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Analyses of functional connectivity (FC) in resting-state brain net-
works (RSNs) have generated many insights into cognition. How-
ever, the mechanistic underpinnings of FC and RSNs are still not
well-understood. It remains debated whether resting state activity is
best characterized as noise-driven fluctuations around a single sta-
ble state, or instead, as a nonlinear dynamical system with nontrivial
attractors embedded in the RSNs. Here, we provide evidence for the
latter, by constructing whole-brain dynamical systems models from
individual resting-state fMRI (rfMRI) recordings, using the Mesoscale
Individualized NeuroDynamic (MINDy) platform. The MINDy models
consist of hundreds of neural masses representing brain parcels,
connected by fully trainable, individualized weights. We found that
our models manifested a diverse taxonomy of nontrivial attractor
landscapes including multiple equilibria and limit cycles. However,
when projected into anatomical space, these attractors mapped onto
a limited set of canonical RSNs, including the default mode network
(DMN) and frontoparietal control network (FPN), which were reliable
at the individual level. Further, by creating convex combinations of
models, bifurcations were induced that recapitulated the full spec-
trum of dynamics found via fitting. These findings suggest that the
resting brain traverses a diverse set of dynamics, which generates
several distinct but anatomically overlapping attractor landscapes.
Treating rfMRI as a unimodal stationary process (i.e., conventional
FC) may miss critical attractor properties and structure within the
resting brain. Instead, these may be better captured through neu-
ral dynamical modeling and analytic approaches. The results pro-
vide new insights into the generative mechanisms and intrinsic spa-
tiotemporal organization of brain networks.
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Resting state fMRI (rfMRI) has become an important tool1

to probe the link between ongoing brain dynamics and2

cognition. The most common analytic approach utilized in3

rfMRI studies is to characterize brain-wide statistical associa-4

tions (known as functional connectivity or FC) and relate them5

to cognitive and behavioral indices. However, the dynamical6

processes that generate the observed rfMRI fluctuations and7

statistics (e.g., FC) remain elusive. In particular, it is unknown8

whether resting state dynamics can be best described as a9

unimodal stationary process featuring statistical fluctuations10

around the mean, or instead, as a nonlinear dynamic system11

with nontrivial fluctuations associated with stable patterns12

different from the mean.13

The prior FC literature has provided mixed support for14

both hypotheses. Traditionally, FC is considered stationary15

over the scanning session (1). Correspondingly, the underlying16

dynamics are found to contain a stable equilibrium (point at-17

tractor) at the global mean, and the noisy fluctuations around 18

this stable mean produce the observed FC pattern (2). How- 19

ever, recent years have witnessed the rapid development of an 20

analysis technique called time-varying functional connectivity 21

(tvFC), also known as dynamic FC (3). The tvFC method iden- 22

tifies recurring short-time-windowed FC patterns that differ 23

from the mean FC. These transient patterns are reliable within 24

individuals and across populations (4, 5). More interestingly, 25

transient FC patterns but not the mean FC were found to 26

predict psychopathology (6). These findings seem to suggest 27

the existence of nontrivial, functionally salient fluctuation in 28

resting state dynamics. 29

However, the nature and validity of tvFC characterization 30

is itself still under debate. For example, it is known that head 31

motion and physiological noise generate confounds in FC (7), 32

and even more so for tvFC, which relies on data from shorter 33

duration timeseries (i.e., windowed epochs). More fundamen- 34

tally, even if tvFC faithfully captures the temporal evolution 35

of neural covariation patterns, it is still unclear whether tvFC 36

states are merely snapshots of the noisy fluctuations around a 37

stable mean, or if they can be associated with nontrivial dy- 38

namics. Indeed, tvFC states might be generated from various 39

kinds of nontrivial dynamics (8). However, an influential paper 40

(9) showed that tvFC clustering would produce very similar 41

results when applied to either real data or stationary noise 42

with matched mean FC and power spectral density. There- 43

fore, to understand the substrate of brain-wide associations, 44
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their temporal fluctuations, and ultimately the resting state45

