvolution ([22]). Denoting complex-
conjugation by z∗, the Fourier-transform by F and the Wiener NSR param-
eter ε = .002 (see SI Sec. 7.4), we define the Wiener HRF-deconvolution
(H+) as:

H+
β [Y ] := F−1

[
F [hβ]∗F [Y ]

‖F [hβ]‖2 + ε

]
(5)

All multiplications/divisions in the above equation are understood to be
element-wise. We similarly implement convolution using the Fourier trans-
form (by the Convolution Theorem: F [x ∗ y] = F [x]F [y]):

hβ ∗ x = F−1
[
F [hβ]F [x]

]
(6)

Thus, the combined MINDy model for resting-state (excluding noise) is:

BOLDt+1 = hβ ∗
[
Wψα

(
H+
β [BOLDt]

)
+ (1−D)H+

β [BOLDt]

]
(7)

Since the exact convolution and deconvolution operators cancel for the
decay-term (as opposed to our numerical methods), we ignore these steps
for the linear decay component to reduce bias (less spectral filtering). Our
final model is thus:

BOLDt+1 = hβ ∗
[
Wψα

(
H+
β [BOLDt]

)]
+ (1−D)BOLDt (8)

2.2. Task Model Derivation

Our approach leverages individualized resting-state models in order
to estimate task-evoked brain effects, while making minimal modeling
assumptions about the underlying task mechanisms. We model brain
activity in task (xτ ) as a dynamical system containing two components: an
intrinsic dynamical component f(x) which is estimated from resting-state
models (see previous section), and an exogenous input component Iτ .

xτ+1 = f(xτ ) + Iτ . (9)

The latter component is exogenous with respect to the resting-state model
and should not be interpreted as “exogenous to the brain”. Rather, Iτ
represents additional input to each brain region beyond that which is created
through intrinsic (resting state) dynamics embedded in f(x). In principle,
this technique is compatible with any resting-state model (f(xτ )). For the
current work, we chose MINDy ([1], [17]) as it is highly scalable, nonlinear,
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and robust to many nuisance factors. The aim of the current work is to
estimate the input (Iτ ) for task data and to investigate exogenous input
as a marker for cognitive states. We do not assume a specific mechanism
underlying this input (e.g. recurrent input, inter-regional signaling, neuronal
“noise”, or sensory afferents are all possible sources) or any spatial/temporal
properties of Iτ . Thus, we treat Iτ as a latent signal to be estimated
(i.e., by filtering Iτ from BOLD). By contrast, other methods, such as
DCM ([19],[23]) assume a time course of Iτ (the temporal aspects of Iτ )
based upon task design and only estimate its relative contribution to
each brain area. For this reason, we term our objective MINDy-based
Filtering. Although the mechanisms of interest (Iτ ) are modeled as neural,
fMRI measures the hemodynamic BOLD contrast. For this reason, we use
MINDy to simultaneously model neural dynamics and the hemodynamics
which link neural events to fMRI measurements. We assume that BOLD
signal recorded in task reflects the convolution (denoted “*”) of latent
neural activity (xτ ) with a region-specific Hemodynamic Response Function
(HRF; denoted h) estimated from resting state data ([17]). Thus, for each
brain region (parcel “i”) our model of task BOLD is:

BOLD
(i)
t = [hi ∗ (x(i)τ + η(i)τ ))]t + νt (10)

We consider noise at the level of the neurovascular coupling ηt and at the level
of BOLD measurements (νt). These terms are modeled as normal random
variables which are independently and identically distributed (iid) between
brain regions and time points. Process noise (physiological stochasticity)
is not explicitly modeled at the neural level in Eq. 9, as it is absorbed in
the unknown inputs Iτ . Substituting for xτ (from Eq. 9) and rearranging
yields:

BOLD
(i)
t+1 − [hi ∗ f (i)(x)]t = [hi ∗ I(i)τ ]t + [hi ∗ η(i)τ ]t + ν

(i)
t . (11)

Thus, the HRF-convolved input [h ∗ I]t is equal to the difference between
measured and predicted BOLD plus additional autocorrelated noise terms.
For all current analyses we consider brain states estimated with HRF-
convolved estimates of input ([h ∗ I]t) as opposed to the estimates of Iτ
alone. This step enables the same statistical pipelines (i.e. GLM structure)
to analyze original fMRI BOLD data and the HRF-convolved input. As
a result, the estimation of [h ∗ I]t serves as an additional “preprocessing”
(filtering) step that can be added to any fMRI pipeline with minimal effort.
No information regarding task events is used in estimating Iτ , so the same
statistical frameworks are applied to model-filtered and original data.

2.3. MINDy-based Filtering

In the current approach, we do not explicitly model different forms of
noise. The only noise factor we consider is the measurement noise power
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in inverting BOLD onto neural activity. Since neurovasculature noise is
removed (ηt=0), Wiener deconvolution ([22]) generates the least-mean-
square estimate for xt. The resultant approximation for BOLD-convolved
input ([h ∗ I]t) is:

[h ∗ Iτ ]t ≈ BOLDt+1 − [h ∗ f(H+[BOLD]τ )]t (12)

WithH+
β [BOLD] denoting the Wiener deconvolution of each region’s BOLD

signal with respect to the corresponding HRF model. Thus, we estimate neu-
ral activity by deconvolving BOLD with the region-specific HRF’s identified
at rest. Predictions are made in terms of neural activity and then re-
convolved to produce predictions in terms of BOLD. The difference between
measured and predicted BOLD approximates the HRF-convolved input.
All operations are performed over the whole timeseries simultaneously.

The full procedure is thus:

1. Resting-state data is used to estimate MINDy model parameters:
connectivity (W ), transfer-function curvature (α) and decay-rate (D)
as well as the HRF shape (β). ω := {W,α,D, β} according to the
dual model:

Solve : W,α,D, β s.t. (13)

XRest
τ+1 = fω(XRest

τ ) := Wψα(XRest
τ ) + (1−D)XRest

τ (14)

BOLDRest
t+1 = hβ ∗XRest

τ+1 = hβ ∗ fω(H+
βBOLD

Rest
t ) (15)

2. Using HRFs estimated from rest, measured BOLD-level task data is
deconvolved to neural-level.

XTask
τ = H+

βBOLD
Task
t (16)

3. The parameterized MINDy models use deconvolved observations to
predict task neural activity 1TR into the future.

XTask
Pred = fω(XTask

τ ) ≈ XTask
τ+1 (17)

4. Predicted neural activity is convolved into predicted BOLD measure-
ments.

BOLDTask
Pred = hβ ∗XTask

Pred (18)

5. “Filtered” timeseries are calculated by subtracting the predicted
future BOLD from measurements.

[h ∗ I]t := BOLDTask
t+1 −BOLDTask

Pred (19)

For the univariate-linear (decay) terms, analytic convolution and decon-
volution cancel so we only performed these steps on the nonlinear terms
to minimize bias (numerical implementations do not fully cancel). This
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Fig 1. Filtering and control pipelines. A) MINDy-based Filtering procedure. 1) Latent
neural activity is estimated from the BOLD signal. 2) One-step predictions for latent
neural activity are made with MINDy and 3) convolved into one-step BOLD predictions.
4) Filtered “input”/residual timeseries are the difference of measured and predicted
BOLD (we abbreviate h ∗ I as Î). B) Analysis pipelines. Modeling pipelines require
data to be pre-processed (nuissance regressed) before model-based filtering. The preReg
pipeline controls for this step by performing identical pre-processing before GLM
analyses. Parameters for MINDy and autoregressive models are estimated from
resting-state data. Autoregressive models (AR) are used to test whether effects are due
to local signal-processing features (i.e. MINDy similar to AR) vs. exploit brain
connectivity (MINDy better than AR). Although we chose AFNI to perform GLM
analyses, MINDy-based Filtering is compatible with any analysis software as filtered
timeseries are analyzed in the conventional manner.

choice also enabled direct comparison of brain-wide MINDy models with
local auto-regressive models (see Sec. 3.10). Model predictions are thus:

BOLDPred := hβ ∗
[
Wψα

(
H+
β [BOLDt]

)]
+ (1−D)BOLDt. (20)

3. Methods

3.1. Subjects

Data consisted of fMRI task and resting-state scans for 71 healthy young-
adult subjects collected as part of the Dual Mechanisms of Cognitive Control
(DMCC) study ([24]). We note that the DMCC participant pool contains a
large number of monozygotic and dizygotic twin pairs although this feature
was not relevant for our analysis.

3.2. Scanning Protocol

Each participant took part in three separate scanning sessions which
occurred on different days, but all had the same general procedure. Each
day, participants provided two resting-state scans of 5 minutes each as well
as two scans each for four cognitive tasks: the AX-Continuous Performance
Task (AX-CPT), Sternberg Task, Stroop Task, and Cued Task-Switching
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(Cued-TS). The two scans per task were performed sequentially for each
task whereas the two resting-state scans were separated in time (one at
the session start and one at the session midpoint). Each of the task scans
(2 per task per day) contained three task-blocks separated by inter-block
intervals and lasted approximately 12 minutes. For resting state and task,
the two scans per day were split between anterior-posterior and posterior-
anterior phase-encoding directions. Scans were performed at 3T with 1.2s
TR (multi-band ×4; see [24, 25] for additional details).

3.3. Task Descriptions

We briefly describe the general structure of each of the four cognitive
tasks in the “baseline” format which was administered on the first scanning
day (see [24],[25] for more details on task design and rationale). Subtle
changes to task structure were made on the two following days (subsequent
section) but were not relevant to our analyses. The AX-CPT task ([26])
involves repeated sequences of cue-probe pairs, in which the response to
the probe item is constrained by the preceding contextual cue. Thus, the
A-X cue-probe pairing requires a target response and is frequent, leading
to strong associations between the cue and probe. However, both the B-X
pairing (where “B” refers to any non-X cue) and A-Y pairing (where “Y”
refers to any non-X probe) require non target responses. In the Sternberg
task ([27]), participants are sequentially presented with a short list of words
to memorize for that trial (called the memory set; appearing across two
encoding screens). After a short retention delay, they are presented with
a probe word and must determine if the probe was present in that trial’s
memory set. On some trials, the probe item is termed a “recent negative”,
in that was not present in the current trial memory set but was present in
the memory set from the preceding trial. In the current implementation of
the Stroop task, subjects are asked to verbally report the font color in
which probes are displayed ([28]). Each probe is itself a color-word, and can
either be congruent (font color is the same as the color word, e.g., BLUE
in blue font) or incongruent (font color is different from the color-word
name; e.g., BLUE in red font). Lastly, during Cued Task-Switching
(Cued-TS, [29]) participants are pre-cued to attend to either the number
or letter component of a subsequent probe (combined letter + digit). In
“attend-number” trials, participants indicate whether the digital component
of a probe is even vs. odd. In “attend-letter” trials, participants indicate
whether the letter component is a consonant vs. vowel. The probe can
be either congruent (both letter and digit are associated with the same
response) or incongruent (the letter and digit are associated with different
responses). With the exception of the Stroop task, participants report
responses using button presses.
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3.4. Cognitive Control Demand

The current set of trial-based analyses center upon the ability to identify
neural signatures of cognitive control. Although cognitive control is a het-
erogeneous construct, we specifically studied the conflict resolution aspects
of cognitive control, so we use the terms control-demand and conflict inter-
changeably when referring to these tasks, and contrasts between trial types.
In particular, we operationally identify cognitive control demand as the
difference in neural activity measures during high and low-conflict trials for
each task. In the AX-CPT, we contrast BX trials (high conflict) vs. BY (low
conflict). The BX trials are high conflict because of the target-association
with the X-probe, which require contextual cue information to override.
For the Sternberg task, we contrast trials with recent negative probes (high
conflict) and trials containing novel negative probes (low-conflict). Thus,
recent negative trials are high conflict because the familiarity of the probe,
requires information actively maintained in memory to override. In the
Stroop task, we contrast incongruent (high conflict) and congruent (low
conflict) trials. The incongruent trials are high conflict because the task
goals (name the font color) are required to override the dominant tendency
to read the color-name. Lastly, in the Cued-TS we also contrast incongruent
(high conflict) and congruent (low conflict) trials. The incongruent trials
are high conflict because it is critical to process the task cue, in order to
know what response to make (for congruent trials, the same response would
be made regardless of the task being performed).

