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ABSTRACT An important aspect of cognitive control is the ability to appropriately select,
update, and maintain contextual information related to behavioral goals, and to use this
information to coordinate processing over extended periods. In our novel, neurobiolog-
ically based, connectionist computational model, the selection, updating, and maintenance
of context occur through interactions between the prefrontal cortex (PFC) and dopamine
(DA) neurotransmitter system. Phasic DA activity serves two simultaneous and synergistic
functions: (1) a gating function, which regulates the access of information to active mem-
ory mechanisms subserved by PFC; and (2) a learning function, which allows the system to
discover what information is relevant for selection as context. We present a simulation that
establishes the computational viability of these postulated neurobiological mechanisms for
subserving control functions.

The need for a control mechanism in cognition has been long noted
within psychology. Virtually all theorists agree that some mechanism is
needed to guide, coordinate, and update behavior in a flexible fashion—
particularly in novel or complex tasks (Norman and Shallice 1986). In
particular, control over processing requires that information related both
to current context and to behavioral goals be actively represented, such
that these representations can bias behavior in favor of goal-directed
activities over extended periods. Indeed, most computationally explicit
theories of human behavior have included such a mechanism as a funda-
mental component. For example, in production system models, goal
states represented in declarative memory are used to coordinate the:
sequence of production firings involved in complex behaviors (e.g.,
Anderson 1983). One critical feature of goal representations in production
systems is that they must be actively represented and maintained
throughout the course of a sequence of behaviors. Such formulations of a
control (or “executive”) mechanism closely parallel theorizing about the
nature of frontal lobe function (Bianchi 1922; Damasio 1985; Luria 1969),
and clinical observations of patients with frontal lesions who often ex-
hibit impairments in tasks requiring control over behavior—the so-called
dysexecutive syndrome. Shallice (Norman and Shallice 1986; Shallice,
1982, 1988) explicitly noted this relationship, using the production system
framework to describe his theory of a “supervisory attentional system’’
(SAS) as a mechanism by which the frontal lobes coordinate complex
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cognitive processes and select nonroutine actions. While these efforts
have provided insights into the types of procésses that may be engaged
by cognitive control, they do not map transparently onto underlying neu-
ral mechanisms. They have also not fully ‘addressed several critical
issues, such as how a control system can develop through learning.

A number of recently proposed connectionist models of prefrontal
function incorporate some of the central features of control processes in
production system models, such as the active maintenance of goal repre-
sentations (Dehaene and Changeux 1992; Guigon et al. 1991; Levine and
Prueitt 1989). Connectionist models have the advantage of both being
mechanistically explicit and using a computational architecture that
maps more naturally onto neural mechanisms than traditional produc-

" tion system models. In this chapter, we report on work that uses this

framework to address a critical question about cognitive control: How
can a system learn to choose and appropriately update representations in
active memory that can be used to control behavior? This is an extension
of our ongoing effort to specify the neural underpinnings of cognitive

- control (Braver et al. 1995a; Cohen, Braver, and O'Reilly 1996; Cohen and

Servan-Schreiber 1992), reviewed briefly below as background.

A central hypothesis in our work is that a cardinal function of pre-
frontal cortex (PFC) is to actively maintain context information. We use
the general term context to include not.only goal representations, which
have their influence on planning and overt behavior, but also representa-

_tions that may have their effect earklier;;,inj the pxqcessiijg stream, on inter-
~ pretive or attentional processes. We assume that a primary function of

PFC is to maintain task-relevant coﬁtext representations in an active state.
These active context representations serve to mediate control by modu-
lating the flow of information within task-specific pathways such that
processing -in . the task-relevant pathway is favored over a (possibly
stronger) competing pathway. This fl.‘ync‘t‘ion ‘of PFC can also be thought
of as a component of working memory (WM), commonly defined as the

collection of mechanisms responsible for the on-line maintenance and

manipulation of information necessary to _.pyerfoir,m _a cognitive task
(Baddeley and Hitch 1994). From this perspective, context can be viewed

as the subset of representations within WM that govern how other repre-

sentations are used. o

As noted above, there is long-standing recognition that control
involves representation and maintenance of context information (e.g.,
goals). However, a more complete account of cognitive control has addi-
tional requirements. Here we focus on“fo‘ur.! an’t‘_e'xt;ixjyfoyrmation must be
(1) appropriately selected for maintenance; (2) held for arbitrary lengths
of time; (3) protected against interference; and (4) updated at appropriate

_ junctures. Inasmuch as we assume that context information is repre-

sented in PFC, our interest is in the mechanisms ‘that‘,\regulate the selec-

tion and updating of representations in PFC. One type of system meeting

Braver and Cohen
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these requirements uses a gating mechanism to regulate the flow of activ-
ity into PEC: when the gate is opened, activity can flow into the PFC and
activate the appropriate context representations; when the gate is closed,
the activated representations are protected from interference, and there-
fore can be maintained and exert control for extended periods. Such a
system, however, must know when it is appropriate to deploy the gate.
This additional requirement threatens to introduce a regress in the con-
trol of processing: If the gating mechanism controls the controller, “who”
is controlling the gating mechanism? Moreover, how can this component
of control be learned, and how can this be mediated in a neurobio-
logically plausible way?