dynamics that produce such associations, it is necessary to go46

beyond descriptive methods like tvFC clustering and adopt a47

more mechanistic framework.48

Dynamical systems modeling and analysis can provide49

unique insights into the problem of nontrivial fluctuations50

in resting state dynamics. Dynamic models of brain activity51

predict the evolution of activation timeseries given an ini-52

tial estimate of hidden states. They thus provide a generative53

mechanism for resting state dynamics and associated statistics,54

such as FC. To date, the evidence for nontrivial fluctuations55

from dynamic modeling is also mixed. There are two relevant56

types of neural models utilized to characterize resting state57

brain dynamics as measured by rfMRI: structural-connectome-58

informed models, and directly-parameterized models. The first59

type of models usually contain hundreds of sub-components60

representing brain parcels, connected by weights derived from61

the brain’s structural connectome, e.g., through diffusion ten-62

sor imaging. Early models typically included only a few free63

parameters, such as the global scaling factor for connectivity,64

that are directly fit to the fMRI data. It was consistently65

found that the emergent dynamics involved multiple nontrivial66

attractors (2, 10), and the distribution of nontrivial attrac-67

tors might reflect the organization of resting state functional68

networks (11). However, a recent study (12) that replaced69

the neural mass approximation of regional dynamics with a70

more powerful approximation scheme (i.e., an artificial neural71

network) reported the opposite, with a single globally stable72

attractor located at the mean. The second type of models do73

not assume that the structural connectome is a good surrogate74

for functional coupling, but rather directly optimize the effec-75

tive connectivity between regions by predicting empirical fMRI76

time series. Most of the existing works adopting this approach77

has utilized the framework of Dynamical Causal Modeling78

(DCM) (13). Although nonlinear DCM has been proposed,79

it is computationally too expensive for more than ten nodes80

(14). Therefore, most rfMRI DCMs have used a linear approx-81

imation (15), which by definition cannot express nontrivial82

fluctuations. It has been argued that such stationary linear83

models have even lower mean estimation error than common84

nonlinear models for rfMRI (16). However, a rigorous Bayesian85

model comparison found that a time-varying (‘dynamic’, short-86

time-windowed) linear DCM clearly outperformed a stationary87

linear DCM (17). In short, previous studies have associated88

rfMRI with a variety of dynamics ranging from a monostable89

linear or weakly nonlinear system to a multistable strongly90

nonlinear system, with diverging evidence for nontrivial fluc-91

tuations. What might be the explanation for such inconsistent92

results?93

Here, we suggest that prior approaches have captured some,94

but not all of the critical aspects of resting state brain dy-95

namics. We hypothesize that the resting brain is particularly96

sensitive to modulation, and as such, can manifest a spec-97

trum of different dynamics that systematically vary across98

individuals and time. It has been suggested that the rest-99

ing brain is close to bifurcation, such that a small change100

in control parameters will alter the stability of the trivial101

attractor located at the mean (2). However, it remains un-102

known whether both sides of the bifurcation can be observed103

in a same fMRI dataset, and whether such a bifurcation best104

characterizes differences between individuals, or state changes105

within individuals across different time periods. Previous 106

models were either too constrained to express diverse sets of 107

dynamics, or lack the specificity to describe individual dif- 108

ferences and session-to-session variations. In this project, we 109

overcome these prior limitations by adopting the Mesoscale 110

Individualized NeuroDynamics (MINDy) framework (18). A 111

key advantage of MINDy models is that they combine the 112

expressiveness of nonlinear neural mass models with the flex- 113

ibility and individuality of directly parameterized effective 114

connectivity. Our prior work validated that MINDy models 115

generate individualized, robust, and reliable fits of rfMRI data, 116

with nontrivial dynamics observed (18). Here, we used the 117

MINDy framework to analyze the taxonomy of resting state 118

brain dynamics, and to more comprehensively characterize 119

how they change across individuals and time. We fit MINDy 120

models of rfMRI data from over five hundred participants 121

and each of two scanning sessions in the Human Connectome 122

Project (HCP) (19) to elucidate the dynamic profiles that best 123

explained rfMRI signals. We then analyzed the existence of 124

anatomically reliable attractors and ghost attractors, which 125

are the signatures of a class of bifurcations, showing that the 126

latter frequently occurs. Finally, we show that such attractors 127

were consistent across the population and represent differential 128

activation of well-known functional brain networks, such as 129

the default mode network (DMN) and frontoparietal control 130

network (FPN). 131

Results 132

Model parameters captured reliable individual differences. 133

We obtained 1020 MINDy models, one for each of two rfMRI 134

scanning session associated with 510 HCP participants (Fig- 135

ure 1A). The consistency of each parameter set (connectivity, 136

curvature, decay) within individuals and across sessions was 137

around 0.7-0.8. This quantity dropped to around 0.5-0.7 be- 138

tween individual, indicating that the obtained models were 139

reliable and individualized (Supplementary Figure S3). 140

To perform an initial validity check that our models cap- 141

tured meaningful individual differences in the dynamics, we 142

attempted to assess whether our obtained parameters can be 143

connected to individual variation in cognitive measures. We 144

performed Canonical Correlation Analysis (CCA) between the 145

connectivity matrix of the models and the phenotypic mea- 146

sures available in the HCP dataset (20, 21). Interestingly, we 147

obtained very similar results to (20), who used a connectivity 148

matrix obtained via independent components analysis. We 149

identified a single ‘positive-negative mode’ that was signifi- 150

cantly correlated between the MINDy connectivity matrix and 151

behavioral measures, and explained a significant proportion 152

of variance for both. Post-hoc correlation found that this 153

mode is most positively related to fluid intelligence, and most 154

negatively related to substance use (Supplementary Figure 155

S4). Therefore, the obtained MINDy models indeed capture 156

reliable individual behavioral differences. 157

rfMRI embeds diverse nonlinear dynamics with nontrivial at- 158

tractors. We next analyzed the asymptotic behavior of the 159

neural trajectories. For this, we randomly initialized and 160

forward simulated the models to obtain their limit sets and, 161

specifically, reveal any asymptotically stable fixed points. As 162

initially suggested in (18), the dynamics captured in our ob- 163

tained MINDy models were highly nonlinear, with nontrivial 164
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Fig. 1. Nonlinear dynamical landscapes underlying individual rfMRI data. (A) Diagram of the analysis pipeline. (B) Distribution of dynamical landscapes across the
participants. Numbers indicate the proportion of participants showing certain type of dynamics in session 1 (column index) and session 2 (row index). The types were defined
using the number and types of attractors. ‘FP’ indicates stable equilibrium (fixed point) and ‘LC’ indicates stable limit cycle. Types with frequency less than 0.5% were grouped
into ‘others’ (see Supplementary Figure S5). Marginal distribution for session 1 and session 2 are shown in the panel on the right and at the bottom respectively. (C) Simulated
trajectories and obtained attractors from example models, projected onto the first three principal components (PCs) of the trajectories. Black and yellow dots mark the initial
and final state of each trajectory. Numerically identified stable equilibria are denoted by red stars. The slowest points on the limit cycles were denoted by blue triangles (see
Methods). Note that the distribution of final states (yellow dots) on the limit cycle reflects the relative size of the speed. The denser the distribution, the slower the dynamics. We
used 120 simulations per model to identify the attractors but only showed 40 here for visualization.

attractors and limit cycles found in the large majority of cases165

(Figure 1C). Less than 5% of models exhibited a single stable166

equilibrium at the origin (Figure 1B). It is worth noting that167

the observed nontrivial dynamics can not be simply attributed168

to any bias of our method, because MINDy models will actu-169

ally recover trivial dynamics when fit on the noisy simulations170

of a stable linear system (Supplementary Figure S2). Most171

importantly, MINDy also correctly produced a globally attrac-172

tive origin, rather than nontrivial attractors, when fit on noise173

with covariance and mean spectral power density that matches174

real data (Supplementary Figure S2). On the contrary, it175

is known that standard dFC methods cannot disambiguate176

such noise and actual data (9). Our findings thus support an177

interpretation of time-varying rfMRI activity as being most178

appropriately described emanating from a nonlinear dynamical179

system.180

Induced bifurcations explained the heterogeneity of ob-181

served dynamics. Interestingly, although the obtained MINDy182

parameters were very reliable within each individual across183

sessions (Supplementary Figure S3), the number or type (fixed184

point or limit cycle) of attractors were still different in about185

half of all participants (Figure 1B). This finding indicates the186

existence of bifurcations, in which a small change in the model187

parameters results in a topological discontinuity of the dynam-188

ical landscape. Therefore, we hypothesize that resting state189

dynamics can be better described by a spectrum of possible190

dynamics that are sampled at each session, rather than a single 191

monolithic brain state. To test the hypothesis, we constructed 192

a parameterized ‘interpolated’ model as a convex combination 193

of obtained models (i.e., (γ)Model1+(1 − γ)Model2), either 194

within each participant (between the two models) or across 195

all participants. If the hypothesis is correct, by varying γ, 196

it should be possible to induce bifurcations. We analyzed 197

the dynamics of the interpolated models and compared the 198

distribution of the number and types of attractors with those 199

of the original fitted models (Figure 2). The taxonomy of 200

dynamics was very similar for fitted models and interpolated 201

models, consistent with the idea that the dynamics we obtained 202

are a reflection of whole brain dynamics that are undergoing 203

bifurcations between topologically distinct vector fields. 204

Anatomically reliable individualized attractors marked signa- 205

tures of bifurcations. Having established that the observed 206

dynamics can be understood as bifurcating across a continu- 207

ous spectrum, it is natural to ask how the brain can maintain 208

stable or consistent function if the underlying dynamics are 209

constantly changing. We thus hypothesized that there must be 210

some anatomical commonality between the different obtained 211

dynamics, leading to consistency in whole-brain activation 212

patterns. 213

To probe this question, we looked for aspects of the dy- 214

namics that were relatively invariant to the bifurcations we 215

observed. Most notably, we found that when the dynamics 216
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Fig. 2. Observed taxonomy of dynamics were consistent with bifurcation-induced continuous spectrum. Left: Distribution of the type of dynamics in linearly interpolated
models and empirically fitted models. The interpolated models were obtained by convex combinations of the dynamics from two models from the same participant in different
sessions (‘within-participant’) or randomly sampled from all models (‘across-participant’). Right: Bifurcation process between two models of a same HCP participant. Trajectories
and attractors were visualized in the same way as Figure 1. Note that the distribution of speed on the limit cycle (indicated by the distribution of final states) became more and
more non-uniform as the first model bifurcated towards the second model.