3.5. Task Manipulations

The four tasks (AX-CPT, Sternberg, Stroop, and Cued-TS) were chosen
to measure/engage cognitive control. On the first scanning day, participants
performed a “baseline” version of each task. On the subsequent days,
however, participants performed modified version of each task, meant to
promote either proactive or reactive cognitive control strategies. On the two
subsequent scans participants performed all the reactive-mode conditions
of the tasks on one day and all the proactive-mode conditions of the tasks
on another, with the order of proactive vs. reactive days counter-balanced
across subjects. In the current work we do not consider the influence of
cognitive-control mode and combine data for each task across scanning
sessions, to increase statistical power.

3.6. Behavioral Measures

In each task we recorded two behavioral measures: reaction time (RT)
and accuracy. Reaction times for button presses were recorded digitally,
whereas reaction time for the Stroop task was defined by the duration
of silence (time until participant begins a verbal response; see [24]). For
the current work, we focused upon the difference in performance measures
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between trial-types with high cognitive control demand and those with low
cognitive control demand (see below). As in previous work with these tasks,
we observed lower performance (higher RTs and lower accuracy) on the
high demand trials indicative of a cognitive control effect ([24]). For the RT
data, we defined cognitive control effects as the difference in normalized
RTs between high and low-control trials:

RTHL = z(RTHigh)− z(RTLow) (21)

with z denoting z-score normalization. We separately normalized the high
and low RT conditions to account for potential heterogeneity of variance
between conditions. However, we could not separately normalize accuracy
by condition as some of the low-control distributions were near-degenerate
(e.g. in one Stroop session over 90% of subjects had 100% accuracy for
low-control trials). Similarly, we obtained near-identical results using either
the high vs. low contrast for accuracy and using just high-control trials
(since low-control accuracy was near-ceiling). For parsimony, we chose to
use the high-control data for plots as opposed to the near-identical high vs.
low contrast. As with neural data, we averaged the normalized response
times between sessions for each task. Interestingly we found that, unlike
RTs, neural data using conventional techniques only predicted accuracy
in the baseline session. Therefore, we only used the baseline accuracy for
benchmarking (averaged over tasks) and similarly for neural data.

3.7. Pre-processing and Parcellation

Raw resting-state and task data were preprocessed using the same
pipeline, implemented with fMRI-prep software ([30],[31]). The whole-
brain surface data were then parcellated into 400 cortical parcels defined by
the 400 parcel Schaefer atlas (Schaefer [32]; 7-network version). Subcortical
volumetric data was divided into 19 regions derived from FreeSurfer ([33]).
Motion time-series consisted of the 3-dimensional coordinate changes for
rigid-body (brain) rotation and translation (6 total). Motion and linear
drift were regressed out of pre-processed resting-state data before MINDy
model fitting and from task data prior to filtering. Since motion time-series
are also covariates within our task GLMs (as is common), this step does
not bias results, as motion is implicitly removed from the unmodeled data
during GLM estimation (see below). However, we also implemented controls
(see Sec. 3.10) which used this same data (i.e. motion pre-regressed) with
conventional analyses.

3.8. Task GLM Analyses

Statistical models of task fMRI were estimated using general linear
models (GLM) as implemented in AFNI. The same analyses were performed
for all data pipelines (e.g. original and MINDy-Filtered). Two classes of
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GLM were used for each task: one designed to estimate event-triggered
effects and another to estimate sustained activity. These models only
differ in that the event-related GLM models contain separate terms (FIR
models) for each trial-type whereas the sustained GLM does not distinguish
between trial-types, which enabled better estimation of the sustained effects
(block regressor). The GLM design consisted of a mixed block/event-
related design in which trial-type effects were modeled using a modified
Finite-Impulse-Response (FIR,[34], [35], [36]) framework (AFNI TENT;
[37]), whereas block effects (task vs. inter-block interval) were modeled
using a canonical HRF convolved with the block regressors. The TENT
bases (“knots” in AFNI terminology) generated an FIR design with each
basis representing one TR (relative task start). The GLM design also
included block onset/offset (modeled with a canonical HRF) and the six
motion regressors corresponding to rigid body translation and rotation (3
each). Timepoints containing excessive motion (Framewise Displacement
> 0.9mm) were censored from task GLMs. Estimation was performed using
the built-in AFNI function “3dREMLfit”.

3.9. MINDy Modeling

Mesoscale Individualized NeuroDynamic (MINDy, [1][17]) models were
generated from each subject using the parcellated, pre-processed resting-
state data for each subject, combined across scanning sessions. Thus,
a single MINDy model was estimated for each subject and was used in
analyzing task-data across scanning sessions. We simultaneously estimated
the neurovascular coupling/HRF and latent brain networks by combining
the original MINDy model with Surrogate Deconvolution as in [17]. This
combination simultaneously estimates HRF kernel parameters for each brain
region as well as the connectivity matrix, region-specific transfer function
shape, and local decay parameter (time-constant). Previous work indicates
that the inclusion of Surrogate Deconvolution renders MINDy estimates
robust to spatial variation in the HRF. Moreover, the spatial distribution of
estimated HRF properties such as time-to-peak are consistent with empirical
literature at the group level and are also reliable at the level of individual
differences ([17]). Hyperparameters used in MINDy model fitting were
identical to previous studies ([1]), but with batch sizes decreased to 150
TRs each in order to accommodate the shorter scan lengths of this dataset.

3.10. Control Pipelines

In addition to comparing the proposed pipeline with conventional analy-
ses, we also repeated all task analyses for several control pipelines (Fig. 1B).
These control pipelines considered two factors that might explain results:
1) pre-processing and 2) mechanistic components of the model (SI Sec. 7.7).
The MINDy modeling framework assumes that nuisance covariates such
as motion and drift have already been removed from time-series prior to
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model fitting. Therefore, to address #1, we implemented a control in which
standard GLM analyses were computed directly upon the fMRI BOLD
task timeseries, with motion covariates already regressed out first. The
same regressors also appear in the task GLM model (which is shared across
all pipelines), but regressing these factors out first will rescale estimated
beta-coefficients due to the input normalization performed by many fMRI
processing packages (e.g. AFNI). This control ensured that improvements
in group-level sensitivity were due to increased similarity of estimated
spatiotemporal patterns rather than theoretically uninteresting factors due
to pre-processing pipelines. We refer to this control as “pre-regressed”
(pre-Reg). Estimates using this pipeline were nearly identical to the original
pipeline and event-related coefficients were highly correlated (average over
tasks: r = .97), collapsing over subject, parcel, and TR during the probe
period.

In the SI (Sec. 7.7), we address #2 by considering the influence of
anatomically local dynamics vs. interactions between brain regions. This
distinction is significant for three reasons. First, it is theoretically signifi-
cant to distinguish between purely local neural dynamics and inter-regional
brain dynamics. Secondly, long distance interactions between brain re-
gions cannot be explained solely in terms of neurovasculature since the
regions involved may share anatomically distinct blood supply (i.e. different
cerebral arteries). As a result, improvements identified in whole-brain
models, but not purely local models, cannot be explained solely as a benefit
of hemodynamic modeling (although other contaminants such as motion
could still be a factor). Lastly, analyses using the purely local models
are equivalent to region-specific frequency-domain filtering. Although this
equivalence does not imply that neural dynamics are insignificant, the
signal-processing interpretation is simpler and could render the proposed
neural modeling framework unnecessary (i.e. less parsimonious). Thus, the
local dynamics control serves to ensure that our guiding neural modeling
framework provides additional value above its (partial) relationship to ex-
isting signal-processing techniques. This control was implemented in two
distinct variants: either heterogeneous (region-specific) or homogeneous
(region-invariant) autoregressive models fit to each subject.

The homogeneous model consists of an autoregressive model that is
specific to subject, but not parcel:

BOLDt+1 = c0BOLDt + νt (22)

We assumed that the noise-component was independent and identically
distributed between parcels and solved for c0 using linear regression (col-
lapsing BOLD across parcels). The “input” estimates from this model
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consist of the residuals (νt). We fit the heterogenous model analogously to
the homogeneous model, but with region-specific autoregressive terms:

BOLD
(i)
t+1 = ciBOLD

(i)
t + ν

(i)
t (23)

for parcel “i”. We use these two cases to determine whether regional
heterogeneity is a significant factor in any improvements due to local
modeling. We refer to the homogeneous and heterogeneous models as
global (“glob”) and local (“loc”) autoregressive (AR) models, respectively.
Results were generally similar for the two AR models (high-low coefficients
correlated r = .99)

4. Validation and Comparison Criteria

In order to assess potential advantages of MINDy-based Filtering, we
considered two types of comparisons: benchmarking (is method “a” better
than “b”?), and sensitivity/robustness (how does factor “x” influence
method “a” vs. “b”?). The first case establishes whether MINDy-based
Filtering offers additional statistical power in detecting task effects. The
second case establishes whether MINDy-Based Filtering enhances statistical
power for detecting task effects in a selective (i.e., to the regions showing
significant task effects to begin with) or more global manner.