In this chapter, we propose a computational and neurobiological solu-
tion to this dilemma that involves the dopamine (DA) neurotransmitter
system. Specifically, we suggest that DA projections to PFC serve to gate
access of context representations into active memory through simple neu-
romodulatory effects on processing units in the PFC. These effects serve
both gating and learning functions, which enable the system to discover
what information must be maintained for performing a given task, and to
regulate when that information is updated. This avoids the “homuncu-
lus” that plagues many theories of executive control. Below, we review
evidence for this hypothesis, including evidence that PFC supports active
memory, computational analyses of simple and gated active memory sys-
tems, and evidence that the modulatory effects of DA can support both its
gating and learning functions. Following this review, we present a simu-
lation that establishes the model’s computational viability.

31.1 A-NEURALLY BASED ACCOUNT OF THE CONTROL OF
ACTIVE MEMORY

Prefrontal Cortex and Control

Neurobiological Evidence The role of control mechanisms in PFC has
long been suggested by neuropsychological evidence. Increased dis-
tractibility and perseveration are hallmarks of neurological damage to
PFC (Damasio 1985; Engle, Kane, and Tuholski 1999; Milner 1963; Owen
et al. 1991; Stuss and Benson 1986) and of psychiatric disorders known to
involve PFC such as schizophrenia (Malmo 1974; Nuechterlein and
Dawson 1984). Neurophysiological studies have begun to provide a more
detailed characterization of PFC function. Miller (chap. 22, this volume)
provides an excellent review of this literature, which demonstrates that
units in PFC (1) selectively code information relevant to task performance
and not distractor information; (2) can code multimodal, task-relevant
contingencies (including sensory information from different modalities
and sensorimotor mappings); (3) can maintain such information over
extended delays, in the absence of sustained sensory input; and (4) ex-
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hibit a pattern of temploral dynamics that suggests they are the source of
attentional bias in posterior systems directly responsible for sensory and
motor processing. These findings are consistent with the control function
that we have ascribed to PFC. Recent neuroimaging studies using event-
related fMRI have begun to corroborate these neurophysiological find-
ings in human subjects, demonstrating sustained activity of PFC during
delay intervals in working memory tasks (Cohen et al. 1997; Courtney et
al. 1997) and in tasks that engage the “executive” functions of working
memory (D’Esposito and Postle, chap. 15, this volume; Frith, chap. 24,
this volume)

Computational Analysis As noted above, we have hypothesized that
PFC exerts control by biasing processing in the pathways responsible for
task performance. This biasing function is illustrated by Cohen and col-
- leagues’ previous models of the Stroop task (Cohen, Dunbar, and
McClelland 1990; Cohen and Huston 1994; Cohen and Servan-Schreiber
1992), in which activation of a context representation corresponding to
the relevant task dimension (e.g., color) sends activity to all the hidden
units in the processing pathway corresponding to that dimension. This
favors the flow of activity along that pathway, allowing it to compete
effectively with information flowing along an otherwise stronger but
irrelevant pathway (word naming). Thus activation of the context repre-
sentation biases processing in favor of the task-relevant dimension, estab-
lishing the sensorimotor mapping necessary to perform the task.

For context representations to bias processing, however, they must be
actively maintained for the duration of the task. Although the previous
models noted above did not include a mechanism for doing so; a number
of mechanisms can support the short-term maintenance of information in
connectionist models. The most commonly employed and best under-
stood of these are fixed-point attractor networks (e.g., Hopfield 1982;
Zipser 1991), which possess recurrent connections that “recirculate”
activation’ among units, and are thus capable of supporting sustained
activity. Such networks typically settle into stable states called “attrac-
tors,” in which a particular pattern of activity is maintained, and which
therefore can be used to store information actively. A number of compu-
tational models of simple maintenance tasks have demonstrated that
both physiological and behavioral data regarding PFC function can be
captured using attractor networks (Braver, Cohen, and Servan-Schreiber
1995a; Dehaene and Changeux 1989; Moody et al. 1998; Zipser et al.
1993).

On the other hand, simple attractor systems have limitations that pose
problems in more realistic tasks. The state of an attractor system is deter-
mined by its inputs, so that presentation of any new input will drive the
system into a new attractor state, overwriting previously stored informa-
tion (Bengio, Frasconi, and Simard 1993; Mozer 1993), and making the
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system subject to interference from task-irrelevant inputs (i.e., distrac-
tors). Although attractor networks can be configured to display resistance
to disruption from distractors (i.e., hysteresis), this impairs their ability to
be easily updated. One way in which attractor networks can overcome
these difficulties is through the addition of a gating mechanism. Gated
networks respond to inputs, changing their attractor state only when the
“gate” is opened. Compared to other types of recurrent networks, net-
works with a gating mechanism were found better able to learn and per-
form complex short-term memory tasks, especially when the tasks
involved noisy environments, frequent updating, and relatively long
periods of storage (Hochreiter and Schmidhuber 1997). These and other
computational studies suggest that gated attractor systems can meet
many of the requirements for active memory in a control system.
Moreover, the physiological evidence reviewed above is consistent with
the hypothesis that prefrontal cortex implements such a system. Zipser
and colleagues (Moody et al. 1998; Zipser 1991; Zipser et al. 1993) have
proposed gated attractor models of short-term memory, and have used
these to simulate the patterns of delay period activity observed for PFC
neurons, although these models have specified neither the source of the
gating signal nor how its timing is learned.