differed across sessions for a same person, they most com-217

monly switched between having two equilibria or having one218

limit cycle (Figure 1B). This is consistent with the well-known219

infinite-period bifurcation (22). An infinite-period bifurcation220

begins with a limit cycle that contains a ghost attractor. As221

the bifurcation parameter changes, the ghost attractor be-222

comes ‘infinitely slow’ (i.e., neural activity lingers near it for223

long periods of time) until eventually the bifurcation occurs224

and a stable node (along with an saddle node) gets created out225

of it (see Supplementary Figure S6 for an analytic toy model).226

In our data, when limit cycles were observed, the distribution227

of speed along them was highly non-uniform, sometimes vary-228

ing by orders of magnitude (Figure 3, left). In our interpolated229

models, this form of bifurcation indeed occurs (Figure 2, right230

panel). Therefore, we hypothesize that the ghost attractors231

and point attractors provide a set of stable ‘operating points’232

for the changing dynamics during rest.233

If the session-to-session variability in fitted dynamics can234

be explained by such a bifurcation, we would expect that235

ghost attractors should be close to the stable equilibria in236

the other session, i.e., they should represent anatomically237

similar activation patterns. We thus defined ghost attractors238

as the slowest point on each limit cycle, and calculated the239

anatomical similarity between all (true and ghost) attractors.240

Because the number of attractors might differ across sessions,241

we defined the dominant attractor similarity (DAS) to be the242

maximum correlation over all pairs of attractors from the243

two models under consideration (see Methods). The DAS244

was higher within subject versus across subject (Figure 3,245

right), even when restricting the former to models showing246

different types of dynamics (e.g., two equilibria or one limit247

cycle) and the latter to models showing same type of dynamics248

(the second and the third boxes in the middle in Figure 3,249

right). Therefore, our results support the hypothesis that the 250

resting brain is bifurcating between different dynamics, while 251

maintaining a set of reliable attractors as operating points. 252

Attractors aligned with canonical resting state networks 253

across population. Next, we examined whether these attrac- 254

tors could be interpreted from a functional standpoint. Inter- 255

estingly, the DAS was high (around 0.5) even between different 256

participants (Figure 3), indicating the existence of consistent 257

patterns across the whole population. Therefore, we clustered 258

the locations of the attractors across all participants and ses- 259

sions, where the number of clusters K were selected according 260

to cluster instability index (Methods, (23)). We obtained near 261

perfect cluster stability only for K = 4, apart from the less 262

interesting solution K = 2. Note that the attractors always 263

exist in pairs (see Methods) so K = 2 represents only one 264

pattern and its opposite (Supplementary Figure S7, S8). 265

The individual attractors within each cluster aligned very 266

well with the cluster centers (Figure 4). Even more interest- 267

ingly, the activation patterns were highly modular, respecting 268

the functional network organization defined in the (24) atlas, 269

even though the model fitting process was completely agnostic 270

to parcel labeling. In particular, one large cluster was dom- 271

inated by the activation of DMN and FPN. Another cluster 272

was dominated by the FPN and dorsal/ventral attention net- 273

works. The other two clusters showed the opposite activation 274

profiles. The clusters and network organization in combination 275

accounted for more than 40% of the total variation across all 276

participants, sessions, and parcels (Supplementary Figure S11). 277

The activation pattern was better explained by functional net- 278

work organization rather than the spatial proximity of parcels 279

on the cortical surface (Supplementary Figure S12). Further- 280

more, the attractor clusters emerged regardless of whether we 281

only included the equilibria, the limit cycle ghost attractors, 282
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Fig. 3. Attractors were more similar within than across individual regardless of changes in dynamical landscapes. Left: Distribution of the speed variability on limit
cycles. For each limit cycle in all fitted models, the ratio between the maximum and minimum speed on the limit cycles was calculated. Right: box plot for the distribution of
maximum attractor correlation between all pairs of models, separated by whether the two models come from a same person and whether they have the same type of dynamics
(see Methods). Lines on the boxes indicate the maximum, first quartile, median, last quartile, and minimum of each distribution. Tapered, shaded region around the median
indicates 95% confidence interval of the median.