4.1. Benchmarking Event-Related Effects

Trial-types were defined by high cognitive control demand vs. low
cognitive control demand across the four tasks (see Sec. 3.4). Trial-specific
activity was modeled using a Finite Impulse Response (FIR) model with
1TR resolution (1.2s) and task-specific length (see Sec. 3.8). Group-level
statistics were compared for the peak effect (parcel × method specific)
over a task-specific 2TR interval. This interval was chosen during study
piloting using the peak times in conventional analyses (starting from 1:
AX-CPT:TR 7-8, Cued-TS: TR 8-9, Stern: TR 11-12, Stroop: TR 3-4).
Thus, the analysis targets are statistically biased against the proposed
technique since they were chosen to maximize conventional analyses. These
times qualitatively correspond with a typical HRF time-to-peak after the
probe-events which define high vs. low control trials (see Sec. 3.4). Previous
literature and present results suggest that these effects are primarily one-
sided, with activity increased in the high-conflict (control demand) trials
relative to low-conflict (low control demand) in relevant brain regions (e.g.
Fig. 2A). Conversely, task-negative effects (significant decreases) have
largely been associated with sustained signals as opposed to high vs. low
control events. For these reasons, we only considered significant increases
in activity for trial-type analyses. Group-level t-tests (within parcel) were
compared for all parcels with significant increases (either method; Fig.
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2B), or for a set of 34 parcels (pre-defined from independent conventional
analyses which showed consistent control-demand effects across all tasks,
(Fig. 2A, SI Table 1, [24]). Since these parcels were pre-selected based upon
conventional analyses, they are statistically biased against the proposed
method (i.e. in favor of conventional methods).

4.2. Benchmarking Sustained Effects

In addition to event-related analyses, we also considered the identifica-
tion of sustained effects (block-related changes). Results of these analyses
are primarily presented in the SI (Sec. 7.5). As with event-related analy-
ses. Sustained effects in a mixed block/event design refer to “background”
activity that is present regardless of whether participants are performing
a task ([38], [39]). Since we used FIR models to span each trial type, sus-
tained effects in our analysis only refer to activity during inter-trial periods
(non-trial periods of task-blocks) since effects during other periods are
absorbed in the trial FIR vs. rest-block contrasts ([38], [39]). We compared
the group-level effect size of each technique (MINDy-based Filtering and
several controls) in detecting sustained effects. Methods were compared
pairwise, and benchmarking analyses were only conducted on parcels which
had a significant effect for either method in a pair. Sustained analyses
considered both signal increases and decreases, so the target metric was
absolute t-value (1-sample group test) for the GLM sustained betas (see
Sec. 3.8).

4.3. Testing Selective vs. Global Improvements

We further analyzed benchmarking results by testing how MINDy-based
Filtering changes the distribution across parcels. The primary question
was whether the MINDy-based Filtering: a) uniformly changes statistical
power across the brain (by shift or scale); b) primarily identifies previously
insignificant regions or c) primarily alters previously significant regions.
This analysis is important for determining whether the technique globally
improves statistical power or differentiates task-relevant regions from the
rest of the brain. We test these effects using multilevel linear models to
compare MINDy-based Filtering to the different control models. These
multilevel models (presented in more detail later) contain task-specific
main effects of method (anatomically global) and additional terms for
task-implicated (statistically significant parcels). We use these models to
test the significance of model improvements (increased effect sizes) after
discounting anatomically global changes.

4.4. Sensitivity to Cognitive States

Sensitivity analyses were performed to assess the impacts of cognitive
states, individual differences, and motion. In the current case, cognitive

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2020.12.10.420273doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420273
http://creativecommons.org/licenses/by-nc-nd/4.0/


states differ between tasks and trials. Although, each of the four tasks
are commonly used to index cognitive control, cognitive tasks are not
construct-pure. For instance, tasks featuring delays (AX-CPT, Cued Task
Switching, and Sternberg) are thought to be more dependent upon working
memory than those without delays (i.e. the Stroop task). However, many
task-specific factors are the same between high and low control trials of the
same task (i.e. all events prior to the probe). Thus, we control for cogni-
tive similarity across tasks by comparing results across increasing levels of
cognitive similarity: low-control trials, high-control trials, and the contrast
high vs. low control trials. These levels increasingly isolate the cognitive
control construct by increasing control demand (high-control trials) and
controlling for other task events (high vs. low contrast). Methods which
are sensitive to cognitive states will produce more similar results between
task contexts when the cognitive states measured are more similar. Put
simply, we studied between-task similarity in the whole-brain activation
profile under the premise that more similar task conditions should lead to
more similar activation.

We quantified similarity in the activation profile using the Intraclass
Correlation (ICC; [40]) which generalizes the concept correlation to multiple
groups (i.e., four tasks as opposed to pairs). Tasks differed in effect mag-
nitude and there was no theoretical basis for assuming this factor should
be identical between tasks (i.e. we don’t assume each task equally taxes
cognitive control), so we normalized the group-average data (divided by
the standard-deviation over parcels) for each task × method before using
ICC to test similarity in activation.

4.5. Significance Testing for Construct Identification

We used permutation statistics to compare the significance of gener-
alizability tests between methods. When testing the generalizability of
group-level patterns, we treated brain regions as the object of measurement
in intraclass correlations (ICC, [40]) over task classes. Larger ICC values
imply more similar whole-brain activation profiles between tasks. We esti-
mated confidence intervals with bootstrap sampling over the set of brain
parcels.

4.6. Robustness to Motion

In an SI analysis (Sec. 7.8), we compared methods in their robustness
to motion confound. While previous work has established that the model-
fitting technique (MINDy) is robust to motion ([1]) it remains unknown
whether MINDy-based Filtering technique also exhibits similar motion
robustness. Therefore, we compared methods in terms of sensitivity to
motion artifact. We considered three motion metrics for task data including
the number of frames censored based upon framewise-displacement (FD)
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criteria (< 0.9mm), the median framewise displacement, median-absolute-
deviation (MAD) of DVARS ([41]). We analyzed sensitivity by comparing
the similarity (ICC) of results between high-motion and low-motion groups
of subjects (median split for each motion measure).

5. Results

5.1. Structure and Presentation of Results

We designed analyses to answer four questions: 1) do resting-state
MINDy models (partially) generalize to task? 2) does the proposed tech-
nique improve power in answering cognitive-neuroscience questions? 3) can
these methods test hypotheses which were previously impractical? and
4) do improvements reflect theoretically interesting concepts (e.g. signal
propagation) or do they stem from signal-processing/filtering side-effects?
The first question resolves whether the intrinsic dynamics modeled at rest
meaningfully generalizes to task (although not perfectly, as we are interested
in the task versus rest differences). The second and third questions identify
methodological contributions, whereas the last question addresses whether
these techniques also offer additional theoretical insight (i.e. their success
reflects some principle of brain function). This question is important for
determining whether results reflect brain network dynamics or can be more
parsimoniously explained in terms of (non-neural) signal processing effects.

In the main text, we emphasize comparing methods in event-related
analyses due to the popularity of event-related designs. However, we
also compared methods for the analysis of sustained-effects in a mixed
block/event design. These results are presented in SI Sec. 7.5 and 7.6. We
also tested the specific contribution of modeling connectivity by comparing
MINDy-based Filtering with analogous filters using reduced (autoregressive)
models (SI Sec.7.7).

5.2. Identification of Task-Relevant Parcels

In order to compare methodologies (“third-level” analysis) we first identi-
fied task-relevant parcels over which to guage improvements. We performed
this step in two ways: either using a set of parcels consistently engaged
across tasks (“DMCC34”) or separately identifying relevant parcels for each
analysis (i.e., for the different tasks; Fig. 2A,B). In the first case, we used
pilot data and conventional analyses to identify a set of 34 brain regions
which displayed significant increases (p < .05, Bonferoni-corrected) in activ-
ity due to cognitive-control demand across all four tasks (Fig. 2A). This set
is referred to as “DMCC34” and constitutes a “pre-specified” comparison
set as it was developed using a separate set of pilot subjects. It is also
biased away from finding MINDy-based Filtering improvements, since, by
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Fig 2. Statistical frameworks for comparing methods. A) The DMCC34 set of parcels
was defined by all parcels which displayed an effect of cognitive-coontrol demand in
every task based upon separate pilot data using conventional analyses. Hence, the
DMCC34 set of parcels is pre-specified used across all tasks. B) Candidate regions for
task-specific comparisons (parcels-of-interest) are identified for each pairing of task ×
pipeline by combining parcels with group-T meeting p < .001 for at least one pipeline in
a comparison (one-tailed for events, two-tailed for sustained effects). C) Data is
analyzed either using resampling statistics for global measures (e.g. for brain-behavior
correlations, generalizability) or in terms of paired-differences between methods over
each parcel-of-interest.

definition, the parcels were identified as maximizing conventional univariate
statistical contrasts.

In addition, we identified “parcels-of-interest” specific to each third-level
comparison (i.e., task + methods; Fig. 2B). We defined “parcels-of-interest”
as reaching an uncorrected significance of p < .001 for at least one of
the methods being compared (Fig. 2B). We used a slightly more liberal
criteria for identifying these parcels as several of our “third-level” analyses
compare second-level analyses over parcels-of-interest (Fig. 2C), although
we later demonstrate that general improvements in detection power hold
across significance thresholds (Sec. 5.5). These “parcels-of-interest” are
also specific to a given second-level contrast (separate sets for events and
for sustained (block-related) effects). Thus, for each pair of methods (e.g.
MINDy vs. original) we identified one sustained and one event-related set
of parcels for each of the four tasks.

5.3. Resting-state Model Predictions Generalize to Task

The key premise of our approach is that task effects are marked by
systematic deviation from intrinsic brain dynamics, reflecting extrinsic
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Fig 3. Validation of MINDy-based Filtering Framework. Task effects are defined by
deviation from intrinsic dynamics. A) Intrinsic dynamics modeled by MINDy with
resting-state data, remain valid (but less accurate, see SEC) in task. B) Deviation from
intrinsic dynamics (i.e., estimated “input”) mark periods of active task engagement over
long timescales (task blocks) and C) short-timescales (task events; pre-GLM). There is a
peak in unexplained event-related variance (SSE MINDy; pre-GLM) timed to the onset
of probe effects. However, this variance is well-explained by task GLMs (post-GLM)
indicating that event-related deviations from MINDy (fit to rest) are well-described as
additive ”input” to the model. D-F) Timeseries post-MINDy based filtering (red) have
a greater proportion variance attributed to task events. Statistics are averaged over a
set of pre-specified parcels-of-interest (DMCC34) . D) Example timecourse from a BX
(high-control) trial in AX-CPT demonstrates clear increases in task-explained variance
during the probe-response period (7-8 TR). E) MINDy-based Filtering significantly
increased signal variance attributed to any task event in four tasks. F) Improvements in
high-control trials were significant in 3 of 4 tasks (all but Sternberg). Shading indicates
standard error over subjects. “post-GLM” indicates that both the numerator and
denominator SSE are taken after performing GLM (MINDy=MINDy-Filtered), whereas
“pre-GLM” indicates the relative sum-of-squares after MINDy-based Filtering but before
fitting task GLM models. Both B) and C) are taken from AX-CPT (averaged over
scans). Time-courses in C) are event-locked to the start of “high-control” trials.
Vertical line indicates TR7 which marks probe-related effects in AX-CPT (TR 7-8).
“MINDy” denotes results using MINDy-based Filtering, while “pre-Reg” denotes the
pre-regressed control (conventional analyses, but with additional motion-regression
performed pre-GLM).
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influences (“input”). As such we seek to estimate these influences by
filtering out intrinsic dynamics to recover task “input” (we stress that
“input” should not be taken literally; see Sec. 2.2,6.3.2). In practice, this
operation corresponds to computing the difference between model-predicted
and observed changes in brain activity at each timestep. The validity of
our framework thus rests upon three claims: 1) that task events are marked
by (slight) deviations from intrinsic-dynamics, 2) that these deviations
are systematic and can be modeled as additive “input” to the otherwise
preserved dynamics, and 3) estimated inputs are a more consistent marker
of task effects than the original BOLD signal.

