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Abstract

Switching between tasks that overlap in perceptual and response characteristics is assumed to rely upon the maintenance of task

representations in prefrontal cortex (PFC). However, task-switching studies demonstrate ‘‘switch costs,’’ even when there is sufficient

time to prepare for a new task. These costs suggest that task-switching performance reflects a complex interplay between priming and the

updating and maintenance of task representations. We describe a computational model in which this interaction is made explicit and

linked to the dynamics of PFC. Simulation results account for a variety of empirical phenomena and predict a double dissociation in

lateral PFC that was subsequently identified.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

PFC is hypothesized to subserve the active maintenance
of task representations in situations that require rapidly
switching between multiple demands [8]. However, one
potential problem for this account is that these active
maintenance processes appear to be nonoptimal: trials in
which the task switches demonstrate increased response
times and error rates relative to trials in which the task
remains the same (i.e., ‘‘switch costs’’) [1]. These switch
costs persist even when sufficient preparation time is given
for a new task [1,5,7]. One potential explanation for this
finding is that the active maintenance process subserved by
PFC is optimal, but is only engaged on a subset of trials in
which the task switches. Distributional analyses of
response times support this hypothesis. When there is
sufficient time to prepare for a task switch, response times
appear to come from two stochastic distributions: a
prepared distribution of fast trials in which there are no
switch costs, and an unprepared distribution of slow
response times in which there are severe switch costs [5].
These data suggest that performance on fast trials is
governed by a process that effectively suppresses proces-
e front matter r 2006 Elsevier B.V. All rights reserved.
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sing of the irrelevant stimulus dimension (i.e., the one
associated with the other task), and that the absence of this
process on slow trials reveals the lasting effects of previous
stimuli (e.g., priming), which are likely subserved by
associative learning. To investigate this claim, we devel-
oped a connectionist model of task switching that linked
the interactions between priming effects and controlled
processing to the dynamics of the PFC.
2. Methods

The model used the connectionist architecture seen in
Fig. 1. The simulations were conducted from within the
LEABRA framework of the pdp++ software. Model
units had a nearly sigmoidal point neuron activation
function that maintains key aspects of the electrophysio-
logical process of firing neurons, such as different ion
channel types (for details, see [9]).
Activations were calculated for each unit by clamping

the inputs at the beginning of each event and allowing
activity to propagate through the network until equili-
brium was reached (see Fig. 1). Lateral inhibition was used
in each layer, and zero-mean gaussian noise ðs ¼ 0:0004Þ
was added to the membrane potential of each of the units
to provide variability in the behavioral measures. All
weights started with an initial value of 0.5, but were subject
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Fig. 1. Model architecture, task, and activity dynamics. Each schematic represents the activity state and pattern of connectivity of the model at the

beginning and end of the three different events composing each trial. Darker circles represent higher levels of activity. During the cue period, a cue

stimulus is presented and propagates activity through the PFC to the hidden layer and the other layers of the network, activating both attributes of

the relevant dimension. If a phasic DA signal occurs during the cue period (panel A), then the task information is actively maintained in the PFC over

the delay period, but in the absence of such a signal (panel B), this information decays rapidly over the empty delay. During the target period, a target

stimulus with one attribute from each dimension is presented, and activity propagates through the network (potentially re-activating the PFC, see panel B)

until the network’s activity state settles into a stable state (maximum D activity o0:0003) and a response is achieved (maximum activity in the response

layer 40:65). At the end of each event, learning strengthens the connections between those units that were co-active (indicated by heavier solid lines).
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to associative learning processes simulated via post-
synaptically gated Hebbian learning ðDwij ¼ 0:1yjðxi �

wijÞ on the connections projecting from the hidden layer
to the PFC and the response layer. This learning rule was
applied after equilibrium was reached on each event. After
each trial, the weights decayed exponentially towards their
original value of 0:5ðwtþ1 ¼ 0:5þ 0:3ðwt � 0:5Þ, where t is
the current trial).