Dopamine Modulation of Information Processing

‘Dopamine and Cognitive Control There has been a growing apprecia-

tion of the role of dopamine (DA) in higher cognitive function (see
Robbins and Rogers, chap. 21, this volume). Several lines of evidence
have shown a link between DA function and cognitive control. These
include studies of cognitive deficits in patients suffering from brain
disorders involving DA pathology, such as Parkinson’s disease and
schizophrenia (e.g., Cohen et al. 1999; Gold 1992; Robbins et al. 1994),
pharmacological studies manipulating DA activity locally in the PFC of
nonhuman primates (Brozoski et al. 1979; Sawaguchi and Goldman-
Rakic 1991, 1994; Sawaguchi, Matsumura, and Kubota 1990), and sys-
temic manipulation of DA in humans (Kimberg, D’Esposito, and Farah
1997; Luciana, Collins, and Depue 1995; Luciana et al. 1992; Servan-
Schreiber et al. 1998). Based on these findings, several authors have pro-
posed that DA activity serves to modulate the cognitive control functions
mediated by PFC (Cohen and Servan-Schreiber 1992; Goldman-Rakic and
Selemon 1997). Here, we extend this idea, by proposing more specifically
that the DA system provides a mechanism for learning to predict reward
and to update the contents of active memory correspondingly, so as to
maximize the chance of receiving reward. We propose that this function
is carried out by simple, but appropriately timed neuromodulatory
effects on target neurons. We hypothesize that one effect of DA is to mod-
ulate the responsivity of PFC units to their input, allowing DA to gate
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inputs to PFC. Another effect of DA is to modulate the strength of the con-
nection between these inputs and the DA neurons themselves, allowing
the DA system to discover what information should trigger this gate, and
thereby to update the contents of active memory in PFC appropriately.
There is a substantial corpus of neurobiological data to support this view
of DA function.

Modulatory Effects of Dopamine Like other catecholamines, dopa-
mine is known to produce modulatory effects on target neurons (Chiodo
and Berger 1986; Hernandez-Lopez et al. 1997; Penit-Soria, Audinat, and
Crepel 1987). Our previous models, by implementing this neuro-
modulatory action as a change in the slope (or gain) of the activation
function of processing units, have simulated a variety of the effects
of DA, at both the physiological and behavioral levels (Braver, Cohen,
and Servan-Schreiber 1995a; Cohen and Servan-Schreiber 1993; Servan-
Schreiber et al. 1998; Servan-Schreiber, Printz, and Cohen 1990). A change
in gain modulates the responsivity of units to their afferent input, and
thus can function as a gate on the flow of activity into PFC. Detailed
~anatomic studies of PFC suggest that DA projections are well positioned
to influence both excitatory inputs and local inhibitory interactions
(Lewis et al. 1992; Sesack, Snyder, and Lewis 1995; Williams and
Goldman-Rakic 1993), a pattern that is consistent with a role of DA in gat-
ing PFC (discussed below). Furthermore, although neuromodulatory
influences are typically assumed to be slow acting and nonspecific in
information content (Moore and Bloom 1978), recent findings have sug-
gested that DA cells can exhibit fast and stimulus-specific responses, as
required to serve a gating function (Grace 1991; Schultz, Apicella, and
Ljungberg 1993).

Timing of Dopamine Responses Schultz and colleagues (Schultz 1992)
have observed rapid, stimulus-locked and stimulus-specific activity in
DA neurons (~100 msec in duration, occurring 80-150 msec after stimu-
lus onset). For example, following training in a spatial delayed-response
task requiring active maintenance (Schultz, Apicella, and Ljungberg
1993), DA cells came to respond to the cue to be maintained. The cue was
‘the first stimulus in the sequence that itself was unpredictable, but that
predicted subsequent reward (even when there were intervening distrac-
tors). This is precisely the timing that might be expected of a control
mechanism responsible for updating context representations. When an
unexpected cue indicates that a new desired state can be achieved, then
this cue should elicit an updating of the context representation (e.g., goal)
in active memory, replacing the current representation with one that will
guide behavior toward the desired state.

Learning effects of Dopamine Findings from reward-conditioning par-
adigms suggest how the gating signal could be learned. DA has long been
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recognized to play a role in reward learning (Wise and Rompre 1767).
In the Schulz and colleagues studies referred to above, DA responds
initially only to the rewarding event, but with training this response
“migrates” to predictive cues. Montague, Dayan, and Sejnowski (1996)
have proposed a formal analysis of the role of DA in reward condition-
ing, in terms of a temporal difference (TD) learning algorithm (Sutton
1988; Sutton and Barto 1990). The TD algorithm provides a mechanism
by which learning can chain backward in time, allowing the DA system
to identify successively earlier predictors of reward, until the earliest
possible predictor is found that cannot itself be predicted. In the
Montague, Dayan, and Sejnowski model, DA responses are simulated as
being proportional to the prediction error in the TD algorithm (i.e., the
degree of mismatch between expected and received rewards), and DA
release modulates the strength of synapses from units representing cues
that predict reward to the DA units themselves.! In simulations as in
empirical studies, the DA response decreases to events as they become
more predictable (e.g., an expected reward), whereas it increases to
events that predict reward but are themselves unpredicted. Intriguingly,
the parameter used by Montague, Dayan, and Sejnowski to simulate the
effects of DA on learning is analogous to the parameter we have used to
simulate DA effects on unit responsivity. This raises the possibility that a
single parameter can be used to account for both effects, which may occur
simultaneously, in turn providing a means by which the gating signal can

. be learned.

A New Theory Although we have previously theorized that PFC is
critical for the active maintenance of context information, and that DA
activity serves to modulate the responsivity of PFC neurons to external
input (Cohen and Servan-Schreiber 1992), the findings just discussed sug-
gest a number of hypotheses revising and extending our original theory.
These hypotheses provide an account of both the ability to update con-
text representations and the means of learning how to do so:
. Context representations are actively maintained in a gated attractor
system within PFC.
. Phasic changes in DA activity serve two functions:
1. to gate information into active memory in PFC;
2. to strengthen associations between stimuli that predict reward and
the DA response.
. Both effects rely on a similar neuromodulatory mechanism.
- The gating effect occurs through the transient potentiation of both exci-
tatory afferent and local inhibitory effects in PFC.
. The learning effect occurs through modulation of synaptic weights,
driven by errors between predicted and received rewards (i.e., the TD
learning algorithm).