Our first claim, that task events deviate (slightly) from intrinsic dynam-
ics is observed by comparing MINDy prediction accuracy over task and
“rest” blocks (3 task blocks and four rest blocks per run). During “rest” pe-
riods, prediction accuracy is nearly as high as for the training resting-state
data. Overall, the range of model prediction accuracies for resting-state
scans (R2 = .58 ± .06) was roughly similar to that observed during task
(R2 = .56± .08, .54± .07, .56± .08, .50± .09, for AX-CPT, Cued-TS, Stern,
and Stroop, respectively; Fig. 3A). However, prediction accuracy differed
between periods in-between task blocks (“rest” blocks) and when subjects
were actively engaged in task. During “rest” blocks, MINDy predictions
were no worse than for resting-state scans. In AX-CPT and Stroop accuracy
during “rest” blocks was significantly greater than for resting-state scans
(paired− t(70) = 3.5, p = .0008; paired− t(70) = −4.5, p = 2.4E − 5) and
for the other two tasks, the MINDy modeling of resting-state scans and
rest-blocks within task scans was equally accurate (t(70) = −1.1, t(70) =
1.2, n.s.) for Cued-TS and Sternberg). By contrast, model accuracy de-
creased when subjects were actively performing each task (p′s ≤ E − 8),
while remaining well above chance (R2 = .54±.08, .52±.08, .54±.08, .45±.10,
same task order; Fig. 3A,B). An illustration of the pattern is shown for
a representative task (Cued-TS), showing the amount of variance (R2)
explained by MINDy at each TR across the whole-scan timeseries (Fig.
3B). Deviations from model predictions (unexplained variance) are also
greatest during the probe/response period (Fig. 3C), indicating that these
deviations are a strong marker of task events. Thus, intrinsic dynamics
observed at rest still predict task dynamics, but the degree of accuracy is
tightly coupled to task events.

Our second claim is that these deviations are systematic and can be
well-approximated as an exogeneous “input” to the existing dynamics. Sta-
tistically, this assumption corresponds to the residuals (MINDy prediction
minus observed) being shifted (event-locked change in mean) during task
events, as opposed to changing variance, which could reflect a breakdown
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of the underlying dynamics. For this analysis we only considered parcels
known to be task-related: the DMCC34 set as the subsequent analyses as-
sumes that the signal is task-related. Using Finite-Impulse-Response GLM
designs we compared residual sum-of-squares before and after removing
the effect of trial-period. Squared errors were averaged over the DMCC34
parcel-set for each subject. Analyses demonstrate that the probe-related
increase in error (task-average: t(70) = 7.2, p < 4E − 9) is captured by
an additive main effect of trial-period as the post-GLM unexplained sum-
of-squares was not greater for the probe period in any task (n.s. 1-tailed)
and actually decreased overall (task average: t(70) = −4.5, p = 2.6E − 5).
Thus, task-induced deviations from intrinsic dynamics are systematic and
well-described by additive “input” to the system.

Lastly, we assume that removing (“filtering”) intrinsic dynamics will
accentuate task effects in the data by removing variance due to intrinsic
dynamics. At present, we only consider spatially univariate effects (unlike
e.g., MVPA), hence we tested the relative variance explained by task with
and without MINDy-based Filtering. As in the previous analysis, we used
the mean over DMCC34 parcels, as this analysis assumes that there is a
true task effect to accentuate. Results indicate that MINDy-based Filtering
generally increased the variance associated with task events. This result held
for all tasks when combining across trial-types and for three-of-four tasks (all
but Sternberg) when restricted to high-control trials. Thus, MINDy-based
Filtering has the potential to improve the variance associated with task
effects in human BOLD. We note that some inter-trial variability in brain
activity can be related to behavior, so future study is needed to understand
how MINDy-based Filtering affects veridical trial-to-trial variation (in a
later section we find improvements in inter-subject behavioral prediction).
However, these results demonstrate that our approach is well-justified and
statistically powerful in identifying the types of simple (univariate) models
of brain activity that are most common in neuroimaging.

5.4. MINDy-based Filtering Accounts for intra and inter-subject Variability

We also tested whether these intrinsic dynamics explain unique variability
above the task GLM. This test is important for determining whether MINDy
serves to predict the mean brain-response for each trial-type or whether
it also predicts trial-to-trial variability. We quantified these properties
through sum-of-squares partitioning (ANOVA). Across all tasks, we found
that the proportion of unique variance explained by MINDy was significant
(41.2% on average, Fig. 4A). However, MINDy predictions and the task
effects do have some overlap (a non-zero MINDy×task sum-of-squares, Fig.
4A), thus MINDy predictions account for some of the variation in both
the trial-to-trial variability (variation unique to MINDy) and the typical
response across trials (MINDy × task interaction). We also tested how
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Fig 4. MINDy-based Filtering reduces variability within and between subjects. A)
MINDy-based Filtering accounts for a significant portion of unique variability within
each subject’s data. This effect holds across tasks (results averaged over all parcels,
subjects). Variance partitioning was performed after removing variation due to nuisance
factors (motion and drift). B) Difference in the relative group-explained variability
between MINDy and the original data. Note that MINDy-based filtering actually
decreases the proportion of group variance in some regions, but increases for
task-implicated regions (e.g. lPFC). C) Group-explained variability particularly
increased in parcels which already had a strong effect under original analyses (putative
task-relevant parcels). D) MINDy-based Filtering reduces the between-subject
variability of task-evoked signals. Example shown is the mean signal over the DMCC34
parcels for the Cued-TS high control-demand condition (incongruent trials). E)
Variability also decreases for contrasts between conditions. Example shown is for the
AX-CPT (BX-BY contrast). ‘MINDy” denotes results using MINDy-based Filtering
before performing GLM, while “Orig” denotes the conventional pipeline (no MINDy).
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MINDy-based Filtering impacts variability in the evoked-response between
subjects. We restricted these analyses to the pre-defined set of regions (the
DMCC34 parcels, [24]) which were previously identified as having a signifi-
cant control-demand effect across tasks. Results demonstrated that MINDy
filtering decreased inter-subject variability in both main effects of trial-type
(e.g. Fig. 4D) and the contrast between trial-types (e.g. Fig. 4E). In partic-
ular, these analyses and associated event-related timecourse visualizations
reveal that the peak task-related effects become sharper (more well-defined),
as well as more temporally-precise, after MINDy-based filtering. We used
ANOVA to partition variance in the cognitive control effect into group-
level variance and individual variance over the relevent (probe) trial periods.

We then tested whether MINDy increased the proportion of cognitive
control effects attributed to a common group factor (sum-of-squares ex-
plained for the group model divided by the full/subject-specific models).
As expected, regions implicated in cognitive control, such as the lateral
and medial prefrontal cortex, anterior insulae, posterior cingulate, and
posterior parietal cortex, had larger proportions of variability explained by
the common group factor (analogous to Fig. 5A,B). MINDy-based Filtering
increased the proportion variance explained by group-level models (relative
full models) for the DMCC34 parcels (∆µ = .034± .023, paired− t(33) =
8.56, p = 6.9E − 10). Brain-wide, parcels in which MINDy increased
group-explained variance, had larger group-explained variance in the orig-
inal analysis (t(417) = 4.92, p = 1.2E − 6) and the increase in group
variance-explained (MINDy-Orig) was correlated with the original variance
explained (r(417) = .40, p = 7.5E−17). Thus, MINDy-based Filtering only
increases group-level effects in task-implicated brain regions (those that
already had a group-effect). Conversely, the relative variance attributed to
subject decreased correspondingly (same statistics, but sign-flipped since
SSIndiv\Group/SSFull = 1 − SSGroup/SSFull). Thus, by removing intrinsic
brain dynamics, MINDy-based Filtering reveals more similar task-effects
between subjects.

5.5. Improved Group-Level Detection Power

We tested whether MINDy-based Filtering improved statistical power in
detecting group-level neural effects for each task, and in an omnibus test
across tasks (Fig. 5A,B). For each event-related pairwise comparison of
methods, we calculated group-level statistics from the GLM beta estimates
of each task-relevant parcel (see Sec. 5.2). Results indicate that MINDy-
based Filtering significantly increased statistical detection power on all tasks
(four of four) for the event-related contrast relative to both the traditional
pipeline and the pre-regressed control pipeline (all p’s≤1.2E-4; Fig. 5 C).
For omnibus analyses, we collapsed observations across tasks (Fig. 5A,B).
Results indicated that MINDy-based Filtering generally increases statistical

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2020.12.10.420273doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420273
http://creativecommons.org/licenses/by-nc-nd/4.0/


MINDy: Task Avg.

Original: Task Avg.

A AX-CPT

.01 10-4

Cued-TS

Sternberg Stroop

C
oh

en
's

 D
Sig. Threshold (p)

10-5 10-10.1

.1

C
oh

en
's

 D

MINDy
Orig
Thresh

C

10-5 10-10.1

10-5 10-10.1

.5

1.5

1

0

B

p<.001p<.001

p<.001 p<.001
Group T

Group T

.5

1

0

.5

1

0

.5

0

Fig 5. MINDy-based Filtering improves statistical power in identifying task effects. A)
Average group-level T -statistic for MINDy-based Filtering across tasks in which the
parcel had a significant cognitive control effect for at least one method. Uncolored
parcels did not meet significance averaged across tasks. B) Analogous results for
conventional analyses. C) Effect-size (Cohen’s D) for parcels meeting significance for at
least one method by task and across significance thresholds (uncorrected). Magenta
indicates the corresponding thresholds in terms of effect size (one-tailed) and shading
indicates standard errors. ”MINDy” denotes MINDy-based Filtering and “Orig”
denotes the original pipeline. We only plotted the original pipeline for comparison due
to visual overlap with results from the pre-regressed pipeline (i.e. original and
pre-regressed were indistinguishable).

power for event-related analyses (vs. original: paired-t(495) = 27.5, p ≈ 0,
vs. pre-regressed: t(492) = 27.9, p ≈ 0).

