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A Biologically Based Computational Model
of Working Memory

RANDALL C. O'REILLY, TODD S. BRAVER, AND
JONATHAN D. COHEN

FIVE CENTRAL FEATURES OF THE MODEL

We define working memory as controlled processing involving active
maintenance and/or rapid learning, where controlled processing is an
emergent property of the dynamic interactions of multiple brain sys-
tems, but the prefrontal cortex (PFC) and hippocampus (HCMP) are
especially influential owing to their specialized processing abilities and
their privileged locations within the processing hierarchy (both the PFC
and HCMP /are well connected with a wide range of brain areas, allowing
them to influerice behavior at a global level). The specific features of our
model include:

(1) A PFC specialized for active maintenance of internal contextual
information that is dynamically updated and self-regulated, allow-
ing it to bias (control) ongoing processing according to maintained
information (e.g., goals, instructions, partial products).

(2) An HCMP specialized for rapid learning of arbitrary information,
which can be recalled in the service of controlled processing,
whereas the posterior perceptual and motor cortex (PMC) exhibits
slow, long-term learning that can efficiently represent accumulated
knowledge and skills.

(3) Control that emerges from interacting systems (PFC, HCMP, and
PMCQ).

(4) Dimensions that define continua of specialization in different brain
systems: for example, robust active maintenance, fast versus slow
learning.

(5) Integration of biological and computational principles.
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Working memory is an intuitively appealing theoretical construct — perhaps
deceptively so. It has proven difficult for the field to converge on a fully satis-
fying, mechanistically explicit account of what exactly working memory is
and how it fits into a larger model of cognition (hence the motivation for this
volume). Existing theoretical models of working memory can be traced to
ideas based on a traditional computer-like mental architecture, where process-
ing is centralized and long-term memory is essentially passive. In this con-
text, it makes sense to have RAM or cache-like working memory buffers
dedicated to temporarily storing items that are needed during processing by
the central executive (Baddeley, 1986). Alternative processing architectures
have been proposed, within both the computational and psychological litera-
tures (Anderson, 1983; Newell, 1990), in which working memory is defined
functionally - as the activated component of long-term memory representa-
tions - rather than structurally as a dedicated component of the system.
However, these typically include a structural distinction between processing
and memory. None of these architectures seems to correspond closely to the
architecture of the brain, in which processing and memory functions are typ-
ically distributed within and performed by the same neural substrate
(Rumelhart & McClelland, 1986).

We believe that considering how working memory function might be
implemented in the brain provides a unique perspective that is informative
with regard to both the psychological and biological mechanisms involved.
This is what we attempt to do in this chapter, by providing a biologically
based computational model of working memory. Our goal is not only to pro-
vide an account that is neurobiologically plausible, but also one that is mech-
anistically explicit and that can be implemented in computer simulations of
specific cognitive tasks. We share this goal with others in this volume who
have also committed their theories to mechanistically explicit models, at both
the symbolic (Lovett, Reder, & Lebiere, Chapter 5; Kieras, Meyer, Mueller, &
Seymour, Chapter 6; Young & Lewis, Chapter 7, all this volume) and neural
(Schneider, Chapter 10, this volume) levels.

It is possible to identify a core set of information-processing requirements
for many working memory tasks: (a) Task instructions and/or stimuli must be
encoded in such a form that they can either be actively maintained over time,
and/or learned rapidly and stored offline for subsequent recall, (b) The active
maintenance must be both dynamic and robust, so that information caj be
selectively maintained, flexibly updated, protected from interference, and
held for arbitrary (although relatively short) durations, (c) The maintained
information must be able to rapidly and continually influence (bias) subse-
quent processing or action selection. (d) The rapid learning must avoid the
problem of interference to keep even relatively similar types of information
distinct. In addition to these specifications for an active-memory system and a
rapid-learning system, we think that the working memory construct is gener-
ally associated with tasks that require controlled processing, which governs the

A Biologically Based Computational Model 377

updating and maintenance of active memory and the storage and retrieval of
rapidly learned information in a strategic or task-relevant manner. This is con-
sistent with the original association of working memory with central execu-
tive-like functions. Taken together, these functional aspects of working
memory provide a basic set of constraints for our biologically based model.
Our approach involves two interrelated threads. The first is a focus on the
functional dimensions along which different brain systems appear to have
specialized and the processing trade-offs that result as a consequence of these
specializations. The second is a set of computational models in which we
have implemented these functional specializations as explicit mechanisms.
Through simulations, we have endeavored to show how the interactions of
these specialized brain systems can account for specific patterns of behavioral
performance on a wide range of cognitive tasks. We have postulated that pre-
frontal cortex (PFC), hippocampus (HCMP), and posterior and motor cortex
(PMC) represent three extremes of specialization along different functional
dimensions important for working memory: sensory and motor processing
based on inference and generalization (PMC); dynamic and robust active
memory (PFC); and rapid learning of arbitrary information (HCMP). Because
each of these specializations involves trade-offs, it is only through interac-
tions between these systems that the brain can fulfill the information-pro-

_cessing requirements of working memory tasks.

As an example of how these components work together, consider a simple
real-world task that involves contributions from these different brain systems.
Imagine you are looking for some information (the name of a college friend’s
child) contained in an e-mail message you received a year ago and have stored
in one of your many message folders. You can remember several things about
that e-mail, such as who sent it (a good friend who knows the college friend)
and what else was happening at around that time (you had just returned from
a conference in Paris), but you don’t remember the subject line or where you

'ﬁled it. This information about the e-mail is retrieved from the HCMP system,

which was able to bind together the individual features of the memory and
store it as a unique event or episode. Once recalled, these features must be
used to guide the process of searching through the folders and e-mail mes-

~ sages. We think that this happens by maintaining representations of these

features in an active state in the PFC, which is able to keep them active for the
duration of the search and protect them from being dislodged from active
memory by all the other information you read. Meanwhile the basic abilities
of reading information and issuing appropriate commands within the e-mail
system are subserved by well-learned representations within the PMC, guided
by representations held active in PFC.

Once initiated, the search requires the updating of items in active memory
(college friend’s name, good friend’s name, Paris conference) and its interac-
tion with information encountered in the search. For example, when you list
all of the folders, you select a small subset as most probable. This requires an
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interaction between the items in active memory (PFC), long-term knowledge
about the meanings of the folders (PMC), and specific information about
what was filed into them (HCMP). The result is the activation of a new set of
items in active memory, containing the names of the new set of folders to
search. You may first decide to look in a folder that will contain an e-mail
telling you exactly when your conference was, which will help narrow the
search. As you do this, you may keep that date in active memory and not
maintain the conference information. Thus, the items in active memory are
updated (activated and deactivated) as needed by the task at hand. Finally,
you iterate through the folders and e-mail messages, matching their date and
sender information with those maintained in active memory, until the correct
e-mail is found.

All of this happened as a result of strategic, controlled processing, involv-
ing the activation and updating of goals (the overall search) and subgoals
(e.g., finding the specific date). The maintenance and updating of goals, like
that of the other active memory items, is dependent on specialized mecha-
nisms in the PFC system. Thus, the PFC system plays a dominant role in both
active memory and controlled processing, which are two central components
of the working memory construct. However, other systems can play equally
central roles. For example, if you were interrupted in your search by a phone
call, then you might not retain all the pertinent information in active mem-
ory (“Now, where was I?”"). The HCMP system can fill in the missing informa-
tion by frequently (and rapidly) storing snapshots of the currently active
representations across much of the cortex, which can then be recalled after an
interruption to pick up where you left off. Thus, working memory functional-
ity can be accomplished by multiple brain systems, though the specialized
active memory system of the PFC remains a central one.