or both (Supplementary Figure S9, S10), supporting the hy-283

pothesis that they represent the reliable activation dynamics284

of resting state networks.285

Discussion286

In this study, we adopted a nonlinear dynamical systems mod-287

eling framework to analyze how resting state brain dynamics288

varied across individuals and time. We found that resting289

state brain activity embedded diverse nonlinear dynamics that290

included nontrivial attractors rather than a single globally291

stable equilibrium at the mean. Interestingly, the dynamics292

reliably varied between individuals. Moreover, instead of be-293

ing stationary, the dynamics underwent bifurcations across294

different scanning sessions even within the same individual.295

Furthermore, the observed spectrum of dynamics could be fully296

recovered through induced bifurcations between fitted models.297

Consistent with such bifurcations, the attractors and ghost298

attractors were anatomically reliable within and between indi-299

viduals. These attractors were organized into distinct clusters300

that reflected the activation of different functional brain net-301

works, particularly the DMN, the FPN, and the dorsal/ventral302

attention networks. Using the formal language of dynamical303

systems and bifurcation theory, our results shed light on the304

connection between nontrivial fluctuations in resting state305

activity, the organization of functional brain networks, and306

stable individual differences. We provide a modeling and anal-307

ysis framework that describes the individualized nontrivial308

dynamics in rfMRI, while maintaining interpretability and309

tractability. A variety of dynamical features can be derived310

from the models for future brain-phenotype association studies.311

Our results also enable model-based interventions into brain312

dynamics, which might hold great potential for individualized313

treatments of brain disorders and even cognitive enhancement314

(25).315

Nontrivial attractors and resting state networks. Resting state 316

brain activity is traditionally treated as a unimodal stationary 317

process fluctuating around a stable mean. However, recent 318

studies have begun to explore nontrivial recurring patterns 319

in resting state dynamics (26, 27). Mostly notably, time- 320

varying functional connectivity (tvFC, also called ‘dynamic’ 321

FC) studies have suggested that the resting brain is traversing 322

multiple states associated with distinct brain-wide association 323

patterns (3). However, it is debated whether these recurring 324

patterns indeed represent nontrivial fluctuations, or merely 325

capture the snapshots of the trivial fluctuations around the 326

mean (9). Due to these challenges, it has been questioned 327

whether the new insights we gain from these techniques are 328

relatively marginal compared to the elevated difficulties in 329

analysis and interpretation (16). 330

We argue that the controversies over non-trivial fluctua- 331

tions reflect the lack of mechanistic interpretations that can be 332

derived from short-time-windowed methods typically utilized 333

to estimate tvFC. Dynamic-systems-based modeling provides 334

a more generative explanation to the observed dynamics and 335

statistics. Phase portraits of the fitted models reveal insights 336

about the resting brain dynamics without sacrificing the ease 337

and interpretability of analysis. Here, by using a nonlinear, in- 338

dividualized, and fully trainable dynamical systems modeling 339

framework, we provide evidence for nontrivial fluctuations in 340

rfMRI dynamics. Most importantly, when fitted on stationary 341

noise with FC and a mean power spectrum that match real 342

data, our model correctly recreated a monostable dynamic 343

system, while tvFC has been demonstrated to produce spu- 344

rious nontrivial states in this situation (9). Therefore, the 345

nontrivial attractors consistently observed in our fitted models 346

are less likely to be explained by a bias inherent in the method. 347

Compared to other modeling studies, our model relies on fewer 348

assumptions about connectivity structure. Instead of assuming 349

that white matter density is a good surrogate of functional 350

Chen et al. PNAS | January 15, 2024 | vol. XXX | no. XX | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.15.575745doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575745
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT
Fig. 4. Attractors aligned with canonical resting state networks across the population. Left: locations (coefficients) of all attractors. Each row corresponds to one parcel
and each column corresponds to one attractor. Rows are sorted according to the (24) atlas and columns are sorted according to cluster assignments. Thick horizontal and
vertical lines separates the functional networks and clusters, respectively. Attractors are scaled to unit norm for visualization purpose. Right: cluster centroids visualized as the
activation patterns over the cortex.

coupling at the mesoscale level, which has been challenged351

by some studies (28), we posit a ‘sparse plus low rank’ struc-352

ture with all the weights directly optimized towards empirical353

fMRI timeseries. Very interestingly, even without prior con-354

straint on the functional network structure, the attractors355

that emerged from the models still exhibited highly modular356

activation patterns that respect the organization of functional357

networks. Such convergence of evidence is further supported358

by the fact that, the MINDy effective connectivity between359

localized parcels and the functional connectivity between dis-360

tributed ICA-defined networks, despite using very different361

node types and connectivity measures, encoded highly similar362

information about cognitive individual differences as revealed363

by CCA (Supplementary Figure S4). Furthermore, unlike most364

previous work that has relied upon population-level models,365

we were able to show that the nontrivial attractors are not only366

consistent across the population, but also test-retest reliable367

within each individual.368

It has long been hypothesized that nontrivial attractors rep-369

resent ‘functional’ states that can be spontaneously traversed370

during rest, as if exploring the repertoire of operating points371

(29). Although there has been some theoretical work focused372

on the functional relevance of resting state attractors (30),373

empirical evidence has been scarce. Our work supports this374

hypothesis by showing that nontrivial resting state attractors375

reflect selective activation of functional brain networks, and376

contain reliable individual differences. It will thus be very377

interesting to extend the MINDy framework to task states,378

in order to analyze how such nontrivial attractors might be379

engaged in cognitive computation. Similar to DCM methods380

(14), we can couple the MINDy recurrent dynamics with an in-381

put term representing the task control signal. The interaction382

between task demand and inherent dynamics and attractors383

can thus be potentially characterized through control-theory-384

based analysis. Such analysis will shed light on how the resting 385

brain ‘prepares’ stable motifs for cognitive computation, ad- 386

vancing of our understanding of the mechanistic link between 387

the resting state and cognition. 388

Bifurcations and the critical brain. We presented three lines 389

of evidence that resting state brain dynamics are not only 390

nontrivial, but also bifurcating. First, the topology of the 391

dynamic landscapes changed across sessions even when the 392

controlling parameters remained highly reliable, consistent 393

with the definition of bifurcations. Second, we induced bifur- 394

cations between fitted models and recovered the full spectrum 395

of the dynamics observed, confirming that the fitted models 396

can be understood as samples from such a continuous spec- 397

trum encompassing several bifurcations. Third, we identified 398

anatomically reliable attractors or ghost attractors on a cycle, 399

consistent with the prediction of an infinite-period bifurcation. 400

Our results thus provide a richer description of both the in- 401

variants and changes in resting state dynamics, showing that 402

even though the statistical outputs (FC) of two datasets might 403

seem similar, they could be supported by distinct but still 404

intimately related dynamics. 405

The most interesting conclusion from our analysis is that 406

the resting state brain is highly sensitive to modulation, in 407

which a small perturbation can bifurcate it towards various 408

different dynamics. To illustrate this point, we first showed 409

that even though the correlation between the parameters of 410

any two models was high (around 0.6), we still observed at 411

least eight different kinds of dynamics, in the sense of different 412

numbers or types of attractors. Moreover, we found that 413

although the parameter correlation within each participant 414

was even higher (around 0.75), the dynamics were still different 415

between sessions for almost half of all participants. 416

We suggest that the sensitivity of resting brain dynamics 417

might provide one mechanism for cognitive flexibility, as the 418
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brain can easily bifurcate from the resting state towards various419