We also tested whether improvements depended upon the criteria used
to select task-relevant parcels, since methods were only compared on these
parcels. Whereas the previous analysis used a fixed selection criteria (see
Sec. 5.2), this analysis compared methods over a range of statistical thresh-
olds for identifying task-relevant parcels to ensure results generalize across
dietection criteria. Thresholds were defined by uncorrected within-method
(second-level) significances ranging from p = .1 to p = E − 10, one-tailed.
We compared methods on all parcels that met a given threshold for at
least one pipeline (original, pre-regressed, or MINDy). We imposed a mini-
mum of 5 parcels for comparison which restricted the range of Cued Task
Switching (minimum threshold: p = E − 5), while all other tasks had a
sufficient number of parcels (AXCPT: n=10, Stern: n=7, Stroop: n=58)
meeting even the most stringent criteria (p ≤ E − 10). Results indicated
that MINDy-based Filtering improved statistical power (effect size) relative
conventional analyses on all tasks for all detection levels considered. Our
approach also increased statistical power relative the pre-regressed control
for all but one case (when only five parcels were compared for Cued-TS;
t(4) = 2.5, p = .065, 2− tailed). We conclude that the proposed techniques
improves statistical power in task-related parcels, regardless of how strictly
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”task-related” is defined.

One limitation of the previous tests, however, concerns the determina-
tion of which parcels are included in analysis: we compared effect sizes
in parcels that met a significance criteria (i.e., already had large effect
sizes). This approach is anatomically parsimonious in that the comparison
regions are informed by data rather than prior assumptions. However, this
dependency could produce biases. Therefore, we repeated the previous
analyses over a fixed set of 34 pre-specified brain parcels (SI Table 1, [24])
that demonstrated significant increases due to cognitive conflict (event-
related contrast) across all four tasks during independent and pre-specified
analyses (see Methods, [24]). The implicated parcels agree with previous
studies mapping the neuroanatomy of cognitive control and are largely
located along lateral prefrontal cortex and anterior insula (Salience/Ventral
Attention and Control networks; [42], [32]). Analyses over this restricted,
pre-specified group of parcels agreed with the previous results: the omnibus
(all task) statistical detection power and the task-specific effect sizes all
improved relative to both the original pipeline and the pre-regressed con-
trols (maximum p = 1.8E − 4). Thus, results indicated that MINDy-based
Filtering improved statistical detection even when analyses were restricted
to this group of 34 pre-specified parcels.

5.6. MINDy-based Filtering Selectively Enhances Task-Related Neural Sig-
nals

Results in the previous section indicate that the proposed technique
increases the statistical detection power of task effects (Fig. 5C). Statistical
power and effect sizes are useful benchmarking criteria as they are easy
to interpret and relate to potential applications. However, these markers
are also limited in that they indicate the ability to reject a generic null
hypothesis of no task effects. Yet this generic null is not always a useful
benchmark from which to provide additional scientific insight. For instance,
approaches which magnify anatomically global effects may provide little ben-
efit to functional “brain-mapping” studies, which are most meaningful when
they differentiate between brain regions. Therefore, we tested whether the
improvements found with MINDy-based Filtering are anatomically global
or serve to further differentiate regions (i.e., are anatomically selective).

We consider two sorts of global effects: additive “shifts” in the global sig-
nal and global “scaling” of task effects. In statistical modeling terminology,
the former reflects a main-effect (intercept) of method, whereas the latter
reflects the method-specific slope. We modeled the differentiation between
brain regions as either a main effect of regional significance (i.e., whether a
region has a significant effect) or as an interaction with regional significance
reflecting either a shift or rescaling of effect sizes of significant regions
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Fig 6. MINDy-based Filtering enhances task-related signals relative to controls. A)
Comparison of parcel significance before and after MINDy-based Filtering collapsed
across tasks. The multi-level model fit (averaged across the main effect of task) is
plotted in red and the threshold-nonlinearity indicates sensitivity to parcel-significance.
B) Task-specific comparisons relative the original analyses. Improvements can be seen
in the number of parcels exhibiting higher t-values after MINDy-based Filtering relative
to conventional analyses (i.e., above the identity line). Yellow dots indicate significant
parcels (in terms of the control-demand effect) which also had increased effect sizes from
MINDy-based Filtering, while blue dots denote significant parcels whose effect sizes
were larger with conventional analyses. Teal dots denote parcels which did not exhibit a
significant control-demand effect for either method. ”MINDy” denotes MINDy-based
Filtering and “Orig” denotes the original pipeline. Results with the pre-Regressed
pipeline were indistinguishable from those with the original pipeline.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2020.12.10.420273doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420273
http://creativecommons.org/licenses/by-nc-nd/4.0/


due to MINDy-based filtering, relative to the control models. We use the
logical-valued variable Sigtask,Parc to denote whether a parcel exhibited a
significant effect for either method in a given second-level task analysis.
We denote the MINDy-filtered second-level estimate (group-T) for each as
Ytask,Parc which is modeled as a function of matched control analyses (e.g.
the original GLM or pre-regressed) which are denoted Xtask,Parc:

Ytask,Parc = βtask + β0Xtask,Parc + Sigtask,Parc(β1 + β2Xtask,Parc) + εtask,Parc.
(24)

We assume that ε is independently and identically distributed across tasks
and parcels (iid.). The coefficient β1 represents the main effect of parcel
significance as a binary factor, while β2 represents the interaction with
parcel effect size in control methods. Conceptually, these two components
represent the degree to which MINDy-based Filtering further separates
task-implicated and non-implicated parcels and the degree to which differ-
ences among task-implicated regions are further magnified, respectively.

Results indicate that the MINDy-based Filtering technique demonstrates
differential sensitivity, in that improvements are greater in task-implicated
regions (Fig. 6A). The main effect of event-related regional significance was
significant relative both the original (β1 = .97± .09; t(1669) = 10.8, p ≈ 0)
and pre-regressed pipelines (β1 = 1.05 ± .09; t(1669) = 12.2, p ≈ 0).
This result indicates that MINDy-based Filtering further separates event-
implicated and non-implicated regions rather than simply increasing global
statistical features. This feature also held at the single-task level in which
linear models revealed a main effect of regional significance in all four tasks
for both original (max p = .0007; Fig. 6B) and pre-regressed controls (max
p = .0025). MINDy-based Filtering also differentially magnified effect sizes
relative the original analysis (β2 = .075± .023; t(1669) = 3.3, p = .001), but
this effect was small and did not reach significance for the pre-regressed
control (β2 = .034± .022; t = 1.53, p = .13, 2-tailed) . Thus, task-implicated
regions experienced the greatest improvements due to MINDy-based Fil-
tering. For the current dataset, this approach primarily functioned to
further highlight task-implicated brain regions (a main effect of regional
significance) rather than magnifying the differences between task-implicated
regions. These results imply that MINDy-based Filtering is sensitive to
task-implicated brain regions rather than inducing anatomically global
effects.

5.7. Identifying a Latent Cognitive Construct

The previous analyses indicate that MINDy-based Filtering enhances the
identification of neural activity associated with a set of contrasts between
trial-types (theoretical high control-demand trials minus low control-demand
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Fig 7. MINDy-based Filtering enhances cross-task similarity and behavioral prediction
of cognitive control. A) MINDy increases the similarity of brain activation profiels
(Generalizability Coefficient/ICC) between task conditions that engage similar
psychological mechanisms (high-low cognitive control contrast) across tasks, but not
when conditions do not isolate a common construct (low control trials). B)
MINDy-based Filtering enhances correlations between event-related responses (average
over DMCC34) and RTs in each task (collapsed across the 3 scanning sessions). C)
MINDy-based Filtering also enhances the correlation between sustained responses in
DMCC34 and error-rates (baseline session). Analogous results for the pre-regressed
pipeline are displayed in SI. “MINDy” denotes MINDy-based Filtering, pre-Reg denotes
the control pipeline with motion regression performed before GLM fitting, and
”Original” denotes the conventional pipeline. Fig. 11C,D.

trials). However, many cognitive neuroscience studies seek to understand
cognitive constructs, as opposed to unitary tasks. In the current section,
we explore how well each method identifies the neural correlates of one such
construct: cognitive control. The four tasks we studied have all been previ-
ously used to index cognitive control (typically via the difference between
high-control and low-control trials). However, because the tasks themselves
are not construct-pure (i.e., they tap multiple cognitive constructs) the
neural activity associated with tasks is also expected to be non-identical.
To control for this fact, we used the different trial types to generate lev-
els of “construct-purity” in terms of cognitive control: low-control trials
(low purity) and the high-vs.-low contrast (high purity). We consider the
high-vs.-low contrast to be more “construct-pure” in terms of cognitive
control since it controls for many of the other cognitive processes that
differentiate tasks. For instance, speech production (unique to the Stroop
task), is identical between high and low-conflict trials (the same set of
words are produced). Likewise, working memory maintenance during delays
(Sternberg, AX-CPT, and Cued-Task Switching) does not differ between
high and low control-demand trials since these trial-types are identical
through the delay period (up until the probe).

We tested how sensitive each approach was to the cognitive control
construct via the relationship between “construct-purity” and cross-task
similarity of neural effects. For this test, we indicate that a measure is
“sensitive” to a factor (cognitive constructs) if the similarity in measure-
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ments reflects the similarity in that factor. We therefore consider a measure
“sensitive” to cognitive constructs if it reports higher similarity between
tasks for the high “construct-purity” condition (high-vs.-low control demand
contrast) than for the low “construct-purity” condition (low demand trials).

We tested whether increasingly similar psychological contexts (condi-
tions) across tasks are associated with more-similar neural effects using the
Generalizability coefficient (a form of inter-class correlation/ICC; [40]). We
compared measures in terms of their generalizability in tasks conditions
which tapped a common construct (cognitive control demand) as well as con-
ditions in which tasks were less psychologically similar. We predicted that
MINDy-based Filtering would identify greater neural similarity between
psychologically similar task conditions (higher generalizability/ICC) rela-
tive to psychologically dissimilar conditions, reflecting construct-selectivity.
Conversely, we expect the ICC for psychologically disimilar task conditions
(“low purity”) to be lower, reflecting disimilar neural activity patterns.
The ICC “units of observation” consisted of the group-mean beta for each
brain parcel (all 419 brain regions) and “classes” consisted of the different
tasks. Results indicated that the proposed technique was sensitive to the
cognitive control construct at group level (Fig. 7A). In the “low-purity”
condition, with MINDy-based Filtering there was significantly lower simi-
larity between tasks (ICC = .50± .02) than the original and pre-regresed
pipelines (p′s < .001, 5,000 bootstraps). Thus, MINDy-based Filtering
does not generically increase the similarity of task results irrespective of
cognitive construct. By contrast, for the “high-purity” condition, MINDy-
based Filtering generated significantly more similar results across tasks
(ICC = .60± .03)than the original and pre-regressed pipelines (p′s < .001,
5000 paired bootstraps). We conclude that MINDy-based Filtering im-
proves sensitivity to the cognitive control construct at group-level. Based
on the nature of how these ICCs were calculated, the finding can also be
interpreted as indicating that the anatomical profile of effects (i.e., the
gradient of effect sizes across the brain) becomes more similar or consistent
across tasks after MINDy-based filtering.