We have studied a simple working memory task based on the continuous
performance test (CPT), which involves searching for target letters in a con-
tinuous stream of stimuli (typically letters). For example, in the AX version
of the CPT (AX-CPT), the target is the letter X, but only if it immediately fol-
lows the letter A. Thus, the X alone is inherently ambiguous, in that it is a
nontarget if preceded by anything other than an A. Like the e-mail search
task, this requires the dynamic updating and maintenance of active memory
representations (e.g., the current stimulus must be maintained to perfo;za
correctly on the subsequent one), which makes this a working memory taf 2
Active maintenance is even more important for a more demanding version
of this task called the N-back, in which any letter can be a target if it is iden-
tical to the one occurring N trials previously (where N is prespecified and is
typically 1, 2, or 3). Thus, more items need to be maintained simultaneously,
and across intervening stimuli. The N-back also requires updating the work-
ing memory representations after each trial, to keep track of the order of the
last N letters.
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There are several other relevant demands of this task. For example, upon
receiving the task instructions, subjects must rapidly learn the otherwise
arbitrary association between the letters A and X. We assume that this is car-
ried out by the HCMP. Of course, subjects must also be able to encode each
P stimulus and execute the appropriate response, which we assume is carried
& out by PMC. Together, the rapid association of the cue with the correct
tesponse to the target (HCMP), the active maintenance of information pro-
£ vided by the specific cue presented in each trial (PFC), and the use of that
nformation to guide the response (PMC), constitute a simple form of work-
ing memory function. In Figure 11.1, we present a computational model of
performance in this task that illustrates our theory regarding the functional
oles of PFC, PMC, and HCMP. We have implemented components of this
model and demonstrated that it can account for detailed aspects of normal
yehavior in the AX-CPT, as well as that of patients with schizophrenia who
ate thought to suffer from PFC dysfunction (Braver, Cohen, & McClelland,
97a; Braver, Cohen, & Servan-Schreiber, 1995; Cohen, Braver, & O'Reilly,
96).
In the model, the PMC layer of the network performs stimulus identifica-
n and response generation. Thus, in panel a, when the A stimulus is pre-
ted, an unequivocal nontarget response (here mapped onto the right
d, but counterbalanced in empirical studies) is generated. However, the
C is also activated by this A stimulus, because it serves as a cue for a possi-
subsequent target X stimulus. During the delay period shown in panel b,
PFC maintains its representation in an active state. This PFC representa-
n encodes the information that the prior stimulus was a cue, and thus that
n X comes next, a target (left-hand) response should be made. When the
timulus is then presented (panel c), the PFC-maintained active memory
ses processing in the PMC in favor of the interpretation of the X as a tar-
, leading to a target (left-hand) response. We think that the HCMP would
o play an important role in performing this task, especially in early trials,
virtue of its ability to rapidly learn associations between the appropriate
uli (e.g., A in the PMC and “left-to-X" in the PFC) based on instructions
to provide a link between these until direct cortical connections have
n strengthened. However, we have not yet implemented this important
omponent of working memory in this model (see Figure 11.1).
In the following sections, we first elaborate our theory of working memory
1 terms of a more comprehensive view of how information is processed
ithin neural systems. Although we believe it is important that our theory is
ed on mechanistic models of cognitive function whose behavior can be
ompared with empirical data, a detailed consideration of individual models
“empirical studies is beyond the scope of this chapter. Furthermore, many of
he features of our theory have not yet been implemented and remain a chal-
enge for future work. Thus, our objective in this chapter is to provide a high-
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level overview of our theory and to show how it addresses the theoretical
questions posed for this volume.

A Biologically Based Computational Model of Cognition

Our model of working memory is a unified one in that the same underlying
computational principles are used throughout. We and others have relied on
these computational principles in previous work to address issues regarding
cognitive function and behavioral performance in many other task domains,
including ones involving response competition, classical conditioning, and
covert spatial attention. Moreover, the functional specializations that we pos-
tulate for different brain systems emerge as different parametric variations
within this unified framework, giving rise to a continuum of specialization
along these dimensions. The basic computational mechanisms are relatively
simple, including standard parallel-distributed-processing (PDP) ideas
(McClelland, 1993; Rumelhart & McClelland, 1986: Seidenberg, 1993), the
most relevant being:

The brain uses parallel, distributed processing involving many relatively simple
elements (neurons or neural assemblies), each of which is capable of
performing local processing and memory, and which are grouped into
systems.

Systems are composed of groups of related elements that subserve a similar set
of processing functions. Systems may be defined anatomically (by patterns
of connectivity) and/or functionally (by specialization of representation or
function).

Specialization arises from parametric variations in properties possessed by all
elements in the brain (e.g., patterns of connectivity, time constants, regu-
lation by neuromodulatory systems). Parameter variations occur along
continuous dimensions, and thus subsystem specialization can be a graded
phenomenon.

Knowledge is encoded in the synaptic connection strengths (weights) between

- neurons, which typically change slowly compared with the time course of

processing. This means that neurons have relatively stable (dedicated) rep-

resentations over time.

Cognition results from activation propagation through interconnected networks
of neurons. Activity is required to directly influence ongoing processing.
Learning occurs by modifying weights as a function of activity (which can con-

vey error and reward feedback information from the environment).

Memory is achieved either by the relatively short-term persistence of activa-

tion patterns (active memory) or longer lasting weight modifications

(weight-based memory).

Representations are distributed over many neurons and brain systerns, and at
many different levels of abstraction and contextualization.
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Inhibition between representations exists at all levels, both within and possi-
bly between systems, and increases as a (nonlinear) function of the num-
ber of active representations. This results in attention: phenomena and has
important computational benefits by enforcing relatively sparse levels of

activation.

Recurrence (bidirectional connectivity) exists among the elements within a.

system and between systems, allowing for interactive bottom-up and top-
down processing, constraint satisfaction settling, and the communication of

error signals for learning.

A central feature of this framework, as outlined above, is that different
brain systems are specialized for different functions. To characterize these spe-
cializations (and understand why they may have arisen), we focus on basic
trade-offs that exist within this computational framework (e.g., activity- vs.
weight-based storage, or rapid learning vs. extraction of regularities). These
trade-offs lead to specialization, because a homogeneous system would
require compromises to be made, whereas specialized systems working
together can provide the benefits of each end of the trade-off without requir-
ing compromise. This analysis has led to the following set of coincident bio-
logical and functional specializations, which are also summarized in Figure
11.2 and Table 11.1:

Posterior perceptual and motor cortex (PMC) The PMC optimizes knowledge-
dependent inference capabilities, which depend on dense interconnectivity,
highly distributed representations, and slow integrative learning (i.e., inte-
grating over individual learning episodes) to obtain good estimates of the
important structural/statistical properties of the world, upon which infer-
ences are based (McClelland, McNaughton, & O'Reilly, 1995). Similarity-
based overlap among distributed representations is important for enabling
generalization from prior experience to new situations. These systems per-
form sensory/motor and more abstract, multimodal processing in a hierar-
chical but highly interconnected fashion, resulting in the ability to
perceive and act in the world in accordance with its salient and reliable
properties. We take this to be the canonical type of neural computation in
the cortex and view the other systems in reference to it. /

Prefrontal cortex (PFC) The PFC optimizes active memory via restricted recux{ent
excitatory connectivity and an active gating mechanism (discussed subse-
quently). This results in the ability to (a) flexibly update internal represen-
tations, (b) maintain these over time and in the face of interference and, (c)
by propagation of activation from these representations, bias PMC process-
ing in a task-appropriate manner. PFC is specialized because there is a fun-
damental trade-off between the ability to actively sustain representations
(in the absence of enduring input or the presence of distracting informa-
tion) and the presence of dense interconnectivity underlying distributed
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Figure 11.2. Diagram of key properties of the three principal brain systems. Active rep-
Tesentations are shown in gray; highly overlapping circles are distributed representa-
Hons; nonoverlapping are isolated; in between are separated. Weights between active
units are shown in solid lines; those of nonactive units in dashed. Three active feature
“values along three separate “dimensions” (e.g., modalities) are represented. PMC repre-
entations are distributed and embedded in specialized (e.g., modality-specific) process-
g systems. PFC representations are isolated from each other, and combinatorial, with
eparate active units representing each feature value. Unlike other systems, PFC units
re capable of robust self-maintenance, as indicated by the recurrent connections.
(CMP representations are Sparse, separated (but still distributed), and conjunctive, so
1at only a single representation is active at a time, corresponding to the conjunction
f all active features,

(overlapping) representations such as in the PMC (Cohenetal., 1996). As a
result, the individual self-maintaining representations in PFC must be rela-
tively isolated from each other (as opposed to distributed). They can thus
be activated combinatorially with less mutual interference or contradiction,
allowing for flexible and rapid updating. Because they sit high in the corti-
cal representational hierarchy, they are less embedded and more globally
accessible and influential. Because they are actively maintained and
strongly influence cognition, only a relatively small number of representa-
tions can typically be concurrently active in the PFC at a given time for
coherent cognition to result, Thus, inhibitory attentional mechanisms
play an important role in PFC, as well as for understanding the origin of
Capacity constraints.

Hippocampus ggd related structures (HCMP) The HCMP optimizes rapid learn-
ing of arbi‘t'{i‘aryr information in weight-based memories. This permits the
binding of elements of a novel association, including representations in
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Table 11.1. Critical Parameterizations of the Three Systems

Internal External Act Learn
System Function Relation Relation Capacity Rate
PMC Inference Distributed, Embedded Many Slow
processing overlapping
PFC Maintenance,  Isolated, Global Few Slow
control combinatorial
HCMP Rapid Separated, Context One Fast
learning conjunctive sensitive

Note: Function specifies the function optimized by this system. Internal relation
indicates how representations within each system relate to each other.
External relation indicates how representations relate to other systems. Act
capacity indicates how many representations can be active at any given time.
Learn rate indicates characteristic rate of learning. See text for fuller
description.

PFC and PMC, providing a mechanism for temporary storage of arbitrary
current states for later retrieval. There is a trade-off between such rapid
learning of arbitrary information without interfering with prior learning
(retroactive interference) and the ability to develop accurate estimates of
underlying statistical structure (McClelland et al., 1995). To avoid interfer-
ence, learning in the HCMP uses pattern separation (i.e., individual episodes
of learning are separated from each other), as opposed to the integration
characteristic of PMC. This separation process requires sparse, conjunctive
representations, in which all the elements contribute interactively (not sep-
arably) to specifying a given representation (O’Reilly & McClelland, 1994).
This conjunctivity is the opposite of the combinatorial PFC, in which the
elements contribute separably. Conjunctivity leads to context-specific and
episodic memories, which bind together the elements of a context or
episode. This also implies that there is a single HCMP representation (con-
sisting of many active neurons) corresponding to an entire pattern of agtiv-
ity in the cortex. Because only one HCMP representation can be active at
any time, reactivation is necessary to extract information from multiple
such representations.