The Control of Control



* The coincidence of the gating and learning signals produces cortical
associations between the information being gated and a triggering of the
gating signal in the future.

In the studies presented below, we test the plausibility of these claims
in a computer simulation of a model that implements our theory. Specifi-
cally, the simulation examines the hypothesis, suggested in the previous
two subsections, that appropriate timing of gating signals can be acquired
during task performance through reward-based learning mechanisms.

312 SIMULATION: REWARD-BASED LEARNING OF GATING
SIGNALS

This study was conducted to establish the computational validity of the
hypothesis that DA implements both gating and learning effects, and that
such a system can learn to appropriately gate relevant context informa-
tion into active memory. Although previous work has demonstrated that
DA activity can be simulated accurately in a system governed by rein-
forcement learning (Montague, Dayan, and Sejnowski 1996), it has not
been shown that the dynamics of DA activity can simultaneously be
exploited as (and used to learn the timing of) a gating signal. Further-
more, this hypothesis poses the following dilemma. If gating the appro-
priate context representations into active memory is learned through a
reward-based mechanism, but reward itself depends on gating the appro-
priate context representations, then how can the process get started? This
is a classic “bootstrapping” problem, solutions for which are often best
demonstrated by simulation. To do so, we constructed a model of a sim-
ple cognitive control task, where context information must be actively
maintained across delay periods during which intervening distractor
events may occur, and properly updated on a trial-to-trial basis.

Task

We used a variant of a delayed-response paradigm (the AX version of the
continuous performance test, or AX-CPT; Nuechterlein and Dawson
1984; Rosvold et al. 1956) that we have used extensively to study the
processing of context and its relationship to PFC and DA function in
behavioral (Cohen et al. 1999; Cohen and Servan-Schreiber 1993; Servan-
Schreiber, Cohen, and Steingard 1996), psychopharmacological (Braver
1997), and neuroimaging (Barch et al. 1997; Carter et al. 1998) studies. The
AX-CPT paradigm has also been the subject of previous modeling work
(Braver 1997; Braver, Cohen, and Servan-Schreiber 1995b; Cohen, Braver,
and O'Reilly 1996). In this paradigm, a cue is presented at the beginning
of each trial (e.g., the letter A or B), followed by a delay of variable length,
and then a probe (e.g., the letter X) to which one of two responses must
be made. The correct response to the probe is contingent on the identity
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Figure 31.1 Learning/gating model used in simulation. Excitatory connections exist
between layers (indicated by arrows), whereas lateral inhibitory connections exist within
each layer (not shown). Input units make one-to-one connections with context layer units.
Context units have self-excitatory connections, providing a mechanism for active mainte-
nance. Low levels of baseline activity in the context layer are enforced by local inhibitory
bias units (indicated by small triangles). The input and context layers are fully connected to
the reward prediction/gating (RPG) unit. This unit, in turn, makes a gating connection with
both afferent excitatory and local inhibitory input to the context layer. The RPG unit also
modulates learning in all modifiable connections of the network.

of the cue. One reponse (e.g., press the left button) is required if the probe
follows a specified cue (e.g., A-X, which we will refer to as “AX" trials),
and the other response (e.g., right button) is required for all other cue-
probe sequences (e.g., BX). Thus responding correctly to the probe
requires maintenance of context information provided by the cue.
Additionally, distractor stimuli are presented randomly, interspersed
during the cue-probe delay and intertrial interval (ITI). Distractors are
distinguished from the cue and probe stimuli by a particular feature (e.g.,
the color of the letters), but can have the same identity as the cue (e.g., A
or B). Thus the AX-CPT paradigm engages cognitive control, insofar as
correct performance requires the abilities to actively maintain context
over a variable delay, ignore distractors, and update context selectively in
response to cue stimuli but not distractors.

Architecture and Processing

Our model of this task is shown in figure 31.1. The network is composed
of a stimulus layer (5 units), a context layer (5 units), a response layer (2
units), and a reward prediction/gating (RPG) unit. The stimulus and con-
text layers are each separated into two pools, the first used to represent
stimulus identity (A, B, X), and the second, stimulus color (black, white).
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Units in the stimulus layer have one-to-one excitatory connections to cor-
responding units in the context layer. All units within the stimulus and
context layers have excitatory connections to both units in the response
(output) layer, which represent the two possible responses. Finally, there
are lateral inhibitory connections among units within each layer. Thus
between-layer excitatory connections mediate flow of information, while
within-layer inhibitory connections mediate competition for representa-
tion, consistent with the computational framework proposed by
McClelland (1993). The activation of each unit in the network is deter-
mined by the logistic of its time-averaged net input (with the exception
of the RPG unit described below).2 This allows units to integrate their
inputs over time, and the model to simulate the temporal dynamics of
processing.