different dynamics that might be advantageous for different420

cognitive computations. If that is the case, the task state brain421

dynamics should be more rigid than resting state, and should422

vary across tasks according to the computation required. In423

line with this idea, it was found that task-driven input reduced424

the variability of whole-brain dynamics compared to rest (31,425

32). Further, the global connectivity of the frontoparietal426

network was found to systematically vary across 64 tasks,427

with more similar connectivity for tasks that require more428

similar computation (33). Most interestingly, it has been429

found that the similarity between rsFC and task-specific FC430

positively correlated with task performance across multiple431

tasks, and the similarity between rsFC and task-general FC can432

be related to fluid intelligence (34), indicating that cognitive433

ability is related to how efficiently resting state dynamics can434

transform into a variety of different task dynamics. Our study435

provides a more mechanistic framework that can capture the436

changes in the spectrum of generative dynamics, not just the437

statistics of such dynamics (i.e., FC). Extending the MINDy438

framework to task contexts will thus provide a strong test for439

such hypothesis.440

Our results also relate to the idea of criticality in the brain.441

Note that the word ‘criticality’ has been used in at least two442

different ways in neuroscience. In the broad sense, criticality443

refers to the emergence of slow, large-amplitude (scale-free)444

fluctuations in a dynamical system that is close to losing its445

stability, without specifying the kind of instability to which it446

is transformed (35). In a narrow sense, such transformation is447

restricted to that between an ordered state (stability) and an448

unordered state (chaos) (36). Our results support criticality449

of rfMRI dynamics in the broad sense rather than the nar-450

rower sense. We found that our models show either a stable451

low-activity state with no nontrivial attractors, or an unstable452

low-activity state with nontrivial attractors, suggesting the453

existence of supercritical bifurcations where a high-activity at-454

tractor emerged ‘above’ the low-activity attractor as the latter455

loses its stability. Such bifurcations have been shown to give456

rise to slow, scale-free fluctuations (35). In previous models of457

whole-brain dynamics, it has been found that the criticality458

associated with such bifurcations improved the response sen-459

sitivity to external stimuli (29). However, critical dynamics460

are not always optimal for all tasks. For example, the sensitiv-461

ity to inputs also reduces the reliability of the response (37).462

Therefore, it is proposed that instead of staying critical, brain463

dynamics should reverberate between multiple regimes near464

criticality (38). Our results support this hypothesis with novel465

evidence that the brain traverses near criticality, potentially466

balancing the computational advantages of each regime across467

different computations.468

If the resting brain resides in this critical regime that can469

be easily modulated into different dynamics, one interesting470

question is how the brain might implement such modulation471

to utilize different dynamics. On a longer timescale, such as472

the dynamics we obtained here across a 30-minute resting473

state scan, neuromodulator systems might be the best candi-474

date. It is well established that neuromodulators can affect475

brain connectivity and whole-brain dynamics (39, 40). The476

arousal system might play a particularly important role in477

the fluctuations of resting state dynamics (9). On a shorter478

timescale, such as during the execution of cognitive tasks,479

goal-directed top-down modulation might also bifurcate the 480

dynamics. Theoretically, such bifurcations might relate to the 481

proactive control mode in the dual mechanism framework for 482

cognitive control (41). In contrast to reactive control, proac- 483

tive control refers to the active maintenance of goal-related 484

information and biasing cognitive computations even before 485

cognitively demanding events occur. In parallel, goal-directed 486

bifurcation might transform the dynamical landscape to bias 487

the neural processing even before receiving cognitive inputs. 488

Therefore, combining MINDy modeling with cognitive tasks as 489

well as neuromodulatory manipulations holds great potential 490

to further our understanding about the dynamical flexibility 491

of the brain. 492

Limitations and future directions. In this study, we character- 493

ized the variable nature of resting state dynamics by comparing 494

across participants and scanning sessions. However, such vari- 495

ation inevitably interweaves with measurement and modeling 496

error. A stronger test for the non-stationarity of resting state 497

dynamics requires comparing the dynamics across different 498

periods within a single scanning run. Such analysis is diffi- 499

cult to applied to the HCP which only has 15-minute long 500

scans, roughly as much as the data needed to obtain a reliable 501

MINDy model (18). However, it can be done on datasets 502

with as long as 30 contiguous minutes of rfMRI data, such 503

as the Midnight Scanning Club (42). Another approach is 504

to use EEG or MEG data which have much lower dimension 505

and much higher sampling rate. It might be even possible to 506

update the model parameters in real time for EEG/MEG data 507

(43). 508

There are also limitations associated with the MINDy model 509

used in the analysis. The models did not include an inter- 510

cept/bias term, and the dynamics are anti-symmetric with 511

respect to the neural hidden states (see Methods). Such 512

assumption was made according to the excitation-inhibition- 513

balance principle (44) and has been adopted in resting state 514

DCM studies too (15). In such models, the zero vector (corre- 515

sponding to the mean of the data) is always an equilibrium 516

(though not necessarily stable) and nontrivial attractors (if 517

any) must exist in pairs. Extending MINDy to task contexts 518

by introducing a task-related input can break such symmetry. 519

Another limitation of the current method is the ability to 520

account for the variations in haemodynamics. Here, we esti- 521

mated the hidden neural states by a noise-aware deconvolution 522

of BOLD signal with the canonical haemodynamic response 523

function (HRF) (45). However, it has been suggested that 524

HRF varies significantly across brain regions and individuals 525

(46). Although MINDy parameters have been demonstrated 526

to be robust against HRF variations (18), it is unclear how 527

much the emergent dynamics will be influenced, given the 528

observation that the dynamics were sensitive to parameters. 529

Extending our analysis with region-specific HRF (47) is a nat- 530

ural step to follow. Another direction is to use a biologically 531

more detailed regional dynamics model (14). Currently, the 532

recurrent dynamics within each brain region is modeled as a 533

simple self-excitation (or inhibition) with an exponential decay. 534

Despite being computationally more tractable, such a model 535

might not capture the full dynamics within a region, especially 536

the interactions between sub-populations (43). Multi-scale 537

modeling and EEG-fMRI data fusion might be a possible way 538

to improve biological specificity while maintaining computa- 539

tional efficiency. 540
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From a cognitive neuroscience perspective, the current541

study demonstrates how the novel lens of dynamical systems542

and attractor landscapes can be utilized for theory and analy-543

sis regarding the relationship between intrinsic dynamics (i.e.,544

present during resting states) and task-related cognitive com-545

putations. Future studies can try to associate individualized546

resting state dynamical motifs with cognitive traits and task547

performance using either traditional correlational analysis,548

or more interestingly, by adapting the MINDy framework to549

analyze how dynamics and attractors change between rest-550

ing and task states. As a mechanistic alternative to FC and551

dFC analysis, our framework can also generate new insights552

into the dynamical changes associated with different dimen-553

sions of cognitive variation, including states of consciousness554

(e.g., sleep, meditation, psychedelics), developmental stages,555

or dysfunction associated with psychiatric and neurological556

disorders.557

Materials and Methods558

Data preprocessing. We obtained rfMRI data from the HCP Young559

Adult dataset (19). Data was originally collected on a 3T scanner560

with a TR of 720ms and 2mm isotropic voxels. Participants under-561

went two scanning sessions on separate days. Each session included562

two scanning runs of 1200 TRs (around 15 minutes), one using563

right-to-left phase encoding direction and the other left-to-right.564

Participants were instructed to stay awake with eyes open and relax565

fixation on a bright cross hair on a dark background, presented in a566

darkened room.567

We adopted the preprocessing pipeline suggested in (48), which568

was shown to effectively suppress the influence of head motion in569

rsFC-behavior associations. Because we are particularly interested570

in session-to-session variations in dynamics, we used a relatively571

strict inclusion criteria to make sure the data in all runs were572

sufficiently clean. Specifically, we only included participants with573

no missing runs or runs that had more than 1/3 (400 out of 1200)574

frames with high head motion (see below), resulting in a total575

number of 510 participants.576

We began with the rfMRI data provided by HCP that has577

been minimally preprocessed, motion-corrected, and denoised with578

FIX-ICA (19). Following (48), data was first detrended and then579

motion scrubbed with framewise displacement (FD) and temporal580

derivative of variation (DVARS) (49). FD and DVARS were filtered581

for respiratory artifact with a 40-th order 0.06-0.14Hz band stop582

filter. Frames with FD above 0.2mm or DVARS above 1.05 times583

of the median were linearly interpolated. We then regressed out584

from the data the top five principal components of the white matter585

and the cerebrospinal fluid signals (CompCor), and the mean signal586

from the gray matter.587

After preprocessing, the data was averaged within each parcel588

according to the 200-parcel atlas from (24). Data points exceeding589

5 standard deviations in each time series were linearly interpolated.590

To obtain the underlying neural activity, we deconvolved the data591

with the canonical haemodynamic response function (HRF) from592

(45) using Wiener deconvolution (50), a deconvolution technique593

that minimizes the influence of noise. We used a 30-point HRF594

kernel and a noise-power to signal-power ratio of 0.02. Finally, the595

data were z-scored within each timeseries.596

Model architecture and fitting. We adopted the Mesoscale Individu-597

alized NeuroDynamics (MINDy) framework from (18). A MINDy598

model contains interconnected neural masses representing brain599

parcels, with trainable and individualized connection weights. Each600

neural mass is assumed to follow an S-shape input-output transfer601

function with a trainable region-specific curvature. Activity decays602

with a trainable region-specific rate. The dynamics of the model is603

thus:604

dx(t) = Wψα(x(t))−D � x(t) [1]