5.8. MINDy-based Filtering Enhances Brain-Behavior Relationships

The previous section demonstrated that neural effects identified with
MINDy-based Filtering better generalized across task conditions tapping a
common construct (cognitive control). In this section we demonstrate that
this relationship also holds for behavior by using individual differences in
task effects to predict the corresponding variation in behavioral cognitive
control effects.

To isolate the effect of cognitive control demand we contrasted high-
control and low-control trials for both the neural and behavioral data.
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This approach, comparing trial types, is common in neuroscience including
the neuroscience of individual differences. We found, using conventional
analysis, that brain-behavior relationships were greater for the contrast
between trial-types than for trial types in isolation. Averaged over tasks,
the original pipeline had a mean correlation with RT of ρ = .21 for high-low
vs. ρ = −.15 for high alone. The analogous correlations for MINDy were
ρ = .36 (high-low) and ρ = −.08 (high only). For this reason, we employed
the high-vs.-low control contrast in comparing methods.

For each subject× task × session, we summarized event-related effects in
each task× method via the difference of normalized (z-scored over subjects)
high and low control trial coefficients averaged over the DMCC34 set
of parcels and similarly for sustained effects. Behavioral measures were
similarly defined by the difference in normalized RT between high and low
control trials and the accuracy in high control trials (nearly identical results
are derived using high-low since low-trial accuracy is near ceiling). We found
that MINDy-based Filtering increased the recorded correlations with RT
for each task (Fig. 7B) and the average change in correlation across tasks
was statistically significant (vs. original and vs. pre-regressed: p < .05,
5,000 bootstraps). Similarly, our approach increased correlations with
accuracy (p < .05, 5,000 bootstraps, Fig. 7C). Interestingly, we found that
across methods, individual differences in RT were positively correlated with
the conflict-related (event) brain response but had a weaker relationship
to sustained activity (Fig. 11A,B). By contrast, individual differences in
accuracy were positively correlated with sustained activity, but unrelated to
event-related activity (SI Fig 11A,B). Therefore, we compared methods in
predicting RT using event-related estimates and in predicting accuracy using
estimates of sustained activity. Results using the pre-regressed pipeline are
depicted in SI Fig. 11 C, D. We conclude that after MINDy-based Filtering,
individual differences in brain responses better predict behavioral measures
associated with cognitive control.

6. Discussion

We demonstrated that MINDy-based Filtering increases the ability to
detect both event-related (cognitive control-demand) and sustained brain
responses in task fMRI (Sec. 5.5, SI Sec. 7.5). These effects are strongest
in task-implicated brain regions (Sec. 5.6) and generate higher tempo-
ral precision than the original BOLD timeseries. By modeling and then
partialing-out intrinsic dynamics, MINDy-based Filtering reduces both
trial-to-trial variability within subjects, and variability between subjects
(Sec. 5.4). However, while the absolute magnitude of subject-to-subject
variability decreased, individual differences (and group—level activity) in
a latent cognitive construct (control-demand) generalized better between
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tasks after MINDy-based Filtering (Sec. 5.7). MINDy-estimated task ef-
fects were also more predictive of individual differences in behavior (Sec.
5.8). These results suggest that MINDy-based Filtering can enhance the
detection of task-evoked brain activity.

6.1. Relationship with Frequency-Based Filtering

Frequency-based (spectral) filtering has been applied to fMRI signals in
many previous studies ([43],[44]). High-pass filtering is commonly applied
to both resting-state and task data to remove signal drift which is thought
to largely reflect changes in non-neuronal variables. Low-pass filtering is
also sometimes applied, primarily for resting-state data. Although these
approaches were common in early fMRI experiments, the changing nature
of fMRI acquisitions (e.g. TR length) and analyses (e.g. functional con-
nectivity) has led to renewed debate over these techniques ([45]) and the
development of more sophisticated methodologies (e.g. [46],[47]). In the
current work, we did not perform spectral filtering (instead using AFNI’s
“polort” function for polynomial basis de-drifting). Likewise, MINDy-based
Filtering is not a direct replacement for spectral filtering, which can be
applied before our technique, afterwards, or not at all. However, as pre-
viously mentioned, when the connectivity parameters of the model are
zero, the proposed technique reduces to a form of spectral filtering based
purely upon autoregressive models. Empirically we have demonstrated
that MINDy-based filtering outperforms filters based upon autoregressive
models (SI Sec. 7.7, SI Fig. 10), so effects cannot be attributed solely to
removal of particular frequency components within each region.

Notably, MINDy-based Filtering improves detection in both sustained
and event-related analyses over both conventional methods and autore-
gressive filters. By contrast, filters based upon autoregressive models are
expected to underperform in the identification of (low-frequency) sustained
effects, as we confirmed in supplemental analyses (SI Sec. 7.5). At a
statistical-level, dynamical systems models (including MINDy) capture the
multivariate partial autocovariance between successive time-points (i.e. how
xt+1 is related to xt). As a result, removing these predictions from the
training data (Rest) inherently yields a timeseries with lower autocovariance.
The improved detection of sustained effects is therefore significant as it in-
dicates that MINDy-based Filtering reveals systematic differences between
the resting-state and task dynamics rather than simply acting as a high-pass
filter. These effects are also more pronounced in task-implicated parcels
(Sec. 5.6, Fig. 6) indicating that these features are also context-related.

6.2. Relationship with other approaches

The current approach is conceptually related to several current initiatives
for linking resting-state and task-state brain activity. Our approach uses
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resting-state brain dynamics to extrapolate patterns of intrinsic dynamics
that also factor into brain activity during task states. Frameworks such as
Activity Flow ([8]) have demonstrated similarity between the spatial aspects
of evoked responses and resting-state network structure. Likewise, func-
tional connectivity patterns have been found to be roughly similar between
resting-state and task ([48]). However, whereas these frameworks are largely
employed to discover similarities between spontaneous and evoked activity,
we analyze the manner in which the task-state deviates from resting-state
activity over short time-scales (how activity changes over short time-steps
or TRs).

Other approaches have also investigated the difference between brain
dynamics in task-state and resting-state. Previous work ([11], [10]) has
demonstrated that intrinsic dynamics shape task-evoked activity on a
trial-by-trial basis and modeling studies have reproduced the statistical
differences between task and resting-state activity ([12]). Our approach
furthers these efforts by leveraging these underlying concepts into an em-
pirical modeling/analysis framework.

Dynamic Causal Modeling (DCM, [19]) frameworks have also used em-
pirical dynamical systems models to improve estimates of task effects. As
previously mentioned (Sec. 1.2), DCM techniques allow task effects to
manifest changes in the exogeneous drive to brain regions and (for small-
scale DCMs) the effective coupling between brain regions. By contrast,
the current MINDy-based Filtering technique only models a single factor:
changes in the input to each brain region, which collapses both of these
mechanisms into a single term, as is also common in larger-scale DCM
models (e.g. [21]). Our approach differs from all DCMs, however, in that we
produce a timeseries of latent state estimate (task-related “input” to each
region) which does not require any preconceived model of task effects (i.e.,
that they follow a certain temporal pattern). In the current work, we used
statistical GLMs to analyze the MINDy-filtered data with Finite Impulse
Response models fit for each trial type and additional components to model
task blocks (mixed block/event-related designs). However, the end-product
of our technique (a timeseries) could, in principle, be analyzed with a
wide variety of methods, including parcel-level multivariate techniques (e.g.,
multivariate pattern analysis; MVPA).

.

6.3. Limitations

The proposed work rests upon three related claims: 1) intrinsic dynamics
are roughly conserved between task periods and rest, 2) that by subtracting
intrinsic dynamics we identify changes in “input” to each brain area and
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3) that the signal generated by this calculation is a better marker of
task effects (ostensibly task-related cognition). The first two claims are
interdependent. We have mathematically defined changes in “input” as
the signal components which are not explained by intrinsic dynamics (the
residual after subtracting the modeled intrinsic component). The accuracy of
estimated changes in “input” thus hinges upon whether the modeled intrinsic
dynamics meaningfully generalize. We attempted to address this question
empirically (see Sec. 5.3), and the results suggest that this assumption does
hold. Specifically, we found that MINDy models estimate variation in the
timeseries better during rest-blocks than task-blocks, which makes sense as
the short rest blocks during task scans are more akin to resting-state scans.
Moreover, even within task blocks, accuracy is well above chance and the
timepoints that are not well explained by MINDy models (derived from
resting-state) are precisely those during peak task effects (probe periods
during each trial). Conversely, after MINDy-based Filtering these periods
were well explained by task-based GLMs (with more variance explained
than if MINDy-based Filtering were not applied) which indicates that the
deviation from models is well explained by systematic, additive “input” to
the model, as opposed to a breakdown in model-assumptions which would
increase trial-to-trial variability. We also note that the generalizability
assumption is “soft” in the sense that small changes in effective connectivity
do not violate our assumptions. Since each connection describes the strength
of input to the “post-synaptic” region, changes in connection strength are
absorbed in the input estimate (summing over “pre-synaptic” sources).
However, our assumption that MINDy-based Filtering removes mostly
”nuisance variance” could be violated by some forms of large, systematic
changes in effective connectivity. Fortunately, this assumption is easy to
check (e.g., see Sec. 5.3) and we have not found evidence of its violation.

6.3.1. Methodological Considerations

The bulk of our results concern the last claim (improved detection power)
and the demonstration that observed statistical improvements are related
to task-specific neural processes. We performed these tests using several
controlled comparisons and lines of inquiry. However, our efforts in this
domain are limited by using a specific subset of cognitive tasks: those used
to index cognitive control. As the set of potential cognitive constructs
remains vast, further testing in other cognitive domains may be useful.

Another limitation concerns how MINDy models are parameterized.
Since we parameterize models based upon resting-state data, we require
the collection of both resting-state and task data for each subject which
increases data requirements. Moreover, this dependency could prove prob-
lematic for low-quality resting-state data, as mis-specified resting-state
models could corrupt task estimates. We found that individual differences
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in goodness-of-fit were consistent across tasks (see SI Sec 7.2) so this possi-
bility cannot be ruled out. However, previous analyses of MINDy modeling
indicated that the goodness-of-fit is not related to individual differences
in motion ([1]) and, similarly, MINDy-based Filtering was not impaced
by individual differences in motion (SI Sec. 7.8). The results also do not
support model overfitting, as goodness-of-fit did not decrease when applied
to inter-block task periods (”rest” blocks) relative to training (rest) data
(Fig. 3A). We also observed that using the group-average MINDy-Filter
improved results relative conventional analyses (but less than individualized
models; SI Sec. 7.3) so using a common MINDy Filter may ammeliorate
short/low-quality resting-state data. Further study may therefore be bene-
ficial in determining which factors (neural or nuisance) influence individual
differences in goodness of fit, as these factors could influence estimated
individual differences in task variables.