In addition to the connectivity described above, units within the con-
text layer have strong self-excitatory connections and an inhibitory input
from a tonically active bias unit. This arrangement allows context units to
assume a relatively low baseline of activity, yet self-sustain a higher level
of activity following a sufficiently strong input, even after the input is
removed.3 We use this behavior to simulate active maintenance of context
information in PFC. The weights of the one-to-one connections from the
stimulus units to the context units, and among the context units, are fixed
at values such that stimulus unit activity can activate context units when

the entire context poolis at rest (i.e., no context units are active), but stim-

ulus unit activity cannot alter an existing pattern of context unit activity.4
Thus stimulus units are not able on their own to update the state of
activated context units; this requires the “intervention” of the RPG unit
(discussed below). The “hardwiring”. of these connections reflects our
assumption that the active maintenance properties of PFC, and its con-
nections with task-specific processing pathways, arise by mechanisms
different from the reward-based learning mechanisms described below,
beyond the scope of current consideration.’ The connection weights to
and from the RPG unit and from the stimulus and context units to the
output units are modifiable, and adjusted according to the learning rule
described below.

The reward prediction/gating unit receives connections from all
units in the stimulus and context layers. Its activity is computed as the
weighted sum of the input received from the stimulus and context units
on the current time step (current predicted reward) and the value of the
actual reward for that trial (+1 for correct response and —1 for incorrect
response) minus the stimulus and context input received on the previous
time step (previously predicted reward), which is the temporal difference
(TD) error.6 The behavior of this unit serves as our simulation of phasic
changes in dopamine activity, as in Montague, Dayan, and Sejnowski
1996. Accordingly, the activity of this unit (i.e., the value of the TD error)
serves as a learning signal, used to adjust all modifiable weights in the
network according to the TD learning algorithm.”
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Figure 31.2 Typical sequence of training trials. Distractor stimuli are shown in outline
type; task-relevant stimuli in solid type. Delay and intertrial interval (ITI) time steps are
indicated by dashes. Distractors could occur during the delay period or ITI. Cue stimuli (A
or B) need to be maintained over the delay in order to make the correct response to the
probe (X)—one response when it follows an A cue, and a different response when it follows
a B cue.

The RPG unit also exerts a gating effect on the context layer, allowing
the current stimulus to change the state of (i.e., active representation in)
the context layer. This occurs through potentiation of the strength of both
afferent input (excitatory connections from stimulus to context) and local
inhibition (inhibitory connections from the tonically active bias unit).8
These potentiating effects have the following consequences. If a context
unit, active when a gating signal occurs, does not receive excitation from
any stimulus unit, but another context unit does, then the gating signal
will favor activation of the competing context unit (due to potentiation of
its excitatory input) and suppression of the current context unit (due to
potentiation of inhibition from the competing context unit). Thus the gat-
ing influence of the RPG unit provides a mechanism for updating the
state of activity in the context layer.

Training

We trained the network with a continuous sequence of task trials. (figure
31.2) Each trial consisted of the following events (simulated by activating
the appropriate stimulus units): cue (A or B), delay interval, probe (X),
and intertrial interval. Stimuli were presented for 3 time steps each; the
minimum interval period was 7 time steps. Distractor events could be
presented within both the delay and IT], and each distractor increased the
length of the interval by an additional 10 time steps (3 time steps for stim-
ulus presentation +7 additional time steps for delay interval). The prob-
ability of a distractor appearing during any interval period was 0.50 for
the first distractor in that period. The probability of an additional dis-
tractor appearing in that period decreased by half as the number of dis-
tractors increased (i.e., the probability of a second distractor appearing
was 0.25, the probability of a third distractor appearing was 0.125, etc.).
Each stimulus identity (A or B) was presented with equal frequency for
both cues and distractors.

All modifiable weights were initialized to small random values prior to
training (—0.25, 0.25). During training, weights were adjusted on every

The Control of Control
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time step in proportion to the activity of the RPG unit. Following presen-
tation of the probe, the RPG unit received an input of +1 if the response
was correct and — 1 reinforcement if the response was incorrect, in addi-
tion to its usual input from the stimulus and context units. A response
was considered correct if the activity of the left output unit was greater
than 0.5 and greater than the right output unit for AX trials, and if the
right output unit was greater than 0.5 and greater than the left output for
BX trials. Thus, to perform the task correctly, the network had to learn to
activate the context representation for the cue (A or B), maintain this over
the delay, prevent distractor stimuli from disrupting this representation,
and then use it to determine the correct response to the probe. During
training, Gaussian noise was added to the net input of both context and
output units, and was reduced in amplitude as error decreased (i.e.,
through a simple annealing schedule), consistent with the practice in
other reinforcement learning simulations of having noise levels inversely
related to the level of reward predicted (Gullapalli 1990).°

Results

Ten runs of the simulation were performed, each with randomly assigned
initial weights for the modifiable connections in the network. The net-
work converged to perfect performance on all ten runs. Learning fol-
lowed a consistent pattern, comprising three stages (see figure 31.3). In
the first stage, the connections from the stimulus and context units to the
RPG unit remained weak, reflecting the lack of prediction or expectations
of reward. Consequently, TD error (and the activity of the RPG unit)
increased when reward was received because its delivery was unpre-
dicted. In the intermediate stage, the stimulus unit for the probe (X)
developed a positive connection with the RPG unit. Because reward
(when it occurred) was delivered only following presentation of the
probe, the network learned that the probe was a good predictor of
reward. In reinforcement learning terms, the probe became a “secondary
reinforcer,”” reducing the TD error (i.e., unexpectedness) at the time of

' reward delivery, and the response of the RPG unit to reward. Because the

network had not yet learned to maintain the cue, however, the response
to the probe was not always accurate, and reward was not delivered on
every trial. Thus the probe was not a perfect predictor of reward, and a
moderate level of TD error (and RPG unit activity) persisted for reward
delivery. The third stage was reached when the TD algorithm allowed the
network to learn the assocation between the cue stimuli and reward.
Strong positive connections developed from the cue identity units (A and
B) and the cue color unit (black) to the RPG unit, and a strong negative
connection from the distractor color unit (white) to the RPG. As a conse-
quence, activity in the RPG unit increased following presentation of a
cue, but not following presentation of distractors. This increase in RPG
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unit activity produced a gating signal, which allowed the cue information
to properly update the context representation, and be actively maintained
over the delay. Moreover, because the cue information was being main-
tained as context, the context units began developing positive weights to
the prediction unit, so that reward could be predicted based on the cue
information. Once the cue information became a good predictor of
reward, (because maintaining the cue increased the probability that
reward was delivered), it became a “tertiary reinforcer,” which further
reduced the TD error both to the probe and reward delivery.