ψα(x) =
√
α2 + (bx+ 0.5)2 −

√
α2 + (bx− 0.5)2 [2]

x(t) ∈ RN is the neural activity hidden state at time t, where 605

N is the number of parcels. W ∈ RN×N is the connectivity matrix. 606

The transfer function ψα is applied element-wise with each region’s 607

respective curvature parameter α. D ∈ RN is the decay and � 608

indicates element-wise multiplication. b is another parameter con- 609

trolling the shape of the transfer function, currently fixed as 20/3. 610

To prevent overfitting and improve interpretability, we required the 611

connectivity matrix W to be the sum of a sparse matrix WS and a 612

low-rank matrix WL = W1WT
2 , where W1,W2 ∈ RN×k and k < N . 613

Here we chose N = 200 (k = 72) as it achieves a balance between 614

granularity and computational efficiency. However, we also repeated 615

the analysis with N = 100 and N = 400 and obtained very similar 616

attractor motifs. 617

We obtained x(t) and ground-truth dx(t) from the preprocessed 618

rfMRI data for each participant and session, with two runs combined. 619

The derivative was computed using forward differentiation. Since 620

HCP data utilizes an exceptionally fast TR, we performed two-point 621

moving average smoothing on the derivative to reduce noise, i.e., 622

dx(t) = [x(t + 2) − x(t)]/2. Removing the smoothing led to very 623

similar results. We optimized W , α and D to minimize the model’s 624

prediction error while enforcing sparsity of the connectivity using 625

L1 regularization (51). The loss function is thus defined as: 626

J =
1
2
||dx(t)−

[
(WS +W1W

T
2 )ψα(x(t))−D � x(t)

]
||22

+ λ1||WS ||1 + λ2Tr(|WS |) + λ3(||W1||1 + ||W2||1)
where λ1 = 0.075, λ2 = 0.2, λ3 = 0.05 are the regularization 627

hyperparameters, Tr(|WS |) is the absolute sum of the diagonal 628

elements ofWS . Optimization was performed using gradient descent 629

with Nesterov Accelerated Adaptive Moment Estimation (NADAM, 630

(52)). Parameters were updated after each minibatch of 300 random 631

samples. We stopped the training at 5000 minibatches when the test- 632

retest reliability of the parameters started to drop. To prevent the 633

weights from being unnecessarily small due to regularization penalty, 634

we performed an additional global rescaling of the parameters by 635

fitting dx = pWWψα(x)− pDD � x(t) with two scalar parameters 636

pW , pD ∈ R, and factored them into W and D. It’s worth noting 637

that a 200-parcel MINDy model can be fit on a standard laptop 638

within 15 seconds, enabling the analysis of the whole HCP dataset 639

within a reasonable amount of time. 640

Model simulation and numerical analysis of attractors. For each 641

model, we randomly sampled 120 initial conditions from the stan- 642

dard normal distribution. We also tried to sample from the data x(t), 643

but the identified attractors were the same as long as the sample size 644

is large enough. The dynamics (equation 1) was integrated using 645

Euler’s method for 1600 TRs with step size equal to one TR. For 646

some models with limit cycles that contained extremely slow ghost 647

attractors, we prolonged the simulation until the state recurred 648

after a full cycle. The stable equilibria were identified as follows: 649

First, we defined a trajectory (simulation) as already converged to 650

a stable equilibrium if |x(t+ 1)− x(t)| < 10−6 for every parcel and 651

every time point T −10 ≤ t ≤ T −1, where T is the simulation time. 652

The terminal state x(T ) from all converged trajectories were than 653

clustered together based on a simple Euclidean distance threshold 654

of 0.1. The cluster centroids were extracted as the stable equilibria. 655

Similarly, we defined a trajectory as already converged to a stable 656

limit cycle if it approached and then left a small neighbourhood 657

of the terminal state {x | ||x− x(T )||2 < 0.5} at least once. The 658

interval during the last recurrence and the end of the simulation 659

was considered as the period of the limit cycle, and the samples 660

during this period was extracted to represent the limit cycle. We 661

confirmed the validity of the method by visually inspecting the 662

trajectories and identified attractors after dimensionality reduction 663

using Principal Component Analysis (PCA), as depicted in Figure 664

1 and 2. 665

We observed that the distribution of speed on the limit cy- 666

cles was very non-uniform, sometimes varying by orders of magni- 667

tude. Therefore, we selected the slowest point on each limit cycle 668
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arg minx(t) ||x(t+ 1)− x(t)||2 as the ’ghost’ attractors. Besides, for669