Although there are undoubtedly many other important specialized brain
systems, we think that these three provide central and critical contributions
to working memory function. However, brainstem neuromodulatory systems,
such as dopamine and norepinephrine, play an important supporting role in
our theory, as a result of their capacity to modulate cortical processing accord-
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ing to reward, punishment, and affective states. In particular, as we discus:
further below, we have hypothesized that dopamine activity plays a critical
role in working memory function, by regulating active maintenance in PFC
(Cohen & Servan-Schreiber, 1992; Cohen et al., 1996).

It should also be emphasized that the foregoing are relatively broad char-
~ acterizations of large brain systems, which (especially in the case of the neo-
cortical systems) may have subsystems with different levels of conformance
to these generalizations. Further, there may be other important differences
between these systems that are not reflected in our account. Nevertheless,
these generalizations are consistent with a large corpus of empirical data and
ideas from other theorists (e.g., Fuster, 1989; Goldman-Rakic, 1987; Shallice,
1982; Squire, 1992). Finally, we note that there are still important portions of
this account that have not yet been implemented in computational models,
and the sufficiency of these ideas to perform complex cognitive tasks, espe-
cially those involving extended sequential behavior, remains untested at pre-
sent. Nevertheless, encouraging progress has been made in implementing and
testing models of some of the more basic functions we have described, such as
the active maintenance function of PFC and the binding function of hip-
pocampus (see Cohen et al.,, 1996; Cohen & O'Reilly, 1996; McClelland et al.,
1995, for reviews).

In what follows, we will elaborate the ways in which these brain systems
interact to produce controlled processing and working memory and make
more clear their relationship to other constructs such as consciousness and
active memory. We will then focus on a set of important issues surrounding
E  the operation of the PFC active memory system, followed by an application of
- these ideas to understanding some standard working memory tasks. This then
- provides a sufficient set of principles to address the theoretical questions
~ posed in this volume.

Controlled Processing and Brain System Interactions

We consider controlled processing to be an important aspect of our theory
of working memory. This has classically been described in contrast with auto-
matic processing (Posner & Snyder, 1975; Shiffrin & Schneider, 1977), and has
- been thought to involve a limited-capacity attentional system. However,
more recent theories have suggested that a continuum may exist between
controlled and automatic processing (Cohen, Dunbar, & McClelland, 1990;
Kahneman & Treisman, 1984), and we concur with this view. Thus, working
memory also varies along this same continuum. In particular, we have con-
ceptualized controlled processing as the ability to flexibly adapt behavior to
the demands of particular tasks, favoring the processing of task-relevant infor-
mation over other sources of competing information and mediating task-rele-
vant behavior over habitual or otherwise prepotent responses. In our models
this is operatiorialized as the use and updating of actively maintained repre-
sentations in PFC to bias subsequent processing and action selection within
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PMC in a task-appropriate manner. For example, in the AX-CPT model
described earlier, the context representation actively maintained in PFC is
able to exert control over processing by biasing the response made to an
ambiguous probe stimulus.

Though it is tempting to equate controlled processing with theoretical
constructs such as a central executive (Gathercole, 1994; Shiffrin & Schneider,
1977), there are critical differences in the assumptions and character of these
mechanisms that have important consequences for our model of working
memory. Perhaps the most important difference between our notion of con-
trolled processing and theories that posit a central executive is that we view
controlled processing as emerging from the interactions of several brain Sys-
tems, rather than the operation of a single, unitary CPU-like construct. We
believe that our interactive, decentralized view is more consistent with the
graded aspect of controlled processing, as well as the character of neural archi-
tectures. However, aspects of our theory are compatible with other models.
For example, Shallice (1982) has proposed a theory of frontal function, as well
as the operation of a central executive, in terms of a supervisory attentional
system (SAS). He describes this using a production system architecture, in
which the SAS is responsible for maintaining goal states in working memory,
to coordinate the firing of productions involved in complex behaviors. This is
similar to the role of goal stacks and working memory in ACT (Anderson,
1983; Lovett et al., Chapter 5, this volume). Similarly, our theory of working
memory and controlled processing depends critically on actively maintained
representations (in PFC). This central role for active maintenance in achieving
controlled processing contrasts with a view in which active maintenance and
executive control are strictly segregated (Baddeley & Logie, Chapter 2, this
volume).

We consider controlled processing to arise from the interplay between
PFC biasing and HCMP binding (Cohen & O'Reilly, 1996). Figure 11.3 illus-
trates the central ideas of this account, which is based on the functional
characterizations of the PFC and HCMP as described earlier. According to this
view, the degree to which controlled processing is engaged by a task is deter-
mined by the extent to which either or both of the following conditions
exist:

* Sustained, weakly learned (i.e., relatively infrequent), or ccordinated/ﬁro-
cessing is required.
* Novel information must be rapidly stored and accessed.

Since the PFC can bias processing in the rest of the system, sustained activ-
ity of representations in PFC can produce a focus of activity among represen-
tations in PMC needed to perform a given task. This can be used to support
representations in PMC over temporally extended periods (e.g., in delayed
response tasks), and/or weakly learned representations that might otherwise
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Figure 11.3. Ways in which the HCMP and PFC contribute to the automatic vs. con-
 trolled processing distinction (after Cohen & O'Reilly, 1996). Bias is provided by the
PFC and can be used to perform sustained processing, can facilitate the processing of
~ weakly learned (i.e., relatively infrequent) tasks, and can serve to coordinate processing
~ across different systems. Binding is provided by the HCMP and can be used to rapidly
learn and store the information necessary to perform novel tasks or processing.
Controlled processing can involve either or both of these contributions, whereas auto-
matic processing can be performed independent of them,

be dominated by stronger ones (e.g., in the Stroop task, where highly prac-
ticed word-reading dominates relatively infrequent color naming; Cohen et
al., 1990). This function of PFC corresponds closely to Engle, Kane, and
Tuholski’s (Chapter 4, this volume) notion of controlled attention and to
Cowan'’s (Chapter 3, this volume) notion of focus of attention. In contrast,
the HCMP contributes the ability to learn new information rapidly and with-
out interference, binding together task-relevant information (e.g- task
instructions, particular combinations of stimuli, intermediate states of prob-
lem solutions) in such a form that it can be retrieved at appropriate junctures
during task performance. This may be relevant for Ericsson and Delaney’s
(Chapter 8, this volume) notion of long-term working memory and Young
and Lewis’ (Chapter 7, this volume) production learning mechanism, as well
as Moscovitch and Winocur’s (1992) notion of “working-with-memory.” We
propose that the combination of these two functions (PFC biasing and HCMP
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binding) can account for the distinction between controlled and automatic
processing. On this account, automatic processing is what occurs via activa-
tion propagation through intrinsic PMC connectivity, whereas controlled
processing reflects the additional constraints on the flow of activity brought
to bear by the PFC and/or HCMP.

Activation Propagation and Multiple-Constraint Satisfaction

Though some aspects of behavior can be understood in terms of relatively
local processes within the brain, we assume that, under most circumstances,
behavior is determined by a rich and dynamic set of interactions involving
the widespread propagation of activation to multiple, distributed brain Sys-
tems. Although the detailed outcome of such processing in a particular case
may be difficult, if not ultimately impossible, to describe, its general character
can be understood in terms of multiple-constraint satisfaction: The activation
state that results from this propagation of information over weighted neu-
ronal connections is likely to be one that satisfies various constraints, includ-
ing those imposed by three critical components: (a) external stimuli: (b)
sustained activity in PFC; and (c) recalled information from the HCMP. Thus,
representations in PFC and HCMP act as “control signals,” insofar as these
influence the flow of activity and thereby shape the constraint-satisfaction
process that is taking place in the rest of the brain. Furthermore, their activa-
tion states are themselves influenced by similar constraint-satisfaction mech-
anisms based on activations from the PMC (though a presumed gating
mechanism in the PFC can make it more or less susceptible to this “bottom.-
up” influence; see subsequent discussion). All of these constraints are medi-
ated by the synaptic connections between neurons, which are adapted
through experience in such a way as to result in better activation states in
similar situations in the future. Thus, much of the real work being done in our
model (and our avoidance of a homunculus or otherwise unspecified central
executive mechanisms when we discuss controlled processing), lies in these
activation dynamics and their tuning as a function of experience.
Computational models are essential in demonstrating the efficacy of these
mechanisms, which may otherwise appear to have mysterious roperties.