6.3.2. Mechanistic Considerations

Future study is necessary is necessary to disambiguate which biologi-
cal mechanisms contribute to the calculated “input” signal. For decades,
computational neuroscience models have largely formalized task context
as an exogeneous forcing (“input” or “bias”) term in neural networks and
connectionist models (e.g. [49], [50], [51], [52], [53]). This formulation
is appealing for its simplicity; however, external contexts serve only as
“inputs” during sensory transduction, since brain activity is known to mod-
ulate even sensory neurons (e.g. [54], [55]). Even when these effects are
neglected, many modeling studies assume that brain regions receive task
“inputs”, even if these regions are not directly enervated by sensory nerves
(e.g. [51]). As a result, these “inputs” should not be interpreted as literal
inputs to the brain (i.e. signals from sensory nerves). Rather, these “inputs”
include the initial propagation of such signals over the fMRI sampling rate
(1 TR), so our approach is limited by the temporal resolution of fMRI BOLD.

The nature of these “inputs” is also somewhat underspecified. In the
current approach, we use MINDy to model the propagation of brain signals
during resting-state. The model predicts task-fMRI activation based upon
the effective connectivity parameters estimated from resting-state. How-
ever, these parameters are limited to describing the relationship of bulk
activity between brain regions. Many brain regions contain diffuse sets of
neurons with heterogeneous axonal connectivity profiles. Several lines of
evidence suggest that task-contexts can modulate the effective connectivity
between brain regions via selective recruitment of neurons in synchronous
ensembles ([56], [57], [58]). Our approach is therefore limited, in that it
does not explicate how changes in “input” relate to changes in the effective
coupling between brain regions. Future studies may improve upon the
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current approach by further modeling how task events modulate effective
connectivity between brain regions. Such studies could either directly pa-
rameterize connectivity × task interactions (as in DCM), or extend the
filtering approach to estimate time-varying (or state-varying) connectivity.

6.4. Task Dynamics Could Potentially Influence Statistical Improvements

The current approach serves to estimate latent changes in input to each
brain area. In the present study we found that MINDy-based Filtering con-
sistently improved statistical detection power across tasks. However, there
may be contexts in which brain activity (x(t)) is a more consistent marker
of task context than input (I(t)). Such cases occur when different input
patterns (i.e., inter-trial variability in input) lead to the similar outcomes
in terms of activity. In these cases, MINDy-based Filtering might actually
decrease detection power, since the “input” on each trial is less consistent
than its long-term consequences. Future studies might identify such cases
using a wider variety of tasks.

One area in which our approach could also be limited is in detecting
slow neural events in which task-related activity evolves over multiple TRs.
Since our approach acts as a pre-processing filter (i.e. doesn’t use task
information) it is possible that it could filter out the propagation of very
slow task-related activity in addition to task-unrelated activity. However,
this cancellation is only expected when task-related activity propagates
identically (has the same dynamics) to spontaneous brain activity. In
practice, we have found that MINDy-based Filtering improves the detection
of sustained brain activity and strengthens brain-behavior linkages (Sec.
5.8, SI Sec. 7.5).

6.5. Conclusion

In the current work, we proposed a new technique to estimate the
influence of external contexts (task conditions) on brain activity (in our case
fMRI). This technique forms a mathematical filter and therefore functions
as a preprocessing step rather than as a direct tool for hypothesis testing.
This property is advantageous as it allows this approach to be used in
conjunction with a variety of existing methods. We have demonstrated that
using MINDy-based Filtering improves statistical power (Fig. 5C), increases
sensitivity to task-implicated regions (Sec. 5.6; Fig. 6)), and better identifies
the neural signatures of a latent cognitive construct (cognitive conflict)
(Fig. 7A). Moreover, MINDy-based Filtering enhances the strength of
brain-behavior reslationships that differentiate subjects (Fig. 7B,C). These
improvements are not sensitive to motion within a reasonable range (SI
Sec. 7.8). Our technique can be easily inserted into most fMRI processing
pipelines and we have made code available via the primary author’s GitHub
to facilitate this process.
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Fig 8. Comparison of signal decomposition via background-activity vs. MINDy-based
Filtering. A) Toy model of a two node network with separate inputs to each node. B)
Simulated timeseries. MINDy-based filtering decomposes the timeseries into the filtered
”input” (C) and the model-predicted activity based upon intrinsic dynamics (D). By
contrast, task-regression decomposes activity into a main-effect of task estimated by
GLM (E) and ”background activity” (F).

7. Supplemental Information

7.1. Relationship with Background-Activity

Our framework is conceptually related to that of background activity
([59, 60, 61, 62]) in which brain activity during task is modeled as the su-
perposition of a canonical task-evoked response and trial-to-trial variability
(“background activity”). In that approach, background activity is isolated
by subtracting the task-related component as estimated during statistical
GLM analyses, and it has been used to estimate Functional Connectivity
during task ([59, 60, 61, 62]). However, despite both approaches dividing
brain activity into two components, our approach fundamentally differs
in terms of what signals are considered task-related vs. intrinsic. Nondy-
namic approaches divide the observed signal into systematic task effects
and zero-mean “noise” (in the GLM sense) whereas dynamic frameworks
consider both extrinsic and intrinsic contributions to how the brain evolves
moment-to-moment. Passive downstream propagation of brain activity is
predicted by intrinsic dynamics so these indirect effects are attributable to
intrinsic factors despite being systematic (nonzero mean). As a result, these
features remain in conventional GLMs but are removed during MINDy-
based Filtering. We illustrate this point in a toy-model simulation featuring
two linear nodes with a single directed connection and time-varying input
to each node (Fig. 8 A,B). As the simulation indicates, MINDy-based
Filtering extracts the timeseries of input to the system (Fig. 8 C) whereas
downstream effects (i.e., the activation of n2 due to n1) are predicted
based upon intrinsic dynamics (following the initial input; Fig. 8 D). By
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contrast, conventional GLM analyses do not separate direct and indirect
processes and ascribe both features to the task-effect (Fig. 8 F, G). For this
reason, the background activity and model predictions are not equivalent.
Of course, unlike this toy simulation, neural processes occur over multiple
timescales, many below fMRI resolution. As such, the estimated ”input”
actually reflects early processing and later active processing (as opposed
to direct input from sensory nerves) and model-predictions reflect passive
propagation of these signals over longer timescales. In our data, model
predictions are more similar to the original timeseries than to the estimated
“background activity”. Thus, although our approach has some conceptual
relationships with the task-regression approaches to estimating background
activity, these approaches are not equivalent and the intrinsic dynamics are
not synonymous with background activity.

7.2. Sensitivity and Influences of MINDy Goodness-of-Fit

We found that model prediction accuracy was consistently lower for
some subjects across all scan-types including the resting-state data to
which the model was trained. This observation could reflect either model
mis-estimation at rest or a general inability to predict that subject’s data
even with a properly optimized MINDy model (due to poor signal quality
or deviations from the MINDy framework). To distinguish between these
possibilities we compared cross-subject prediction accuracy: the degree
to which models trained to one subject’s resting-state predict another
subject’s brain activity (rest or task). While cross-subject predictions
were less accurate than within-subject (as expected), we found that the
variation due to training-subject was far less than that due to testing-
subject. Moreover, many subjects with poor model fits predicted other
subject’s data better than their own. These results indicate that differences
in model accuracy are primarily due to properties of poor-fitting subject’s
data rather than the model fitting procedure per se.

We also tested whether our approach is sensitive to model goodness-of-fit.
To test this influence we divided subjects into groups based upon median
goodness-of-fit (either whole-brain or DMCC34 parcels) as measured during
rest and during task (separately for each task). Analyses compared the
mean T-value across parcels-of-interest for the two groups with pairwise
parcels-of-interest defined as previously (at least one group passes p <
.001 threshold). Null-distributions (10,000) were generated by randomly
assigning subjects to two equal-sized groups without replacement. We did
not find a significant difference in detection power for either task-combined
data or any individual tasks using either resting-state or task goodness-of-
fit (2× 5 design). We conclude that improvements due to MINDy-based
Filtering are not dependent upon goodness-of-fit within a reasonable range.
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7.3. Influence of Individualized Brain Modeling

The primary restriction in applying our approach is the use of individu-
alized brain models built from resting-state data. Acquiring sufficient data
(we recommend ≥ 15 minutes) is time-consuming and may be particularly
burdensome in special populations such as children. Therefore an important
question for practical application is whether individualized brain models, as
opposed to a single model, are necessary. This question is also theoretically
interesting as it pertains to how individual differences emerge: via slow
propagation along intrinsic dynamics or via the fast task ”input” (dynamics
below the fMRI TR). We address these questions in two sets of analyses.

In the first set of analyses we tested whether using a common MINDy
filter, shared among subjects, is at least as powerful as individualized brain
models. We defined a common MINDy filter by averaging the predictions
of each subject’s MINDy model. We note that this procedure is not the
same as using a common brain model as the parameters interact nonlinearly
and covary. Hence the “average filter” cannot necesarily be inverted onto
a single, representative MINDy brain model. Detection power using a
common filter only slightly varied from using individualized models. For
three tasks, the group-level filter performed significantly worse in detecting
task events over the DMCC34 parcels (all but Cued-TS; max p=.01) .and
for two tasks using the whole-brain (AX-CPT: t(175) = 8.39, p = 1.6E− 14;
Stroop: t(244) = 5.49, p = 1.0E − 7) with differences in Cued-TS and
Sternberg insiginificant. The combined detection power across tasks was
significant for events (whole-brain: t(493) = 9.15, p = 1.6E − 18; DMCC34:
t(135) = 2.6, p = .01). However, individualized models only improved
sustained effects over the DMCC34 parcel-set (t(135) = 3.52, p = .006) and
not for the whole-brain analysis (t(293) = −1.1, p = .28). Interestingly, we
also found little qualitative difference in terms of brain-behavior correlations
(n.s.), suggesting that improvements reported in the main text are not
dependent upon individual differences in resting-state.