In order to simulate a random distribution of prepared
and unprepared trials, a gating signal occurred on a
random 50% of task cue events. This gating signal was
hypothesized to reflect a phasic dopamine (DA) response
[2]. Whereas previous research has considered the phasic
DA response to occur on all trials after training [2], the
current research capitalizes upon the well documented
stochastic properties of DA activity [6]: The noise in the
DA response is reflected in the probabilistic behavior of the
gating signal, and it is thought to be the mechanistic source
underlying the probabilistic nature of task-switch costs.
The gating signal modulated intracellular currents to
enable active maintenance: if a gating signal occurred, a
hysteresis current was turned on such that activity could be
maintained throughout the trial [4]. This actively main-
tained task cue was able to bias subsequent processing to
produce an appropriate response [8]. If the gating signal
did not occur, there was no internal mechanism for actively
maintaining PFC activity states in the absence of external
input. Under this circumstance, the empty delay period in-
directly flushed the activity out of the PFC units, leaving
the network unprepared to process the upcoming target
stimulus (see Fig. 1). Sixteen sequences of 1024 trials were
performed, each initialized with a different random seed.

3. Results and discussion

In order to evaluate the model’s performance, data
produced by the network (performance measures as well as
PFC activity dynamics) were compared to data produced
by 13 participants whose brain activity was measured with
functional magnetic resonance imaging (fMRI) while
performing a random-cueing task-switching paradigm [3].
The network captured several general phenomena in the

task-switching literature. Task switch trials were slower
and less accurate than task repeats (13.0 cycles; effect
size ¼ 0.38sd; 3.6% errors; effect size ¼ 0.22sd), with
effect sizes comparable to those seen in the empirical data
(74msec; effect size ¼ 0.29sd; 3.2% errors; effect
size ¼ 0.13). Further analyses indicated that the model
was also capturing other common but subtle effects. For
example, the global switch cost was mediated by a task
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Fig. 2. Behavioral measures and associative learning mechanism under-

lying switch costs. Panel A presents the empirical (bars) and model (open

circles) data demonstrating greater switch costs on response-repeat trials

relative to response-alternation trials. Error bars represent 99% con-

fidence interval (CI) of the behavioral data. Model data were transformed

to be on the same scale as the empirical data by the regression equation:

BehavioralRT ¼ 6:8ModelRT � 184. Panel B presents one mechanism

underlying switch costs: the changes in connection strength between the

hidden layer and PFC as a function of previous experience. When the

target stimulus appears on a task-repeat trial, there is a large difference

between the weights from the hidden layer to the appropriate and

inappropriate task units in PFC, due to the accumulation of consistent

weight changes on both the current and previous trial. However, on task-

switch trials, this difference is reduced, and this reduction results in more

competition between the two PFC representations (leading to increased

response times).
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Fig. 3. Behavior and PFC responses as a function of response speed.

Panel A demonstrates increased switch costs for slower trials relative to

faster trials in both human data (bars) and the model (overlaid open

circles). Error bars represent 99% CI. Model data were transformed to be

on the same scale as the empirical data by the regression equation:

BehavioralRT ¼ 6:8ModelRT � 127. Panel B demonstrates a double

dissociation in a region of lateral PFC (Brodmann area 44/9; center of

mass: �46; 15; 21; volume ¼ 324mm3). The fastest trials have greater

delay related responses than the slowest trials, but the slowest trials have

greater target-related activity than the fastest trials. Error bars represent

the 99% CI of the imaging data. Model data were transformed to be on

the same scale as the empirical data by the regression equation:

ImagingSignal ¼ 0:05ModelSignal � 0:1.
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switch � response repetition interaction, such that switch
costs were greater on trials in which the correct response
repeated relative to trials in which the correct response
changed [7](see Fig. 2).

Separating trials by whether they involved active
maintenance in PFC illuminated several other findings.
First, the performance of the model was above chance even
when the model did not actively maintain the current task
in PFC (5.3% errors). In particular, the model performed
well above chance on trials in which the two dimensions of
the target stimulus led to different responses, even though
the network did not have an actively maintained signal to
select the task-relevant dimension (10.6% errors). The
ability to make an appropriate response in the absence of
an actively maintained task was subserved by the
associative learning mechanism. The weights from the
hidden layer to the PFC and response layers were
strengthened on the most recent task-cue event. These
weight changes biased the network to perform the
appropriate task, even when an actively maintained task
was not present. In particular, the change in weight space
enabled the re-activation of the appropriate task represen-
tation in PFC during target presentation (see Fig. 1, panel
B and Fig. 3), such that activity from the presented target
stimulus would retrace the pathways that had just been
strengthened during the cue and delay periods. These
strengthened pathways ultimately led to increased activa-
tion values in the appropriate task representation, which
could then serve to bias on-going processing.
Further analysis of trials without active maintenance