Accessibility and Consciousness

In our model, one of the dimensions along which brain systems differ is in
the extent to which their representations are globally accessible to a wide
range of other brain systems, as opposed to being embedded within more spe-

cific processing systems and less globally accessible. We view this difference as.

arising principally from a system’s relative position within an overall hierar-
chy of abstractness of representations. This hierarchy is defined by how far
removed a system is from direct sensory input or motor output, Systems sup-
porting high-level, more-abstract representations are more centrally. located
with respect to the overall network connectivity, resulting in greater accessi-
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bility. Accordingly, because both the PFC and HCMP are at the top of the hier-
archy (Fuster, 1989; Squire, Shimamura, & Amaral, 1989), they are more influ-
ential and accessible than subsystems within PMC. Like the other dimensions
along which these systems are specialized, we view this as a graded contin-
uum, and not as an all-or-nothing distinction. Furthermore, we assume that
the PMC has rich “lateral” connectivity between subsystems at the same gen-
eral level of abstraction (at least beyond the first few levels of Sensory or
motor processing). Nevertheless, the PFC and HCMP assume a position of
greater accessibility, and therefore greater influence, relative to other systems.

Accessibility has many implications that relate to issues of conscious
awareness as well as psychological distinctions like explicit versus implicit or
declarative versus procedural. We view the contents of conscious experience as
reflecting the results of global constraint-satisfaction processing throughout
the brain, with those systems or representations that are most influential or
constraining on this process having greater conscious salience (cf.
Kinsbourne, 1997). In general, this means that highly accessible and influen-
tial systems like PFC and HCMP will tend to dominate conscious experience
over the more embedded subsystems of the PMC. Consequently, these Sys-
tems are most clearly associated with notions of explicit or declarative pro-
cessing, whereas the PMC and subcortical systems are associated with
implicit or procedural processing. We endorse this distinction, but add the
important caveats that PFC and HCMP are participants in an extended inter-
active system and that, once again, such distinctions should be considered
along a continuum. Thus, our theory is not compatible with strong assump-
tions about informationally encapsulated modules (Fodor, 1983; Moscovitch
& Winocur, 1992).

Active Memory Versus Working Memory

In our model, we use the term active memory to refer to information that is
represented as a pattern of activity (neuronal spiking) across a set of units
(neural assembly) that persists over some (possibly brief) time interval. We
view working memory as relying on active memory, by virtue of the need to
rapidly and frequently access stored information over short intervals and use
this information to bias processing in an ongoing way in other parts of the
system. However, the HCMP, because it is capable of rapidly forming novel
associations and retrieving these in task-relevant contexts, is also useful for
working memory. Conversely, we do not assume that actively maintained rep-
resentations are invoked exclusively within the context of working memory.
Sustained activity can occur and play a role in automatic processing as well.
For example, it is not difficult to imagine that relatively automatic tasks such
as typing would require persistent active representations, and sustained activ-
ity has indeed been observed in areas outside of PFC (Miller & Desimone,
1994). We assume that actively maintained representations participate in
working memory function only under conditions of controlled processing —
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that is, when sustained activity is the result of Iepresentations currently bein g
actively maintained in the PFC or retrieved by the HCMP. This corresponds
directly to the distinctions, proposed by Cowan (Chapter 3, this volume) and
Engle et al. (Chapter 4, this volume), between controlled or focused attention
and other sources of activation and attentional effects.

Regulation of Active Memory

It has long been known from electrophysiological recordings in monkeys
that PFC neurons remain active over delays between a stimulus and a contin-
gent response (Fuster & Alexander, 1971). Furthermore, though such sus-
tained activity has been observed in areas outside of PEC, it appears that PFC
activity is robust to interference from processing intervening distractor stim-
uli, whereas activity within the PMC is not (Miller, Erikson, & Desimone,
1996; Cohen et al., 1997). Although the precise mechanisms responsible for
active maintenance in PFC are not yet known, one likely mechanism is strong
recurrent excitation. If groups of PFC neurons are strongly interconnected
with each other, then strong mutual excitation will lead to both sustained
activity and some ability to resist interference. This idea has been developed
in a number of computational models of PEC function (Dehaene &
Changeux, 1989; Zipser, Kehoe, Littlewort, & Fuster, 1993). However, we
believe that this simple model is inadequate to account for both robust active
maintenance and the kind of rapid and flexible updating necessary for com-
plex cognitive tasks.

The underlying problem reflects a basic trade-off — to the extent that units
are made impervious to interference (i.e., by making the recurrent excitatory
connections stronger), this also prevents them from being updated (i.e., new
representations activated and existing ones deactivated). Conversely, weaker
excitatory connectivity will make units more sensitive to inputs and capable
of rapid updating, but will not enable them to be sustained in the face of
interference. To circumvent this trade-off, we think that the PFC has taken
advantage of midbrain neuromodulatory systems, which can provide a gating
mechanism for controlling maintenance. When the gate is opened, the PFC
Tepresentations are sensitive to their inputs and capable of rapid updating.
When the gate is closed, the PFC representations are protected fyom interfer-
ence. Such a gating mechanism can augment the computational power of
recurrent networks (Hochreiter & Schmidhuber, 199 7), and we have hypothe-
sized that dopamine (DA) implements this gating function in PFC, based on a
substantial amount of biological data (Cohen et al.,, 1996). ’

Thus, we propose that the midbrain DA nuclei (the ventral tegmental area,
VTA), under control of descending cortical projections, enable the PFC to
actively regulate the updating of its representations by controlling the release
of DA in a strategic manner. Specifically, we propose that the afferent connec-
tions into the PFC from other brain systems are usually relatively weak com-
pared to stronger local excitation, but that DA enhances the strength of these

A Biologically Based Computational Model 391

afferents! at times when updating is necessary. This would predict that the
VTA should exhibit phasic firing at those times when the PFC needs to be
updated. Schultz, Apicella, and Ljungberg (1993) have found that, indeed, the
VTA exhibits transient, stimulus-locked activity in response to stimuli that
predicted subsequent meaningful events (e.g., reward or other cues that then
predict reward). Further, we argue that this role of DA as a gating mechanism
Is synergistic with its widely discussed- role in reward-based learning
(Montague, Dayan, & Sejnowski, 1996). As will be discussed further in the
final discussion section, this learning helps us to avoid the need to postulate a
homunculus-like mechanism for controlled processing.

General Nature of Active Memory Representations

Our theory places several important demands on the nature of representa-
tions within the PFC, in addition to the rapidly updatable yet robust active
maintenance discussed before. In general, we view the PFC’s role in controlled
processing as imposing a sustained, task-relevant, top-downl bias on processing
in the PMC. Thus, in complex cognitive activities, the PFC should be con-
stantly activating and deactivating representations that can bias a large number
- of combinations of PMC representations, while sustaining a coherent and
focused thread of processing. This means that the PFC needs a vast repertoire of
. representations that can be activated on demand, and these representations
‘need to be connected with the PMC in appropriate ways. Further, there must be
some way of linking together sequences of representations in a coherent way.

Our initial approach toward understanding PFC representations has been
dominated by an interesting coincidence between the previously mentioned
‘functional characterization of the PFC and a consequence of an active main-
tenance mechanism based on recurrent excitation. Distributed representa-
tions, which are thought to be characteristic of the PMC, are problematic for
this kind of active maintenance mechanism, because they rely critically on
afferent input to select the appropriate subset of distributed components to be
activated. In the absence of this afferent selection (e.g., during a delay period),
Fecurrent excitation among the components will spread inappropriately and
result in the loss of the original activity pattern. This is illustrated in Figure
11.4, in which a distributed representation is used to encode three different
items, which each share two out of three total features. If these distributions
have the strong recurrent excitatory connections necessary for active mainte-
..nance, then it will be difficult to keep a unique subset of two features active
without also activating the third: Activation will spread to the third unit via
the connections necessary to maintain it in other circumstances. The alterna-
" tive (shown in panel b) is to use isolated representations, which maintain only
themselves. However, what is missing from these isolated representations is

at inhibitory connections are also enhanced, which would provide

a means of deac existing representations.
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+ +

Figure 11.4. Illustration of difficulties with active maintenance via recurrent excitation
with distributed representations. (a) No value of the excitatory weights will enable an
appropriate subset of two features to be maintained, without also activating the third.
(b) If representations are made independent, then maintenance is no problem, but
semantic relatedness of the features is lost. One could also just maintain the higher-
level items (i.e., synthesizer, terminal, and television).

the rich interconnectivity that encodes knowledge about the relationships
between the features, which could be used for performing the knowledge-
dependent inference that we think is characteristic of the PMC. We obtain
theoretical leverage from this basic trade-off, which can be avoided by having
two specialized systems (PMC and PFC).

The idea that PFC representations are relatively isolated from each other
has important functional consequences beyond the active maintenance of
information. For example, to achieve flexibility and generativity, PFC repre-
sentations must be useful in novel contexts and combinations. Thus, individ-
ual PFC representations should not interfere much with each other so that
they can be more easily and meaningfully combined - this is just what one
would expect from relatively isolated representations. We think that learning
in the PFC is slow and integrative like the rest of the cortex, so that this grad-
ual learning taking place over many years of human development produces a
rich and diverse palette of relatively independent PFC representational com-
ponents, which eventually enable the kinds of flexible problem-solving skills
that are uniquely characteristic of adult human cognition.