Note that noise in the context and output layers played a critical role in
learning. In the output layer, noise encouraged response exploration,
allowing the network to discover the correct response to the probe.
Similarly, in the context layer, noise provided a way for the appropriate
context unit to be active at the time of probe presentation (through ran-
dom updating on some proportion of trials), before the network had
learned to maintain the cue. This was critical for “bootstrapping” to take
place. To summarize, the association between reward prediction and
gating, coupled with noise, provided a mechanism for the network to dis-
cover how to regulate active memory so that cue information could selec-
tively update the context representation.

Discussion

The results of this simulation provide preliminary support for the
hypothesis that control over active maintenance of context representa-
tions can be achieved using a gating signal triggered by reward predic-
tion errors. The pattern of RPG unit activity over the course of learning is
very similar to that observed for DA neuronal activity over the course of
learning in a delayed-response task (Schultz, Apicella, and Ljungberg
1993). In this respect, the results of our simulation replicate those of
Montague, Dayan, and Sejnowski (1996), providing physiological sup-
port for the theory. However, our results go beyond those of Montague
and colleagues, by demonstrating that the learning system can work
synergistically with a gating signal to regulate control over active main-
tenance. By using the cue to predict reward, the network was also able to
gate context information provided by the cue into active memory, where
it could be used to bias subsequent responding. As a result, the probabil-
ity of making the correct response was increased, and more rewards were
achieved. Furthermore, because only cue stimuli elicited gating of the
context layer, distractor stimuli were unable to disrupt the information
maintained in the context layer. Thus the results also demonstrate that
this type of control mechanism can protect context representations from
the effects of interference. Moreover, the simulation makes clear how each
of the two effects of the RPG unit are interdependent for learning the task
properly. If RPG unit activity did not serve a gating function, the context
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would be disrupted by every distractor). If the RPG unit activity did not
modulate weight strengths based on reward prediction, the presentation
of the cue input (A or B unit plus black unit) would never develop posi-
tive weights to the RPG unit, such that it could be activated by future cue
presentations. Thus the simulations illustrate how both computational
mechanisms associated with the RPG unit (gating and reward prediction
learning) cooperate in the development of cognitive control over be-
havior in the task. The simulation also raises a number of more general
conceptual issues regarding active maintenance, cognitive control, and
reinforcement learning, which are discussed below.

Representation over Time A fundamental and unresolved issue in the

application of reinforcement learning to classical and operant condition-

ing phenomena concerns the representation of perceptual information

over time (Schultz, Dayan, and Montague 1997). For an organism to learn

a relationship between a naturally reinforcing event (i.e., an uncondi-

tioned stimulus or US) and a predictive sensory cue (i.e., a conditioned ;
stimulus or CS), the cue must still be represented when the reinforcement -
occurs. With very short delays, some perceptual trace of the cue may '
remain at the time of reinforcement. Although this is not likely at longer :
delays, when perceptual representations have presumably decayed.10 To
account for learning over such delays, some investigators (e.g., Sutton
and Barto 1990) have proposed the mechanism of a decaying synaptic eli-
gibility trace, which allows weights to be updated even when the cue is
no longer actively represented. This does not solve an additional prob-
lem, however. Predictions of reward must continue at every time step
from cue presentation until reward delivery for TD error to decrease and
TD-based algorithms to function properly. Consequently, some form of
active representation of the cue over an arbitrary period of time is
required. Accordingly, most models of reinforcement learning represent
each sensory cue as a vector, each element of which corresponds to the
activity of that cue at a different point in time. In other words, the tem-
poral dynamics of a cue are transformed into an explicit spatial rep-
resentation (often referred to as a “complete serial compound” or CSC
representation). Although it allows the system to learn an independent
prediction of reward for every point in time (implemented as the connec-
tion strength from each element of the vector to the reward prediction
unit), the CSC representation has a number of drawbacks, perhaps the
most important of which is its neurobiological implausibility (Schultz,
Dayan, and Montague 1997).

Our model implements a different solution to these problems. The con-
text layer actively maintains representations that provide a continuous
source of reward prediction necessary for TD learning to occur. Thus we
propose that active maintenance within PFC may provide a mechanism
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for continuous reward prediction necessary for TD learning. As
Hochreiter and Schmidhuber (1997) have observed, learning in difficult
short-term memory tasks requires “constant error flow,” which can be
provided by computational units with activation that remains constant
over time. One concern with such a solution, however, is that mecha-
nisms for active maintenance must already be present for reward-based
learning to occur. There are three principal ways that this could arise: (1)
recurrent connectivity that develops as part of some intrinsic matura-
tional process in PFC; (2) non-TD-based learning mechanisms that oper-
ate either prior to or interactively with reward-based learning (i.e., as
another “bootstrapping” process); or (3) some other, innate mechanism
(such as intrinsic bistability of neuronal activation states) that is prefer-
entially expressed in PFC neurons. The available data do not adjudicate
among these possibilities, although all three represent neurobiologically
plausible mechanisms that are consistent with our model.