revealed that there were clear differences in the model’s
performance between these trials and those that involved
active maintenance. Trials with active maintenance had
smaller switch costs than those without active maintenance
(switch cost with active maintenance ¼ 6.1 cycles, effect
size ¼ 0.18sd; switch cost without active maintenance ¼
20.4 cycles, effect size ¼ 0.60sd), demonstrating that
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although the associative learning mechanism enabled
successful performance without active maintenance, a price
was paid for this flexibility: performance was strongly
influenced by previous history. Active maintenance in PFC
diminished the impact of previous history by providing
another source of input to the appropriate target dimen-
sions. Without active maintenance, both target dimensions
activated their respective hidden layer representations and
then competed for activity. Due to prior learning, one
target dimension would gain an advantage over the other
by re-activating the appropriate task representation.
However, because this re-activation process depended on
the learning mechanism, it was sensitive to the history of
prior trials, such that switching from one task to another
resulted in less differentiation in the weights from the
hidden layer to the PFC. This smaller difference led to the
re-activation process taking longer than if the task had
repeated (see Fig. 2).

The finding that the presence or absence of active
maintenance in model PFC units had a large impact on
switch costs suggests that the two distributions underlying
residual switch costs may be characterized by their use of
lateral PFC. This hypothesis led to a novel empirical
prediction regarding PFC activity. Specifically, the model
results suggest that there should be greater delay-related
responses in PFC on trials in which there are minimal
switch costs relative to trials with larger switch costs
(reflecting active maintenance). Conversely, there should be
greater target-related responses in PFC on trials in which
there are larger switch costs relative to trials with smaller
switch costs (reflecting task-set reactivation). Because one
cannot independently determine which trials in an empiri-
cal data set correspond to active maintenance and which
trials do not, the modeling data were re-analyzed in order
to generate concrete predictions that could be tested in the
imaging data. ‘‘Prepared’’ trials were taken to be the fastest
10% of task switch and task-repeat trials, and ‘‘unpre-
pared’’ trials were taken to be the slowest 10% [5]. Re-
analyzing the data in this way revealed that the model
produced small switch costs on the fastest trials but large
switch costs on the slowest trials (3.2 vs. 40.4 cycles, effect
sizes ¼ 0.09 vs. 1.20sd; see Fig. 3). This effect of response
speed on switch costs corresponded well to that observed in
the empirical data (15 vs. 140ms, effect sizes ¼ 0.05 vs.
0.52sd). To investigate our hypotheses regarding PFC
activity, the average area under the timecourse of activity
in the PFC units was computed during the delay and target
periods for both ‘‘prepared’’ and ‘‘unprepared’’ trials.
These values revealed a double dissociation: there was an
increased response in the PFC units over the delay interval
in the ‘‘prepared’’ trials relative to the ‘‘unprepared’’ trials
(reflecting active maintenance of the appropriate task
representation; effect size ¼ 0.55), and there was an
increased response in the PFC units after the target
presentation on the ‘‘unprepared’’ trials relative to the
‘‘prepared’’ trials (reflecting re-activation of the appro-
priate task representation; effect size ¼ 4.33; see Fig. 3).
The imaging study confirmed the predicted pattern of
responses in lateral PFC [3]. The fastest trials displayed a
greater hemodynamic response to the task cue relative to
the slowest trials ðtð12Þ ¼ 2:4; po0:05; effect size ¼
0.27sd), whereas the slowest trials displayed a greater
hemodynamic response to the target stimulus relative to
the faster trials ðtð12Þ ¼ 8:1; po0:001; effect size ¼

1.27sd), resulting in a significant response speed � period
interaction ðF ð1; 12Þ ¼ 44:1; po0:001Þ.

4. Conclusions

This model demonstrates that a combination of active
maintenance processes and associative learning mechan-
isms accounts for several relevant behavioral phenomena in
the task-switching literature. The model provides a
mechanistic account of how PFC (and DA) may contribute
to task-switching performance through the active main-
tenance of task sets, while also capturing a behavioral
phenomenon (i.e., ‘‘residual switch costs’’) that, at first
glance, appears to be at odds with this hypothesis. Further,
it generated a concrete prediction concerning responses in
PFC that were subsequently confirmed. This model
enhances our understanding of how learning mechanisms
and active maintenance interact to produce complex, goal-
directed behavior.
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