This view of PFC representations can be usefully compared with that of
human language. In terms of basic representational elements, language con-
tains words, which have a relatively fixed meaning and can be combined in a
huge number of different ways to express different (and sometimes novel)
ideas. Words represent things at many different levels of abstraction and con-
creteness, and complicated or particularly detailed ideas can be expressed by
combinations of words. We think that similar properties hold for PFC rep-
resentations, and indeed that a substantial subset of PFC representations do
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correspond with word-like concepts. However, we emphasize that word
meanings have highly distributed representations across multiple brain sys-
tems (Damasio, Grabowski, Tranel, Hichwa, & Damasio, 1996), and also that
the PFC undoubtedly has many nonverbal representations. Nevertheless, it
may be that the PFC component of a word'’s representation approaches most
closely the notion of a discrete, symbol-like entity.

Taking this language idea one step further, it may provide useful insights
into the kinds of updating and sequential linking that PFC representations
need to undergo during processing. For example, language is organized at
many different levels of temporal structure, from short phrases, through
longer sentences to paragraphs, passages, and so on. These levels are mutually
constraining, with phrases adding together to build higher-level meaning and
this accumulated meaning biasing the interpretation of lower-level phrases.
This same interactive hierarchical structure, present during problem solving
and other complex cognitive activities, is critical for understanding the

- dynamics of PFC processing. We think that all of these different levels of rep-

resentation can be active simultaneously, mutually constraining each other.

- Further, it is possible that the posterior-anterior dimension of the PFC may be
- organized roughly according to level of abstraction (and correspondingly,

temporal duration). For example, there is evidence that the most anterior area

- of PFC, the frontal pole, is activated only in more complicated problem-solv-

ing tasks (Baker et al., 1996), and that posterior PFC receives most of the pro-
jections from PMC, and then projects to more anterior regions (Barbas &
Pandya, 1987, 1989). Finally, this notion of increasingly abstract levels of plan
or internal task context is consistent with the progression from posterior to
anterior seen within the motor and premotor areas of the frontal cortex

(Rizzolatti, Luppino, & Matelli, 1996).

Specialization of Active Memory Representations

An important issue both within the working memory literature and with
regard to theories of PFC function is that of specialization along functional
and/or representational dimensions. For example, Baddeley (1986) proposed
that there are two separate working memory buffers: a phonological loop and a
visuospatial sketchpad, which might itself be subdividable into object and spa-
tial components. It has been proposed that this functional specialization
reflects an underlying specialization in the brain systems subserving the dif-
ferent buffer systems (Gathercole, 1994). For example, there may be specific
brain systems subserving verbal rehearsal (e.g., Broca's area and/or angular
gyrus). There is also a well-recognized segregation of processing of object and
spatial information into ventral (temporal) and dorsal (parietal) streams
within the PMC (Ungerleider & Mishkin, 1982) that may correspond to the
two subdivisions of Baddeley’s visuospatial sketchpad. At a somewhat more
general level, “hah and Miyake (1996) have found evidence consistent with
the idea of separable spatial and verbal capacities.
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Specialization may also play a role in PFC organization and function.
Arguments in the literature have centered around two dimensions along
which PFC may be organized: functional and content-based. However, we
argue that it is difficult to draw a clean distinction between function and con-
tent. Indeed, a basic principle of neural networks is that processing and
knowledge (content) are intimately intertwined. For example, the functional
distinction between memory (in the dorsolateral PFC) and inhibition (in the
orbital areas; Diamond, 1990; Fuster, 1989), could also be explained by a con-
tent-based distinction in terms of the representation of affective, appetitive,
and social information in the orbital areas, which might be more frequently
associated with the need for behavioral inhibition. Similarly, the functional
dissociation between manipulation (in dorsalateral areas) and maintenance
(in ventrolateral areas; Petrides, 1996) may be confounded with the need to
represent sequential-order information in most tasks that involve manipula-
tion. To further complicate the issue, one type of functional specialization can
often give rise to other apparent functional specializations. For example, we
have argued that the memory and inhibitory functions ascribed to PFC may
both reflect the operation of a single mechanism (i.e., inhibition can result
from maintained top-down activation of representations that then inhibit
other competing possibilities via lateral inhibition; Cohen & Servan-
Schreiber, 1992; Cohen et al., 1996).

Given these problems, we find it more useful to think in terms of the com-
putational motivations described before to understand how the PFC is spe-
cialized (i.e., in terms of the trade-off between active maintenance and
distributed representations). Thus, we support the idea that the PFC is special-
ized for the function of active maintenance. Consequently, representations
within the PFC must be organized by the content of the representations that
are maintained. A number of neurophysiological studies have suggested a
content-based organization that reflects an anterior extension of the organi-
zation found in the PMC, with dorsal regions representing spatial informa-
tion (Funahashi, Bruce, & Goldman-Rakic, 1993) and more ventral regions
representing object or pattern information (Wilson, O’Scalaidhe, & Goldman-
Rakic, 1993). Other content dimensions have also been suggested, such as
sequential-order information (Barone & Joseph, 1989) and “dry{ cognitive
versus affective, appetitive, and/or social information (Cohen & Smith, 1997).
However, the data do not consistently support any of these ideas. For exam-
ple, Rao, Rainer, and Miller (1997) have recorded more complex patterns of
organization in neurophysiological studies, with significant degrees of over-
lap and multimodality of representations. Recent findings within the human
neuroimaging literature are also confusing, because early reports that indi-
cated distinctions in the areas activated by verbal versus object and verbal ver-
sus spatial information (e.g., Smith, Jonides, & Koeppe, 1996) have not been
reliably replicated (as reported in a number of recent conference proceedings
and in unpublished data from our lab).

B
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In light of these data, we suggest that the PFC may be organized according
to more abstract, more multimodal, and less intuitive dimensions than have
been considered to date (i.e., that do not correspond simply to sensory modal-
ities or dimensions). This seems likely, given the relatively high-level position
of the PFC in the processing hierarchy (see previous discussion), which would
give it highly processed multimodal inputs. Further, this type of input may
interact with the learning mechanisms and other constraints on the develop-
ment of representations within PFC. For example, we have shown that task
demands and training parameters (i.e., blocked vs. interleaved exposure) can
play an important role in determining whether a simulated PFC develops uni-
or multimodal representations of object and spatial information (Braver &

Cohen, 1995).

Example Working Memory Tasks

Earlier, we provided an example of how the mechanisms we have proposed
are engaged in a simple working memory task (the AX-CPT). Here, we con-
sider how they may come into play in two tasks that are commonly used to
measure working memory capacity and contrast them with ones that are
thought not to involve working memaory. The verbal working memory span
task (Daneman & Carpenter, 1980) involves reading aloud a set of sentences

‘and remembering the final words from each sentence for later recall. Thus,

these final words must be maintained in the face of subsequent processing,
which makes this task heavily dependent on the robust PFC active mainte-
nance mechanisms. A spatial version of this task (Shah & Miyake, 1996)
involves identifying letters presented at different non-upright orientations as
being either normal or mirror-reversed, which appears to require some
amount of mental rotation to the upright orientation, while remembering the
orientations of the letters for later recall. This mental rotation requires the dri-
ving of PMC-based visual transformations (learned over extensive experience
seeing visual transformations such as rotation, translation, etc.) in a task-rele-
vant manner, presumably via actively maintained PFC top-down biasing.
Further, the orientation information must be maintained in the face of subse-
quent processing of the same kinds of information, which again requires
robust PFC active maintenance.

These working memory span tasks have been contrasted with others that
are not considered to involve working memory. For example, the verbal
working memory span task has been compared with a simple digit span task,
which presumably requires only active maintenance, but not controlled pro-
cessing. Behaviorally, the verbal working memory span task is better corre-
lated with other putative verbal working memory tasks that also involve
controlled processing, compared to this simple digit span task (Daneman &
Merikle, 1996). The other half of this argument has been made in the case of
a spatial equivalent of the digit span task (which involved remembering the
orientations of a set of arrows), which was significantly correlated with a
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simple visual-processing task, whereas the spatial working memory span
measure was not (Shah & Miyake, 1996). See Engle et al. (Chapter 4, this vol-
ume) for a more detailed discussion of this issue and other relevant experi-
mental results.