We also repeated these analyses using random permutations of rest-
subject and task-subject without replacement to test whether arbitrary
assignments perform as well. Since our primary analyses concern group-
level effects, using a group-average filter decreases noise and adds a further
linkage between subjects. Using random pairings, as opposed to group-
averages, thus provides a fairer comparison for identifying the influence of
individual differences. Significance testing was performed using permutation
tests (50,000 pairings of training/testing subject). As expected, random
pairings performed worse than the group-average filter. We again found
significantly worse detection power in event-related analyses compared to
individualized models (average across tasks: p < .001; Cohen’s D=6.5;
50,000 permutations), but the absolute difference due to subject pairing
was small (∆t = .22 ± .03) and the benefits over conventional analyses
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remained. We conclude that while individualized models do benefit power in
detecting events, this effect is small relative the overall benefits of MINDy-
based Filtering. We quantified the proportion of improvements due to
individualized modeling as:

E[TIndiv − TPerm]

E[TPerm − TOrig]
(25)

with TIndiv indicating the group-T of significant parcels for individualized
MINDy and Tperm indicating the corresponding values for random pairings
of training (rest) and testing (task) subjects. Expectations are taken over
task-relevent parcels (separately defined as in Sec. 5.2 for each permutation)
and rest-task subject pairings. Results indicate that individualized models
increased benefits in the cognitive-control effect by 32%, -1.1%, 16.5%, and
13.2% for AX-CPT, Cued-TS, Sternberg, and Stroop, respectively. The
omnibus change (collapsed across tasks) was a 25.7% increase in benefits
due to individualized models (i.e., most of the benefits for MINDy vs. orig
remained). Thus, from a practial perspective, we believe that MINDy-based
Filters constructed without individualized models can still significantly
improve analyses above conventional methods, although further study is
needed. Resultantly, the use of a single MINDy model (e.g., built from all
subjects), as opposed to individualized models, may ease the requirements
of quality resting-state data for each subject.

7.4. Influence of Deconvolution Parameter

We tested whether choice of the NSR (noise-signal-ratio) hyperparameter
in Wiener deconvolution impacts results. This parameter dictates the degree
of temporal filtering during deconvolution by regularizing the frequency-
domain contributions. Larger NSR values leads to more filtering. We tested
the influence of this parameter by repeating analyses with NSR chosen as
.02, .005, .002 (main-text), or .0005. Thus, we tested NSR values ranging
over a factor of 40. Results were highly similar for different values of the
NSR parameters. Collapsing over subjects, parcels, and probe TRs, the
high-low coefficient estimates correlated, on average, r = .99 across tasks
and NSR combinations. Coefficients for the most dissimilar NSR parameters
(.02 and .0005) correlated between r = .96 to r = .97 depending upon task.
For comparison, the average correlation over tasks for MINDy vs. the
original or pre-regressed pipelines was r = .73 and r = .71, respectively. All
cases also preserved the benefits of MINDy-based Filtering. We conclude
that, within a reasonable range, variations in choosing the Wiener NSR
parameter do not strongly influence results.

7.5. Detection of Sustained Effects

MINDy also improved detection of sustained effects for the Sternberg and
Stroop tasks relative the original and pre-regressed pipelines (max p = .0004;
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Fig 9. MINDy-based Filtering generally improves the detection of sustained effects.
Unlike event-related effects, we permitted bidirectional sustained effects hence we
compared the absolute magnitude of group-T statistics. The definition of significance
was likewise 2-tailed. A) Pair-wise difference in detection power (group T) for the
original pipeline and MINDy-based Filtering. B) Omnibus (task-collapsed) scatterplot
of parcel significance using the original pipeline vs. MINDy-based Filtering for each task.
Yellow dots indicate significant parcels (in terms of absolute sustained effect) which also
had increased effect sizes from MINDy-based Filtering, while blue dots denote significant
parcels whose effect sizes were larger with conventional analyses. Teal dots denote
parcels which did not exhibit a significant control-demand effect for either method.

SI Fig. 9A). Trend-level improvements were observed in Cued-TS relative
the pre-regressed pipeline (t(51) = 2.1, p = .04), but not relative the
original pipeline (t(55) = 1.7, p = .10). However, sustained effects detected
by MINDy did not differ relative the original or pre-regressed pipelines for
the AX-CPT (t(103) = −1.1, p = .29, t(105) = −1.5, p = .14, respectively).
Combined across tasks, MINDy increased detection of sustained events
relative both the original (t(355) = 5.7, p = 2E − 8; SI Fig. 9B) and pre-
regressed pipelines (t(353) = 6.2, p = 1.3E−9) as well as the autoregressive
models (t(300) = 14.9, p ≈ 0, t(292) = 17.3, p ≈ 0 for global and local AR
models, respectively; SI Fig. 10B). Thus, the proposed technique generally
increased statistical power in detecting sustained effects. MINDy-based
Filtering also increased the cross-task generalizability of group-average
sustained effects (MINDy=.74 ± .04, all other pipelines < .65, p < .001,
5000 bootstraps). However, it’s important to note that sustained effects are
not “construct-pure” and their distribution was highly skewed (strong visual
component) so we urge caution in interpreting cross-task generalizability of
sustained responses (although see Sec. 5.8 for its relevance to construct-
specific behavior).

7.6. Sensitivity of Sustained Effects

As with event-related analyses, we examined whether improvements in
the detection of sustained effects were limited to task-implicated regions.
As before, we considered bidirectional effects for sustained analyses (i.e.
parcels with significant increases or decreases in sustained activity). For
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this reason, we slightly modified Eq. 24 to model improvements in terms
of magnitude rather than a linear main effect (Y again represents MINDy
group-T, while X represents comparison pipeline group-T):

Ytask,Parc = βtask+β0Xtask,Parc+Sigtask,Parc(β1sign(Xtask,Parc)+β2Xtask,Parc)+εtask,Parc.
(26)

Note that the coefficient β1 is now multiplied sign(Ytask,Parc). Results
for sustained analysis mirrored those of the event-related analysis. As
with event-related analyses, the proposed technique differentially increased
effect sizes over task-implicated parcels when compared to the original,
task-regressed, and global/local AR pipelines (β1 = .54, .68, 1.00, 1.03,
respectively; max p=1.6E-8). As with event-related analysis, there was
a slight trend of differential magnification vs. the original analysis (β2 =
.05, t(1669) = 2.0, p = .048) but not vs. pre-regressed (β2 = .005, t(1669) =
.22). We also observed a negative slope of β2, indicating diminishing
returns (the opposite of differential magnification) relative the global (β2 =
−.13, t(1669) = −5.4, p = 7.5E − 8) and local (β2 = −.077, t(1669) =
−2.89, p = .0039) AR models. Thus, as with events, improvements under
MINDy largely manifest a main-effect of parcel significance (i.e. increased
categorical distinction between task-implicated and non-implicated parcels)
as opposed to further differentiating among task-implicated parcels.

7.7. Comparison with Reduced Models

We compared estimation of inputs using MINDy models to analogous
estimates to reduced autoregressive forms with autoregressive terms which
were either subject-specific (but not parcel-specific) or terms which were
specific to subject and parcel (see Methods Sec. 3.10). Since the MINDy
model also features an autoregressive term (the “Decay”), these alternative
models serve as reduced special cases which don’t include the effects of
inter-regional signaling (connectivity). As such, improvements of the full
MINDy model over these alternative (autoregressive) models indicate the
contribution of modeling connectivity, as opposed to simply accounting for
purely local dynamics.

Results indicated that group-level detection power for MINDy-based
Filtering was greater than both the homogeneous and heterogeneous autore-
gressive comparison models. MINDy increased detection power over the
both autoregressive models in terms of events over the DMCC34 parcels
(max p = .0003) and for (whole brain) sustained effects (max p=2E-6;
Fig. 9A). Whole brain analyses also indicated improved detection power
for events in all tasks relative the global model (max p=.02) while all
tasks other than Stroop (Stroop t(253) = 1.22, p = .22; other tasks: max
p = 7.2E−6) were improved relative the local model (SI Fig. 10A,B). There
was a main effect of regional significance during multilevel modeling (i.e.,
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Fig 10. MINDy-based Filtering provides greater detection power using the full model
over autoregressive (AR) reduced models which do not model connectivity. A) Omnibus
(task-collapsed) scatterplot of parcel-wise event-related effects (high-low cognitive
control demand contrast). Note that the improvements are smaller than those relative
the original pipeline, indicating that some benefits in event-related detection are due to
autoregressive filtering. B) Scatterplots of parcel-wise sustained effects when filtering
with the local AR model vs. full MINDy model for each task. Note that AR pipelines
perform worse than the original pipeline (larger MINDy improvement) for sustained
effects. Yellow dots indicate significant parcels (in terms of the control-demand effect)
which also had increased effect sizes from MINDy-based Filtering, while blue dots
denote significant parcels whose effect sizes were larger with conventional analyses. Teal
dots denote parcels which did not exhibit a significant control-demand effect for either
method.
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Fig 11. Predicting individual differences in behavior using brain activity (averaged
over DMCC34). All measures are z-scored within task×session. In the baseline session,
individual differences in RT (averaged over task) are correlated with event-related brain
activity, but not sustained activity for original and MINDy pipelines (A,B). By contrast,
accuracy is predicted by sustained activity (B) but not by event-related activity (A,B).
C) Individual differences in event-related activity better predict task RT (averaged over
session) after MINDy-based Filtering relative the original and pre-regressed pipelines.
D) Likewise, predictions of baseline-session accuracy using sustained activity (averaged
over task) also increased. Panels C, D differ from the main text Fig. 7B,C by
additionally including results for the pre-regressed pipeline.

improvement selectivity; see Sec. 5.6) for the proposed technique relative
autoregressive comparison models (local: t(1669) = 3.87, p = 1.1E − 4,
global: t(1669) = 4.15, p = 3.5E − 5). However, the proposed method did
not significantly magnify effect sizes over AR pipelines (p = .16, p = .21
for global and local, respectively). Thus, the modeling of connectivity in
MINDy primarily serves to further differentiate between task-implicated
and non-implicated parcels as opposed to exacerbating differences among
task-implicated parcels. MINDy-based filtering also improved the cross-task
generalizability of cognitive-control effects relative autoregressive controls
at both the group-level (local ICC=.50 ± .03, global ICC=.52 ± .03 vs.
MINDy-based ICC=.60± .03, p < .001, 5000 bootstraps).

7.8. Sensitivity to Motion

Lastly, we compared the sensitivity of approaches to motion artifact.
For each task and scanning session we computed three motion statistics:
the number of frames censored due to passing a critical value of framewise
displacement, the median framewise displacement and the median DVARS
statistic ([41]) for each task run and averaged over runs. We then used
resampling to test the relationship between each motion variable and the
group effect-size of the high-vs.-low conflict contrast and sustained effect
for each task. In brief, we randomly drew 5,000 samples of 30 subjects each
without replacement. We computed group-level statistics for motion and
the cognitive control contrast and then tested whether the average motion
or variability of motion (inter-subject) of a sample predicted the sample’s
group-effect (one-sample t-scores averaged over the 34 parcels). We also
used the same technique for predicting the difference between methods
(i.e. do improvements under our approach require low motion?). Results
did not indicate a significant effect of motion for the current dataset and
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subject pool. The relationship between motion and the difference between
methods (MINDy versus original averaged over tasks) was insignificant for
event-related analyses and did not display a consistent sign (proportion of
frames censored: r = .033, FD: r = −.078, DVARS: r = −.066). Likewise,
we did not observe differential sensitivity to motion in the sustained effects
(frames censored: r = .008, FD: r = −.011, DVARS: r = .01). Thus,
the degree to which MINDy-based Filtering improves upon conventional
methods is not influenced by motion within reasonable bounds.
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