Alternative Control Mechanisms Another fundamental issue raised by
the current study is whether gating is computationally required as a con-
trol mechanism for updating context representations. In principle, the
answer is no. All that is required is a signal that differentiates task-
relevant from task-irrelevant information and is derived in some form
in the sensory input. This does not require a gating mechanism. For
example, updating could occur through the proper conjunction of input
features, previously maintained context representations, or both, coupled
with the appropriate connection weights from input to context units
(e.g., the conjunction of the A stimulus and the color black is sufficient to
activate the A unit in the context layer and to overcome competition from
other units in that layer). Thus, for any network that uses a gating signal
to regulate access to active memory, an equivalent network can be con-
structed to perform the same functions without gating. There is a ques-
tion, however, whether such a nongated network could be effectively
learned through error-driven learning algorithms (either classical super-
vised or reward-based). The appropriate conjunction of weights required
might be so precise as to be very difficult to learn using gradient descent
procedures. We suspect that gated attractor networks coupled with TD
learning provide a more powerful and robust computational mechanism
for learning to perform tasks that require regulation of access to active
memory. Although consistent with Hochreiter and Schmidhumber’s
analyses (1997) of simple recurrent networks and supervised learning
algorithms, this conjecture remains to be tested for networks using TD
learning to control the gating mechanism.

31.3 GENERAL DISCUSSION

In this chapter, we have presented a new model of the mechanisms
underlying an important dimension of cognitive control: the ability to
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and the ability to learn how to do this. Furthermore, we have described
simulation results that establish the computational plausibility of this
model. On the other hand, the current model has important limitations,
and significant challenges remain for a comprehensive theory of cogni-
tive control. For example, we have not demonstrated that the mechanisms
we propose can learn to gate into memory task-relevant information that
itself is not directly predictive of reward. We have not provided an
account of performance in more complex tasks, such as those which
involve subgoaling. We have also not addressed the nature of context rep-
resentations in the PFC—how these come about and how, without
requiring infinite capacity, they can support the remarkable range and
flexibility of behaviors of which humans are capable. These all remain
challenges for further theoretical work.

Nevertheless, we believe that this model, even in its current limited
form, has the potential to enrich our understanding of cognitive control.
The model makes strong predictions about the engagement of PFC and
DA in performance of simple control tasks, such as the AX-CPT, as well
as the effects that disturbances of PFC and DA should have on task per-
formance. We have begun to garner support for some of these predictions
in related work using a wide variety of cognitive neuroscience methods.
First, in behavioral studies, we have shown that patients with schizo-
phrenia, who are thought to suffer from DA abnormalities in PFC, show
a specific pattern of performance deficits in the AX-CPT consistent with a
deficit in actively maintaining context (Braver, Barch, and Cohen 1999b;
Cohen et al. 1999; Servan-Schreiber, Cohen, and Steingard 1996).
Moreover, we have found a strikingly similar pattern of deficits in
healthy subjects performing the AX-CPT under interference conditions
(Braver, Barch, and Cohen 1999b). Second, in simulation studies we have
found that the gating model can capture both of these patterns of deficits
in terms of disturbances to the DA system (i.e., the reward pre-
diction/gating unit). In particular, the model suggests that the deficits
observed in schizophrenia might be due to increased noise in the RPG
unit (Braver, Barch, and Cohen 1999a; Braver and Cohen 1999), while the
deficits observed under interference can be captured by assuming that
the distractor stimuli produce partial RPG unit activation (Braver, Cohen,
and McClelland 1997). Third, preliminary results from a pharmacological
study suggest that the interference-induced deficits in AX-CPT perfor-
mance in healthy subjects may be ameliorated by low doses of amphet-
amine, a potent enhancer of DA transmission (Braver 1997). Finally, in
functional neuroimaging studies, we have directly demonstrated the role
of PEC in the active maintenance of context. During performance of the
AX-CPT under conditions where the delay between cue and probe was
manipulated, we observed greater PFC activity in long versus short delay
trials, and further found that this activity was sustained throughout the
delay period (Barch et al. 1997). In contrast, we observed that in the inter-
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ference version of the AX-CPT, this activity is not sustained, but rather
decays during the delay period, when distractors are presented (Braver,
Barch, and Cohen 1999b).

Our model may also lead to new insights regarding cognitive control
at the psychological level. For example, gated attractors may provide a
useful theoretical framework within which to consider the effects of task
switching that are addressed in detail in other contributions to this
volume (e.g., Allport and Wylie, chap. 2, Jolicoeur, Dell’Acqua, and
Crebolder, chap. 13, Goschke, chap. 14, De Jong, chap. 15, and Meiran,
chap. 16, this volume). More generally, our model may help drive a re-
examination of the relationship between motivational processes and cog-
nitive control. The account of dopamine provided here suggests that it
plays a unified role in motivation and cognition by configuring the sys-
tem to optimize its predictions of reward and by regulating cognitive
processes to increase the frequency with which rewards are obtained.
This, in turn, offers an interesting perspective on prefrontal cortex func-
tion: the active maintenance of information in the service of maximizing
rewards. From this perspective, one might imagine that PFC evolved at
least in part to take control over the deployment of DA-mediated rein-
forcement by chaining together complex internal representations of re-
ward prediction, and thus to support the construction of elaborate goal
structures necessary for complex, temporally extended behaviors. This
perspective suggests the intriguing possibility that the literature on the
cognitive functions of PFC and DA can be linked with the growing, but
heretofore separate, literatures on the affective and motivational func-
tions of these brain systems (Bechara et al. 1996; Davidson and Sutton
1995; Willner and Scheel-Kruger 1991).