models with one limit cycle, due to the symmetry of the dynamics670

f(−x) = −f(x), we added a pair of symmetric slowest points rather671

than a single one.672

Bifurcation analysis. We induced a bifurcation between two models673

by creating convex combinations of the dynamics. Denoting the two674

model’s dynamics as x(t+ 1)− x(t) = f1(x) and x(t+ 1)− x(t) =675

f2(x) respectively, we construct a new model as x(t+ 1)− x(t) =676

αf1(x)+(1−α)f2(x), where 0 ≤ α ≤ 1 is the bifurcation parameter.677

We considered two ways to combine the observed models. In the678

within-individual case, f1 and f2 were the two models from the two679

sessions of a same participant. In the across-individuals cases, f1680

and f2 were sampled from all models. We randomly sampled α from681

the uniform distribution in [0, 1] as well as a pair of models for 500682

times, and extracted the attractors of these bifurcated models using683

the same numerical method described above. We then characterized684

the vector field by the number and types (equilibria or limit cycles)685

of attractors and compared their distribution across the bifurcated686

models and the fitted models in Figure 2.687

Reliability analysis. We quantified the anatomical similarity of two688

attractors (and ghost attractors, same below) by the Pearson corre-689

lation between their coefficients (i.e., anatomical projections). As690

the number of attractors might differ across models, we defined the691

dominant attractor similarity (DAS) between two models as the692

maximum similarity between their attractors. The distribution of693

DAS between all pairs of models from different sessions was shown694

in Figure 3, separated by whether the two models come from a695

same participant and whether they have same type of dynamics696

(i.e., same number of stable equilibria and limit cycles).697

Clustering analysis. We used K-means algorithm to cluster the698

anatomical location of all attractors and ghost attractors across699

all participants and sessions. We used cosine distance d(x, y) =700

1−cos∠(x, y) for clustering and scaled the samples to unit norm for701

visualization. Using Euclidean distance produced almost identical702

clustering results. The number of clusters K is determined by the703

cluster instability index (23) with a candidate list of K ranging704

from 2 to 10. For each K, the data was randomly divided into705

two subsets for 30 times. We ran K-means algorithm on the first706

partition to obtained the cluster centroids, and used these centroids707

to classify the samples in the second partition. The classification708

result was compared to the results of directly running K-means on709

the second partition. A misclassification cost was computed after710

matching the labels using the Hungarian algorithm. This cost is711

then averaged across the 30 partitions and normalized by the null712

cost computed in the same way but with random labels, resulting713

in an instability index for each K. The local minimum of instability714

was selected as the number of clusters for the final clustering. We715

also repeated our analysis using either only the stable equilibria or716

only the ghost attractors on the limit cycles (Supplementary Figure717

S9, S10), and in each case both the clustering instability index and718

cluster centroids were very similar to the results in the main text.719

Data and code availability. The rfMRI data is available at Human720

Connectome Project’s website. The MINDy modeling toolbox is721

available at https://github.com/singhmf/MINDy. The preprocess-722

ing and analysis scripts will be available after peer review.723
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Supporting Information Text12

Validation of MINDy modeling13

Goodness of fit. We tested the prediction accuracy of the fitted models in three cases: the training data, the data from the14

same participant but in the other session, and the data from a random participant in the same session. The R squared was15

around 0.4 for all three cases, with the training accuracy being the highest, the within-person transfer being the second and16

across-person transfer being the third (Figure S1). Therefore, our models indeed captured the individuality of the dynamics.17

Surrogate data simulations. To make sure that the nontrivial dynamics observed in fitted models were not simply due18

to methodological bias, we investigated whether MINDy can correctly capture the trivial dynamics in closely matched19

surrogate datasets. We tried two different surrogate simulation schemes and fit MINDy on these simulations using the same20

hyperparameters as in the main text. The first method follows (1), generating a dataset from noise (without any dynamics) but21

preserves the covariance (thus FC) and mean power spectrum of the rfMRI data. In (1), it was found that the tvFC method22

generated indistinguishable results for real data and such surrogate data. However, our model correctly produced a monostable23

dynamic system without nontrivial fluctuations (Figure S2). The second method fit MINDy on the noisy simulations of a24

closely-matched linear system. This linear system, referred to as ‘linear MINDy’, replaces the nonlinear activation function of25

MINDy with its best linear approximation. The ‘linear MINDy’ model was fit to rfMRI data using the same hyperparameters26

and loss function as actual MINDy, thus capturing the statistics of the data and also maintaining the ‘sparse plus low-rank’27

connectivity structure. In fact, we found that the connectivity and decay parameters of ‘linear MINDy’ is highly correlated28

with the actual MINDy model fitted on the same data. After fitting the linear model, we simulated the model with additive29

noise. The magnitude of the noise was set to the root of mean squared error during the fitting of the linear model. The noisy30

simulations thus represent a close match of the true dataset but generated from inherently linear (and monostable) dynamics.31

We then fit (nonlinear) MINDy models on these simulations, and the models correctly reproduced a monostable dynamic32

system with no nontrivial attractors (Figure S2).33

Reliability and behavioral correlation for MINDy parameters34

MINDy parameters were individualized and consistent across the population. We characterized the consistency of model35

parameters across all participants, as well as within each participant. We computed the correlation of each set of parameters36

(connectivity, curvature or decay) between each pair of models. For each participant, we quantified the similarity between their37

two models as well as the mean similarity between their models and all other models. Results indicate that the parameters were38

highly consistent across the population, and even more within each participant (Figure S3, top-left). Next, for each parameter39

(e.g., one entry in the connectivity matrix), we calculated its intraclass correlation coefficient (ICC), which is the correlation40

of its value between the two sessions across all participants. ICC characterized the reliability of the individual differences in41

each parameter. We observed a large set of connectivity parameters with high ICC (Figure S3, top-right; also note that the42

connectivity is sparse so a lot of entries have low ICC). The ICC for curvature and decay parameters were acceptable, around43

0.5 (Figure S3, bottom).44

MINDy parameters encode cognitive differences. Here, we conducted a canonical correlation analysis (CCA) between the45

connectivity matrices of fitted models and the phenotypic measures in the HCP. The connectivity matrices from the two46

sessions were averaged within each participant before entering the analysis. We used the scripts provided by (2) which extends47

(3) to the whole HCP dataset. The connectivity matrices and subject measures were first projected to their first 100 principal48

components to reduce dimensionality. Then, CCA was carried out to identify the directions to which the projection of the49

connectivity data and phenotypic data are maximally correlated across the population. We identified a unique pair of such50

directions (modes) with statistically significant correlation (1000 permutations, Figure S4, top right). Further, this connectivity51

mode and phenotypic mode explained a significant amount of variance in their data respectively (Figure S4, middle and bottom52

right). Post-hoc correlation between the phenotypic mode and all phenotypic measures revealed that this mode is more related53

to fluid intelligence and substance use (Figure S4, left). Interestingly, our results are very similar to the original finding in54

(3) even though we are using very different node types (parcels vs. ICA networks) and connectivity measures (effective vs.55

correlational).56

More examples of model dynamics57

Here we show more examples of the dynamics observed in the fitted models (Figure S5). The three except the top-left one were58

grouped into ‘others’ type in the main text because of their rare occurrence.59

Toy model for infinite-period bifurcation60

Here we show a toy model for infinite period bifurcation mentioned in the main text. The model dynamics are written in polar61

coordinates (but shown in Cartesian coordinates in Figure S6) as:62 {
ṙ = r(1− r2)
θ̇ = µ− | sin θ|
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where µ is the bifurcation parameter. The infinite-period bifurcation happens when µ equals one. When µ > 1, the system63

shows a stable limit cycle and an unstable equilibrium at the origin. As µ approaches 1, the speed distribution on the limit64

cycle becomes more and more extreme and a ghost attractor emerges at (0, 1) on the limit cycle. When µ equals 1, the ghost65

attractor dissolves into a pair of equilibria, one stable and one unstable.66

Clustering of attractor patterns67

Selection of the number of clusters. We used K-means algorithm to cluster the attractors and select the number of clusters K68

using the cluster instability index (see Methods for more details). We found that regardless of whether we use only the stable69

equilibria, only the ghost attractors, or both, we got near perfect clustering stability only for K equals to two or four (Figure70