Another example, involving the use of the HCMP system, is the compre-
hension of extended written passages. Because of limited capacity in the PFC
active memory system, it is likely that some of the representations activated
by the comprehension of prior paragraphs are encoded only within the
HCMP and must be recalled as necessary during later processing (e.g., when
encountering a reference like, “this would be impossible, given Ms. Smith’s
condition,” which refers to previously introduced information that may not
have remained active in the PFC). The idea is that this later reference can be
used to trigger recall of the previous information from the HCMP, perhaps
with the addition of some strategic activation of other relevant information
that has persisted in the PFC (e.g., the fact that Ms. Smith lives in Kansas). A
successful recall of this information will result in the activation of appropriate
representations within the PFC and PMC, which combined with the current
text results in comprehension (e.g., Ms. Smith was hit by a tornado and can’t
come into work for an important meeting). In contrast with theories that
draw a strong distinction between active memory and HCMP weight-based
memories (e.g., Moscovitch & Winocur, 1992), we think that a typical cogni-
tive task analysis may not distinguish between these types of memory in
many situations, making the generic working memory label more appropriate
for both. Finally, Young and Lewis (Chapter 7, this volume) present what
appears to be a roughly similar role for rapid learning in their theory of work-
ing memory, and Ericsson and Delaney (Chapter 8, this volume) describe rel-
atively long-lasting working memory representations that would seem to
involve the HCMP (as well as the effects of extensive experience on underly-
ing cortical representations).

Answers to Theoretical Questions

This section summarizes our answers to a set of eight basic questions about
our theory of working memory. The questions are summarized By the section
headers, and Table 11.2 provides a concise summary of our answers to these
questions.

Basic Mechanisms and Representations in Working Memory

Active maintenance (for which the PFC is specialized), rapid learning (for
which the HCMP is specialized), and controlled processing (biasing and bind-
ing based on these) are the basic mechanisms of working memory in our
account. Controlled processing emerges from the interactions between all
three primary brain systems (PFC, HCMP, PMC), but is most strongly influ-
enced by the PFC and HCMP. For purposes of comparison, we describe our
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Table 11.2. Summary of Our Answers to the Eight Designated Questions

(1) Basic Mechanisms and Representations in Working Memory
The basic mechanisms of active memory and rapid learning via controlled
processing are implemented by the prefrontal cortex (PFC), hippocampus and
related structures (HCMP), and the posterior perceptual and motor cortex
(PMC). Representations, distributed throughout the system, are encoded by
controlled activation, maintained by robust PFC mechanisms and weight-
based HCMP learning, and retrieved in the case of HCMP by controlled acti-
vation of cues. Verbal and perhaps spatial and/or numerical representations
are especially useful ways of encoding.

(2) The Control and Regulation of Working Memory
Working memory is not separated from control, because controlled process-
ing and active memory are intimately related. Control is also not centralized,
emerging instead from interactions between different brain systems. PFC
plays an important role owing to its robust maintenance capabilities, flexible
and rapid updating of representations, and position at the top of the cortical
processing hierarchy (with HCMP).

(3) The Unitary Versus Non-Unitary Nature of Working Memory
Working memory is not unitary: It consists of active memory and rapid learn-
ing and controlled processing and is distributed over several brain systems.
The common use of controlled processing mechanisms may contribute a uni-
tary-like component to performance.

(4) The Nature of Working Memory Limitations
There are two mechanisms: inhibition and interference. PFC has greater inhi-
bition to promote coherent processing, and thus lower capacity. Capacity has
domain-specific and general components (see Question 3), and correspond-
ing experience and genetic bases. Capacity is highly dependent on amount
and type of controlled processing necessary, as well as efficiency of underly-
ing representations learned over experience.

(5) The Role of Working Memory in Complex Cognitive Activities
Working memory is critical, because complex congnitive activities are defined
by the involvement of controlled processing and require active
memory/rapid learning to maintain intermediate results. Distributed brain
systems are involved as relevant in particular tasks, with more common
involvement of PFC and HCMP.

(6) The Relationship of Working Memory to Long-Term Memory
and Knowledge
Working memory is largely just the active portion of long-term memory,
which is itself distributed over many brain areas. More globally accessible sys-
tems and those that provide particularly useful representations (e.g., lan-
guage) are more likely to be involved in working memory, leading to a bias

continued
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Table 11.2, continued

toward declarative or explicit representations instead of implicit or proce-
dural ones.

(7) The Relationship of Working Memory to Attention and
Consciousness
Working memory is the subset of representations attended to by virtue of
controlled processing. Attention also refers to a constraining mechanism |
(inhibition) and can be influenced by automatic processing. Consciousness
reflects the global constraint-satisfaction process, which is disproportionately
influenced by controlled processing systems. Thus, the content of conscious i
experience is likely to reflect that of working memory.

(8) The Biological Implementation of Working Memory
Our model is based on biology, including neural-level properties like activa- '
tion, inhibition, and learning, and a computational account of specialized ‘
brain system function, including the PFC, HCMP, and PMC. A large amount
of empirical data from patients, neuroimaging, neurophysiology, and animal
studies is consistent with our model.

basic mechanisms in terms of standard memory terminology of encoding,
maintenance, and retrieval.

Encoding Owing to slow learning, the cortical systems (PFC and PMC) have rel-
atively stable representational capability. Thus, encoding in these systems
relies on the selection and activation (via constraint-satisfaction processing
operating over experience-tuned weights) of those preexisting representa-
tions that are most relevant in a particular context. In the HCMP, encoding
involves the rapid binding together of a novel conjunction of the represen-
tations active in the rest of the brain. An important influence on this
process, and a critical component of controlled processing, is the strategic
activation (under the influence of the PFC) of representations that influ-
ence HCMP encoding in task-appropriate ways (e.g., actlvahng distinctive
features during elaborative encoding in a memory task).

Maintenance Only the PFC is thought to be capable of sustaining activity over
longer delays and in the face of other potentially interfering stimuli or pro-
cessing. However, under conditions of shorter delays and the absence of
interference, PMC can exhibit sustained active memories (Miller et al.,
1996). We include in our definition of the PFC the frontal language areas
that have been shown to be active in neuroimaging studies involving
active memory as discussed earlier. For example, considerable evidence
supports the idea that maintenance in this system is implemented by a
phonological loop (Baddeley, 1986; Baddeley & Logie, Chapter 2, this vol-
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ume), which may involve more highly specialized mechanisms than thos
hypothesized to exist in other areas of PFC. We do not think that th
HCMP maintains information in an active form, but rather through rapi
weight changes made during encoding. These weight-based HCMP memo
ries can persist over much longer intervals than active memories (cf
Ericsson & Delaney, Chapter 8, this volume).

Retrieval For active memories, retrieval is not an issue, but for HCMP weight
based memories, retrieval typically requires multiple cues to trigger a par
ticular hippocampal memory (owing to its conjunctive nature). As wit
encoding, the strategic activation of such cues constitutes an importan
part of controlled processing.

As for the nature of the representations in our model of working memory,
we have characterized the distinctive properties of representations in each o
the three main brain systems (see Table 11.1 and Figure 11.2). However,
because we do not adhere to a buffer-based or any other distinct substrate
view of working memory, this question is difficult to address. Essentially, the
space of possible different representations for working memory is as large as
the space of all representations in the neocortex and hippocampus, because
any such representation could be activated in a controlled manner, thus satis-
fying our definition of working memory. However, we think that brain sys-
tems specialized for language may provide an exceptionally powerful and
general-purpose representational system for encoding arbitrary information
and are likely to be used to encode even superficially nonverbal information.
Similarly, it may also be that abstract spatial and/or numerical representations
are useful for encoding relational and perhaps temporal information.

The Control and Regulation of Working Memory

In our theory, control results from the biasing function of the PFC and the
binding function of the HCMP. These systems, in turn, are regulated by each
other, the PMC, and ascending brainstem neuromodulatory systems. Thus,
control and regulation are interactive and distributed phenomena that
involve all parts of the system. Though these interactions are necessarily com-
plex, it is possible to identify characteristic contributions made by each com-
ponent of the system. The PFC plays a dominant role in controlled processing
by virtue of its characteristic features: its ability to maintain activation over
time; the flexible and rapid updating of representations owing to their combi-
natorial and active nature; and its position high in the cortical processing
hierarchy. Note that unlike models that separate control (e.g., a central execu-
tive) from active storage (e.g., buffers), active maintenance plays a central role
in control in our model.

Representations within the PFC are themselves subject to the influence of
processing within the PMC and HCMP, by way of specialized control mecha-
nisms that regulate access to the PFC. As described earlier, we suggest that the
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midbrain dopamine (DA) system provides an active gating of PFC representa-
tions, controlling when they can be updated and protecting them from inter-
ference otherwise. We think that the PFC, together with the PMC and
possibly the HCMP, controls the firing of the DA gating signal, through
descending projections. Furthermore, we assume that these projections are
subject to learning, so that the PFC and PMC can learn how to control the
gating signal through experience.

The Unitary Versus Non-Unitary Nature of Working Memory

We take the view that working memory is not a unitary construct - instead
we suggest that it is the combination of active memory, rapid learning, and
emergent controlled processing operating over distributed brain systems.
Instead of the moving of information from long-term memory into and out of
working memory buffers, we think that information is distributed in a rela-
tively stable configuration throughout the cortex and that working memory
amounts to the controlled activation of these representations. As we noted at
the outset, this view shares some similarities with the view of working memory
offered by production-system accounts (e.g., ACT, Anderson, 1983; Lovett et al.,
Chapter S, this volume). However, it does not include the structural distinction
between declarative and procedural knowledge assumed by such accounts.