At the most general level, the model we have presented provides an
illustration of how a system built of simple processing elements and gen-
eral principles of learning can organize itself to regulate its own behavior
in an adaptive fashion, without invoking the problem of a “homuncu-
lus.” It also provides an example of how implementing a theory as an
explicit computational model can lead to new and unexpected insights.
Our hypotheses concerning the modulatory effects of dopamine (i.e., its
role in gating) bear little surface resemblance to theories regarding the
role of DA in reinforcement learning. It was only through a comparison
of the formalisms of specific models that we were led to the observation
that similar parameters were being used to implement these seemingly
different DA effects, and to the idea that these effects may have synergis-
tic effects. Our work also illustrates how efforts to understand the neural
underpinnings of cognition can lead to insights at the psychological level.
Our insights into the potential relationship between reward-based learn-
ing and gated attractors as a mechanism for the control of processing
were driven in large measure by observations about the effects of a par-
ticular neurotransmitter and by efforts to account for its function. Thus,
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even in light of the limitations of our current model, we hope that our
work may indicate how theories that draw simultaneously from, and
bridge between, the neurobiological, psychological and computational
domains can help advance our understanding of the mechanisms under-
lying cognitive control.

NOTES:

1. The claim that dopamine modulates synaptic plasticity has received support in the neu-
rophysiological literature (Calabresi et al. 1997; Law-Tho, Deuce, and Crepel 1995; Wickens,
Begg, and Arbuthnott 1996).

2. The activation of unit a; at time ¢ is given as

1
ai(t) = g—menm -
where 7 is the gain on the activation function, while net;(t) is given as
net; (t) = 12 a;(t) wi; + (1—1) net;(t—1),

1
where 7 is the time constant for averaging the net input (set at 0.5 for all simulations), and
wj; is the weight of the connection from each unit j that projects to unit i.

3. We should note that single, continuous-valued processing units in our model are used to
simulate cell assemblies in the cortex (e.g., Amit 1989), and that recurrent self-connections
simulate mutual excitatory synapses among cells belonging to a particular assembly.

4. Input-to-context module weights were set to + 3.0; self-excitatory connections within the
context module, to +5.5: lateral inhibitory connections within the context level, to —4.0; and
local inhibitory input from the bias unit, to —2.5.

5. In work currently in progress, we have found preliminary evidence that both the active
maintenance properties and connectivity pattern of context layer representations can be
independently discovered through the application of learning algorithms, such as LEABRA
(O'Reilly 1996), that combine correlational with error-driven learning. It remains a question
for future research to determine whether this type of learning algorithm can be integrated
with TD learning to provide more sophisticated models (i.e., ones that can address larger
data sets and more complex cognitive tasks) and to reduce the number of parameters that
need be fixed prior to learning.

6. More precisely, the TD error is computed according to the equation, derived from Sutton
1988:
8(6) = r(t) + AP(H) — P(t — 1),

where r(#) is the reward input at time ¢, P(#) is the total prediction input at time t, and 4 is
a discount factor, fixed at 0.95 for all simulations. This formulation suggests that an unex-
pected actual reward (for which predictions are zero) would lead to an increase in TD error
(i.e., phasic activation of the RPG unit). Additionally, in the absence of actual reward (ie.,
#(#) =0), TD error increases when the current state is thought to be more predictive of
reward than the previous state (i.e., P(t)> P(t — 1)), such as when a salient cue appears in the
environument.

7. Modifiable network weights are adjusted according to the learning rule:
Aw = né(t)x;(t — 1),

where x(t —1) is the activity of the sending unit at time (t —1), 1 is the learning rate, and
5(t) is the TD error at time ¢ (see note 6).
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8. The modulatory effect of gating on afferent excitatory and local inhibitory input to con-
text units was given as

wf;-' = }'(t)lﬂij,

where

k—1
w6 =1+ 4 Eso-uss k>L

and where 6(f) is the TD error of the gating unit at time ¢, with k determining the maximum
gain (y) of the gating unit. The function y(f), a sigmoid in which gain monotonically in-
creases with the level of TD error, is bounded such that the minimum gain is 1 and the maxi-
mum is k. S and B are additional parameters that determine the slope of the sigmoid and its
baseline value (i.e., when 6(f) is zero). In the simulation, k =5, S =20, and B = 5. The results
of the model were not found to depend critically on these parameter values, although it was
important to choose a parameter that caused the slope of the function to be relatively steep,
such that small increases in §(f) had a nonnegligible effect. This allowed the RPG unit to
exert a gating function early in the learning process, when activity is not very high.

9. The noise was drawn from a Gaussian distribution having zero mean. Its standard devi-
ation was initialized to a value of 0.2. During training, this value was decreased by half
whenever the TD error at the time of reinforcement delivery (averaged across a moving
window of ten trials) also decreased by half. The noise parameter and annealing schedule
primarily affected the speed of learning, and the results of the simulation were not found to
depend upon the exact values used.

10. Although there is evidence that some presumably perceptual regions, such as posterior
parietal and inferior temporal cortex, do show sustained active representations of stimuli
over delay periods, these representations appear to be abolished by the presentation of new
stimuli (Constantinidis and Steinmetz 1996; Miller, Erickson, and Desimone 1996). Thus
they cannot serve as generally useful temporal representations of the sort desired for
reward prediction learning.
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