S7).71

Two cluster solution. We show the two-cluster solution in Figure S8. In this case the two clusters are the reflections of each72

other. One of them showed strong activation for the DMN and FPN, while the other show strong activation for the visual and73

the dorsal/ventral attention networks.74

Clustering results with only stable equilibria or only ghosts. In the main text we clustered all stable equilibria and ghost75

attractors together. Here we show the results using only stable equilibria (Figure S9) and only ghost attractors (Figure S10)76

respectively.77

Parcel activation in attractors78

Parcel activation follows network and cluster structure. We analyzed the activation of parcels across all attractors with a79

mixed-effect model: activation ∼ 1 + cluster + network + cluster:network + (cluster|network:parcel). We computed the80

hierarchical (type I) sum of squares explained by each term (Figure S11). The main effects of cluster and network were small81

while their interactions explained over 40% of total variation, indicating that (1) the same brain network showed very different82

activation in different clusters (or equivalently, that each cluster is associated with the strong activation of different sets of83

networks); and (2) parcel activation was mostly determined by the combination of attractor clusters and functional brain84

network structure. The random effect of parcels explained about 15% of variation, indicating that heterogeneity still exist across85

the parcels within each network. The error sum of squares was smaller than the total variation explained by the modeling,86

suggesting high consistency across participants and sessions.87

Functional rather than spatial organization explains the data better. To show that the activation was driven by functional88

network segmentation rather than the spatial proximity between parcels, we calculated the Pearson correlation between the89

activation patterns of each pair of parcels across all attractors. The correlation coefficient was Fisher-transformed into a90

Zr statistic (Figure S12, top-left). We modeled this similarity matrix by the combination of the spatial proximity (negative91

cortical distance) between parcels and their functional network assignment. The distance between all cortical vertices along the92

surface were calculated using the surface geometry file from HCP and MATLAB’s graph distance function, and then averaged93

within the two parcels under consideration. All inter-hemisphere entries were excluded since the distances were undefined. The94

functional network assignment similarity was set to one if two parcels belong to the same network as defined by the 17-network95

atlas in (4), and zero otherwise. We then predicted the activation similarity using negative cortical distance, functional network96

assignment and their interactions. A hierarchical sum of squares analysis showed that network organization explained 15% of97

total variation even after excluding the effect of spatial proximity (which explained must less variance, Figure S12, bottom-right,98

first column). Therefore, the attractors indeed reflected the organization of functional brain networks over and above the99

spatial configuration of cortical regions.100
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Fig. S1. Goodness-of-fit and cross validation accuracy. Top-left: distribution of the mean R squared for all models when predicting the training data, the data from the
same participant in the other session, or the data from another randomly selected participant. Top-right: Distribution of mean R squared over all models when testing on training
data. Bottom-left and bottom-right: similar plots for testing on the other session within participant, or testing on another participant’s data.
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Fig. S2. Fitting MINDy on surrogate data revealed trivial dynamics. Left: R squared for fitting MINDy on surrogate data; fitting ‘linear MINDy’ on rfMRI data; and fitting
MINDy on the noisy simulations of ‘linear MINDy’ models. Right: the proportion of models showing a single stable equilibrium (at the origin), for MINDy models fitted on rfMRI
data, on surrogate data, and on the noisy simulations of ‘linear MINDy’ models.
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Fig. S3. Obtained parameters were individualized and consistent across the population. Top-left: Correlation between sets of parameters (connectivity, curvature or
decay) from models from different sessions. ‘Within subject’ is the correlation between the two models from a same participant, while ‘across subject’ is the mean similarity with
all other models. Top-right: intraclass correlation coefficient (ICC) of each connectivity parameter. Text labels indicate the functional networks, separated by the black thick lines.
Bottom: ICC for decay and curvature parameters, respectively.
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Canonical Correlation Analysis between MINDy connectivity W and HCP phenotypic measures
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NIH Toolbox Dimensional Change Card Sort Test: Age-Adjusted Scale Score
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NIH Toolbox List Sorting Working Memory Test: Age-Adjusted Scale Score
Variable Short Penn Line Orientation: Total Number Correct

NIH Toolbox Oral Reading Recognition Test: Unadjusted Scale Score
Short Penn Continuous Performance Test: True Negatives = Sum of CPN_TN and CPL_TPN

NIH Toolbox Picture Sequence Memory Test: Age-Adjusted Scale Score
NIH Toolbox Pattern Comparison Processing Speed Test: Age-Adjusted Scale Score

NIH Toolbox General Life Satisfaction Survey: Unadjusted Scale Score
Years since respondent smoked last cigarette

Household Income
Age at first marijuana use

NIH Toolbox 2-minute Walk Endurance Test : Age-Adjusted Scale Score

NIH Toolbox Meaning and Purpose Survey: Unadjusted Scale Score

 = 0.40

 = 0.29

 = 0.17

Positive test for THC
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DSM tobacco dependence - difficulty quitting
ASR Rule Breaking Behavior Raw Score
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Menstrual History- Birth control/Fertility drug code (Female Participants Only)
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Fig. S4. MINDy parameters encoded reliable individual differences. Please compare with Figure 1 in (3). Left: Post-hoc correlation between the behavioral mode identified
by CCA and the phenotypic measures. We listed the most correlated measures with font size scaled by the correlation. Note that the Y axis is ordinal but not scalar. Top-right:
correlation between CCA-identified connectivity and behavioral modes. Statistical significance is determined by permutation test with 1000 permutations (same for other
panels). Mid-right: Variance of the connectivity explained by the CCA modes. Shaded region indicates the null distribution with 1000 permutations. Lower-right: variance of the
behavioral measures explained by the CCA modes.
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Example vector fields
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Fig. S5. More examples of dynamical landscapes. See Figure 1 in main text.
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Fig. S6. Toy model for infinite period bifurcation. Top row: trajectories of the models with different value for the bifurcation parameter µ. Red, green and gray dots indicate
stable equilibria, saddles and ghost attractors respectively. Black dots are the simulated samples on the limit cycle. Bottom row: vector fields of the models.
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Fig. S7. Stable clustering solution for two and four clusters.
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Fig. S8. Two-cluster solution of the attractor clustering.
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Fig. S9. Attractor clustering with only the stable equilibria.

12 of 16 Ruiqi Chen, Matthew Singh, Todd S. Braver, ShiNung Ching

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.15.575745doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575745
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S10. Attractor clustering with only the limit cycle slowest points.
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Variation of attractors explained by each factor (type I SS)
y ~ cluster + net + cluster:net + (cluster|net:parcel)
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Fig. S11. Variance of parcel activation explained by attractor clusters and functional networks.
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Similarity of parcel activation across attractors
Zr ~ 1 + S + Id
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Fig. S12. Parcel activation similarity across all attractors. Top-left: similarity between all parcels’ activation across all attractors. Similarity is quantified by Pearson
correlation followed by Fisher’s transformation. Top-right: the negative of the distances between parcel centroids along the cortical surface. Inter-hemisphere entries were
omitted. Bottom-left: similarity between parcels based on (4) functional network segmentation. Similarity is one if the two parcels belong to the same network and zero
otherwise. Bottom-right: variance of parcel activation similarity explained by distance or network structure. Column one: type I (hierarchical) sum of squares (SS) where cortical
distance precedes network structure (see the text). Column two: type I SS where network structure precedes cortical distance. Column three: type III SS. The SS for the
interaction between distance and network structure is less than 1%.
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