This non-unitary view is consistent with findings like those of Shah and
Miyake (1996), who found no significant correlation between an individual’s
verbal and spatial working memory capacities. We would further predict that
working memory capacity will vary along a variety of dimensions, depend-
ing on the quality of the relevant PMC and PFC representations developed
over experience (cf. Ericsson & Delaney, Chapter 8, this volume). However,
working memory is also affected by more domain-general, controlled pro-
cessing mechanisms (such as those supported by brainstem neuromodula-
tory systems), so that some characteristics of working memory function
might exhibit more unitary-like features (cf. Engle et al., Chapter 4, this vol-
ume). Thus, the actual performance of a given subject, under a given set of
task conditions, will depend on a combination of both domain-specific and
more general factors.

The Nature of Working Memory Limitations

The presence of capacity limitations seems to be one of the few points
about which there is consensus in the working memory literature. Despite
this agreement, there is relatively little discussion of why such limitations
exist. Are these the unfortunate by-product of fundamental limitations in the
underlying mechanisms (e.g., insufficient metabolic resources to sustain addi-
tional mental activity), or do they reflect some more interesting computa-
tional constraint? We adhere to the latter view. We believe that capacity
limitations in working memory reflect a trade-off between two competing fac-
tors: the accessibility and widespread influence of PFC representations — nec-
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essary to implement its biasing function as a mechanism of control - and the
need to constrain the extent of activation throughout the PMC, to avoid
“runaway” activity and promote focused and coherent processing. We assume
that this trade-off is managed by inhibitory mechanisms that constrain
spreading activation and prevent the runaway activity that would otherwise
result from the positive feedback loops within the cortex. This is particularly
important in the PFC, because of its widespread and influential projections to
the rest of the brain. We have begun to explore this possibility in explicit
computational modeling work (Usher & Cohen, 1997). This account empha-
sizes the potential benefits of what otherwise might appear to be arbitrary
limitations (cf. Lovett et al., Chapter 5, this volume). Note that Young and
Lewis (Chapter 7, this volume) and Schneider (Chapter 10, this volume) pre-
sent functional motivations similar to our own.

As we stated before, we think there are both domain-specific and more gen-
eral contributions to working memory function. Similarly, there are likely to
be both experience-dependent and genetically based contributions. Further,
it is likely that there are interactions between these factors. For example,
extensive experience will produce a rich and powerful set of domain-specific
representations that support the ability to encode more domain-specific infor-
mation both in active memory and via rapid learning in the HCMP. However,
this is unlikely to affect more general factors (e.g., neuromodulatory function
or the overall level of inhibition within the PFC). This is consistent with the
general lack of cross-domain transfer from experience-based working memory
capacity enhancements as discussed in Ericsson and Delaney (Chapter 8, this
volume) and with the relatively domain-general limitations observed by
Engle et al. (Chapter 4, this volume).

The role of experience-based learning (which is an important component
of our overall model) in enhancing domain-specific working memory capac-
ity can be illustrated by considering the following phases of experience:

Novel phase HCMP is required to store and recall novel task-relevant informa-
tion, so that capacity is dominated by the constraint of having only one
HCMP representation active at a time, with significant controlled process-
ing required to orchestrate the use of this information with ongoing task
processing. This is like the first time one tries to drive a car, at which time
complete attention is required, everything happens in slow serial order,
and many mistakes are made.

Weak phase PFC is required to bias the weak PMC representations underlying
task performance, so that capacity is dominated by the relatively more
constrained PFC. Thus, it is difficult to perform multiple tasks during this
phase or to maintain other items in active memory. This is like the period
after several times of driving, when one still has to devote full attention to
the task (i.e., use PFC to coordinate behavior), but the basic operations are
reasonably familiar and some can be performed in parallel.
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Expert phase Weights within the PMC have been tuned to the point that auto-
matic processing is capable of accomplishing the task. Since the PMC repre-
sentations are relatively more embedded, they can happily coexist with
activity in other areas of PMC, resulting in high capacity. This is the case
with expert drivers, who can carry on conversations more effectively than
novices while driving. Note that slow improvements within this phase occur
with continued practice, resulting in experience-based differences in
strength and sophistication of underlying representations, which contribute
to individual differences in capacity and performance. This is true in the PFC
as well, where fewer active representations need be maintained if a more
concise (e.g., “chunked”) representation has been learned over experience.

The Role of Working Memory in Complex Cognitive Activities

Complex cognitive activities involve controlled processing and thus, by our
definition, involve working memory. According to our account of the roles of
the PEC (biasing) and HCMP (binding), controlled processing occurs under
conditions of temporally extended and/or novel tasks and in cases that require
coordinated processing among multiple systems. Typically, complex tasks
involve the temporally extended coordination of multiple steps of processing,
often in novel combinations and situations, and the storage of intermediate
products of computation, subgoals, and so on. Active memory together with
the controlled encoding and retrieval of HCMP memories can be used to retain
the intermediate results of these processing steps for subsequent use.

We have yet to apply our model to specific complex tasks, because we have
yet to produce satisfactory implementations of the entire set of neural sys-
tems that would be required. Our overarching goal in developing such models
is the ability to account for complex task performance without resorting to a
homunculus of one form or another. Although many accounts of executive
control remain purely verbal and are obviously susceptible to the homuncu-
lus problem, even mechanistically explicit accounts of complex task perfor-
mance in production-system architectures (e.g., Young & Lewis, Chapter 7,
this volume; Lovett et al., Chapter S, this volume) have a higden homunculus
in the form of the researcher who builds in all the appropriate productions to
enable the system to solve the task. As we discuss in greater detail subse-
quently, our current modeling efforts are focused on developing learning
mechanisms that would give rise to a rich and diverse palette of PFC repre-
sentations (and corresponding PMC subsystems}, which should be capable of
performing complex tasks without resorting to a homunculus of any form.

The Relationship of Working Memory to Long-Term Memory

and Knowledge

We view working memory as being the active portion of long-term mem-
ory, where long-term memory refers to the entire network of knowledge dis-
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tributed throughout the cortex, HCMP, and other brain systems. As noted ear-
lier, this is similar to production-system theories of working memory (such as
ACT; Anderson, 1983; Lovett et al., Chapter 5, this volume). However, we also
specify that the term working memory applies only to those representations
that are activated as a result of controlled processing. Thus, it is possible to
have active representations that exist outside of working memory (cf. Cowan,

i Chapter 3, this volume; Engle et al., Chapter 4, this volume, for similar
. views). Because of this intimate relationship between working memory and

long-term memory, we expect working memory to be heavily influenced by
learning in the long-term memory system (see the discussion in the capacity
section above and Ericsson & Delaney, Chapter 8, this volume).

We do not think that all components of long-term memory are equally
likely to be represented in working memory. As discussed previously, language
provides a particularly useful means of encoding arbitrary information and is

~ thus heavily involved in working memory. In contrast, more embedded, low-

level sensory and motor processing is less likely to come under the influence
of controlled processing and is not typically considered to be involved in
working memory. Thus, the general level of accessibility associated with a
given brain system is correlated with the extent to which it is likely to be
involved in working memory. As discussed earlier, this means that more
declarative or explicit long-term knowledge is likely to be involved in working
memory, whereas implicit or procedural knowledge is more associated with
automatic processing.

The Relationship of Working Memory to Attention

and Consciousness

Working memory, attention, and consciousness are clearly related in
important ways. We view the underlying constraint that gives rise to atten-
tion as resulting from the influence of competition between representations,
implemented by inhibitory interneurons throughout the cortex (and possibly
also by subcortical mechanisms in the thalamus and basal ganglia). This inhi-
bition provides a mechanism that causes some things to be ignored while oth-
ers are attended to and is a critical aspect of attention that is not strictly part
of working memory. However, assuming this constraint, controlled process-
ing plays an important role in determining what is active in a given context
(and via competition and inhibition, also what is ignored). Thus, working
memory and attention are related in that they are both defined in part by the
mechanisms that determine what is activated in a particular context.

Consciousness is also related to both working memory and attention. As
stated previously, we view conscious experience as reflecting the outcome of

- global constraint-satisfaction processing, with salience a function of the

degree of influence over this process attributable to a given representation.
Thus, systems that are globally accessible like the PFC and HCMP are also
highly influential and thus likely to dominate conscious experience. This
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means that the controlled processing-based activation (attention) mediated
by these systems is most relevant for consciousness and that the contents of
conscious experience are likely to reflect that of working memory as we have
defined it (see also previous section and Kinsbourne, 1997).

The Biological Implementation of Working Memory

Our model is based largely on biological data, and its neural implementa-
tion has been described both in terms of basic properties such as activation,
inhibition, and learning, and in terms of the interactions of the specialized
brain systems described earlier (PFC, HCMP, PMC). By virtue of these biologi-
cal foundations, there is a wealth of data that are consistent with our model,
from anatomy and physiology to neuroimaging and neuropsychological
work. We will review just some of the most relevant data here.

With respect to the involvement of the PFC in working memory tasks, our
lab has focused on neuroimaging and schizophrenic patient performance on
the AX-CPT task described in the introduction. By making the target A-X
sequence very frequent (80%), and the delay between stimuli longer (5 s), we
predicted that schizophrenic patients suffering an impairment of PFC func-
tion would make a relatively large number of false alarms to B-X sequences
(where B is any non-A stimulus) owing to a failure of PFC-mediated working
memory for the prior stimulus. This was confirmed, with unmedicated schiz-
ophrenic patients showing the predicted increase in false alarms, whereas
medicated schizophrenics and control subjects did not (Servan-Schreiber,
Cohen, & Steingard, 1997). In addition, neuroimaging of healthy subjects
performing the AX-CPT showed that PFC increased activity with increases in
delay interval (Barch et al., 1997). Neuroimaging during N-back performance
revealed that PFC activity also increases with working memory load (Braver et
al., 1997b) and is sustained across the entire delay period (Cohen et al., 1997).
These data together with other consistent findings from monkey neurophysi-
ology (e.g., Fuster, 1989; Miller et al., 1996) and frontally damaged patients
(e.g., Damasio, 1985) support the idea that the PFC is critically important for
working memory. Also, Engle et al. (Chapter 4, this volx@e) discuss the
importance of the PFC in working memory.

With respect to the role of the HCMP in working memory, it has long been
known that the HCMP is critical for learning new information (Scoville &
Milner, 1957; see McClelland et al., 1995; Squire, 1992, for recent reviews).
Recent neuroimaging data suggest that the controlled encoding and retrieval
of information in the HCMP depends on interactions between the PFC and
the HCMP (Tulving, Kapur, Craik, Moscovitch, & Houle, 1994). Further,
patients with frontal lesions show impaired ability to perform strategic encod-
ing and retrieval on standard memory tests (Gershberg & Shimamura, 1995).
All of this is consistent with our view that PFC and HCMP interactions are
important for the controlled processing of memory storage and retrieval,
which can be used as a nonactive form of working memory.
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Recent Developments and Current Challenges

Our theory of working memory represents an attempt to understand this con-
struct in terms of a set of biologically based, computational mechanisms. This
has resulted in a novel set of functional principles that explain many of the
same phenomena as traditional working memory constructs, but in a manner
that contrasts with existing theoretical ideas in important ways. Our existing
computational work has instantiated and validated a number of aspects of our
theory, including the graded nature of controlled processing (Cohen et al,,
1990); the ability of PFC representations to bias subsequent processing (Cohen
& Servan-Schreiber, 1992); the role of PFC in active maintenance (Braver et al.,
1995); and the role of the HCMP in rapid learning (O'Reilly & McClelland,

- 1994; O'Reilly, Norman, & McClelland, 1998). However, we have not yet

implemented a computational model that captures all of our ideas regarding

- working memory and controlled processing. Moreover, there are a number of

important issues raised by our overall model that have not been properly
addressed in our prior work and that form the current focus of our research.
These unresolved issues can be described at two general levels of analysis -

~ one level involves the development of better models of each of the individual

brain systems that play a role in our overall model (PMC, PFC, HCMP), and

~ the other level involves characterizing the nature of interactions between

these systems. Obviously, the latter effort depends critically on the success of
the former, which is where we have been primarily focused. Underlying the
entire endeavor are issues of the computational sufficiency of the proposed
mechanisms for learning and performing temporally extended controlled-

- processing tasks.

Models of the PMC, PFC, and HCMP
Because it represents the canonical form of cortical processing, our model

~ of the PMC lies at the foundation of the other models. We have recently made

important advances in characterizing the nature of processing and learning in
cortex and now have a computational framework (called Leabra; O’Reilly,
1996a, 1996b) that contains all of the basic mechanisms and properties
required by our model. In particular, the Leabra framework combines recur-
rence, inhibition, and integrated error-driven and Hebbian learning mecha-
nisms in a simple, principled, robust, and biologically plausible manner.
Though these properties have been implemented separately in different mod-
els before, Leabra integrates them into a unified, coherent framework. Our
model of the HCMP system is relatively well developed conceptually
(McClelland et al., 1995), and parts of it have been modeled at a very detailed
level (O'Reilly & McClelland, 1994). Recently, we have created a complete
HCMP model using the Leabra framework (O'Reilly et al., 1998) and have
modeled the recollective contribution to many of the basic recognition mem-
ory phenomena (list length, list strength, etc.).
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It is the PFC that has received most of our recent theoretical attention,
lding on previous work that establishes a basic framework for understand-
the computational role of PFC in controlled processing. There are two pri-
y threads: (a) the role of a dopamine (DA) mediated active gating
anism as described previously; and (b) the nature of PFC representations
essary to accomplish controlled processing in complex tasks. We have
ently implemented a DA-like gating mechanism in a computational model
FC and shown that it can successfully account for all of the phenomena
ounted for by our previous models, while making new predictions based
1 the phasic nature of the DA gate (Braver et al., 1997a). This model is being
_extended to more complex tasks that will better test the gating mechanism by
 requiring both rapid updating and sustained maintenance in the face of inter-
rence. Our current work on the PFC representations is investigating the
trade-off between distributed representations and active maintenance as a
function of different task demands.

Reward-Based Learning, Goals, and the PFC

One of the most important unresolved challenges to models of working
memory (and cognition more generally) is specifying the mechanistic basis of
executive control (controlled processing) in a way that does not resort to a
homunculus. Though we have provided a general characterization of our
view of how controlled processing emerges from constraint satisfaction and
the specialized properties of the PFC and HCMP, actually showing that this
works in real tasks remains a challenge. We think that the solution to this
problem requires a powerful learning mechanism capable of developing
something like the “productions” that underlie the performance of complex
cognitive tasks (thus avoiding the hidden homunculus of the researcher who
builds in the appropriate productions for each task). The following is one set
of ideas regarding the nature of this learning mechanism, which emerges
from a synthesis of our basic ideas about a DA-based mechanism for active
gating and the nature of the representations in the PFC.
~ These ideas can be motivated by thinking about the essential difference
between human cognition and that of even our closest primate\relatives. Itis
obvious that language, abstraction, problem solving, and tool use are
important behavioral differences. However, we suggest that these may all be
facilitated by the ability to internalize, abstract, and chain together represen-
tations of reward (and punishment). In short, the real difference between
humans and other primates may be that we can establish elaborate systems
of internalized reward that motivate us to learn and engage in these more
abstract behaviors, whereas other primates, who can learn impressively com-
plex and abstract tasks, must nevertheless be constantly motivated by ex-
ternal forces (e.g., food, juice) to do so. Thus, instead of being a “pure”
cognitive system divorced from all emotional or motivational concerns, the
PFC may instead be centrally involved in the dirty business of motivation,
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emotion, pleasure, and pain (Bechara, Tranel, Damasio, & Damasio, 1996;
Davidson & Sutton, 1995).

This observation proves tantalizing in the context of our ideas about the
role of dopamine (DA) in the PFC. In particular, if the critical specialization of
the PFC is that it has taken control over the DA system to regulate its own
active maintenance function, then it is also in a position to take over and
internalize the deployment of DA-mediated reinforcement. It is well known
that DA plays a critical role in reinforcement-based learning (Schultz et al.,
1993; Montague et al., 1996). If the activation of PFC representations corre-
sponds essentially to goals that are maintained in an active and relatively pro-
tected state in the absence of DA firing, then the act of satisfying a goal
should simultaneously result in reinforcement and gating (i.e., the deactiva-
tion of that goal representation and the opportunity to activate a subsequent
one). The firing of DA under PFC control would provide both, and the influ-
ence of this DA signal on learning should result in more effective elicitation
and efficient execution of that goal in the future.

Further, we have argued previously that the PFC has the capacity for the
simultaneous representation of many levels of temporal extent and abstrac-
tion, which would be needed to account for the goal structures underlying
complex human cognition. Because reward is under the descending control of
the PFC itself, the need for external reward is reduced, allowing for the devel-
opment of elaborate means (intervening goals) to accomplish remote and
abstract ends. In contrast, other animals depend to a much greater extent on
constant external input to drive the DA reward system and thus cannot build
these elaborate internal goal structures.

There are many different ways in which the internalized control of DA
could be implemented in the PFC, but unfortunately little is known about the
relevant biological details. Thus, we are using computational models to deter-

~ mine the relative advantages and disadvantages of different implementations.

Another important implementational issue has to do with learning on the
basis of actively maintained, isolated representations like those in the PFC,
which have a more discrete, binary character and thus do not appear to be
amenable to the types of gradient-based learning mechanisms that work so
well in the distributed, graded representations characteristic of the PMC. The
specializations of the PFC will likely require specialized learning mechanisms,
which are the focus of our current research.

Conclusion

In summary, our overall model of the brain system’s underlying working
memory, including the PMC, PFC, and HCMP, is still under construction, but
we have a broad and compelling blueprint for future exploration. This model
provides many examples in which computational principles (e.g., basic trade-
offs) are used to understand biological properties, in ways that, though con-
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sistent with existing ideas in many cases, can achieve a new level of synthesis
and clarity. We hope that this approach will continue to prove useful, despite
the inevitable revision of many of the specific ideas proposed herein.
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