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Previous research has linked working memory capacity (WMC) with enhanced proactive control.
However, it remains unclear the extent to which this relationship reflects the influence of WMC on the
tendency to engage proactive control, or rather, the ability to implement it. The current study sought to
clarify this ambiguity by leveraging the Dual Mechanisms of Cognitive Control (DMCC) version of the
AX-CPT task, in which the mode of cognitive control is experimentally manipulated across distinct test-
ing sessions. To adjudicate between competing hypotheses, Bayesian mixed modeling was used to con-
duct sequential analyses involving two separate data sets. Posterior parameter estimates obtained from
the initial analysis were entered as informed priors during the replication analysis to evaluate the influ-
ence of new data on previous estimates. Results yielded strong evidence demonstrating that the influ-
ence of WMC on proactive control is most robust under experimentally controlled conditions, during
which use of proactive control is standardized across participants via explicit training and instruction.
Critically, the observed pattern of findings suggests that the relationship between WMC and proactive
control may be better characterized as individual differences in the ability to implement proactive con-
trol, rather than a more generalized tendency to engage it.
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Cognitive control is a fundamental ability that enables coordina-
tion and adaptive execution of goal-directed behavior (Egner,
2017). Given the central role of cognitive control in navigating
wide domains of human functioning, it is unsurprising that control
is considered to be a dynamical process sensitive to changing
demands and circumstances related to the environmental context.
One theory which aims to systematically parse this variability is
the Dual Mechanisms of Cognitive Control (DMC) framework
(Braver, 2012; Braver et al., 2021). The DMC proposes that cogni-
tive control can be deployed in two distinct modes: proactive and
reactive. Proactive control involves preparatory, sustained activa-
tion of task rules and goal representations; whereas reactive con-
trol involves transient, stimulus-driven task/goal activation.
Importantly, each mode of control is theorized to confer unique

costs and advantages, such that successful use is likely to require

flexible adoption of both control strategies. Conversely, disruption
of this adaptability has been shown to underlie psychological impair-
ment and behavioral dysfunction. For example, psychological and
neurocognitive disorders such as schizophrenia and dementia have
been associated with diminished use of proactive control (Barch &
Ceaser, 2012; Braver et al., 2005), whereas developmental risk for
anxiety has been linked to overreliance on reactive control (Troller-
Renfree et al., 2019). Furthermore, individual differences in person-
ality and cognitive ability are likewise thought to exert systemic
influence on control dynamics (Braver, 2012; Braver et al., 2007).
Within this domain, one of the most well studied individual differ-
ence constructs is working memory capacity (WMC), commonly
defined as the ability to temporarily store, manipulate, and retrieve
goal-relevant information (Unsworth & Engle, 2008).

InvestigatingWMC and Cognitive Control Using the
AX-CPT

In particular, a growing number of studies have leveraged the AX
version of the continuous performance test (AX-CPT; Braver et al.,
2001; Servan-Schreiber et al., 1996), to investigate the influence of
WMC on cognitive control strategy use. Briefly, the AX-CPT is a
widely used task of context processing, during which participants
respond to trials of sequential cue-probe letter pairs. A target
response is required only when an A cue is followed by an X (AX
trials); conversely, a nontarget response is required for all other
cue-probe pairs including AY, BX, and BY trials such that B and
Y represent any letters except A and X. Proactive control is
indexed by preparatory response patterns influenced by the A cue
(e.g., committing more correct nontarget responses, following a
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non-A cue, such as on BX trials, but more incorrect target responses
on AY trials), whereas reactive control is indexed by “just-in-time”
response patterns that are influenced by the X probe (e.g., commit-
ting more correct nontarget responses on AY trials, but slower and
potentially more error-prone responses on BX trials).
Using this paradigm, investigators examining the relationship

between WMC and cognitive control have consistently reported
that adult individuals with higher WMC exhibit greater use of pro-
active control relative to lower WMC participants (Belletier et al.,
2019; Boudewyn et al., 2015; Redick, 2014; Redick & Engle,
2011; Richmond et al., 2015; Stawarczyk et al., 2014; Wiemers &
Redick, 2018). There is also emerging evidence that this relation-
ship extends to young children and may begin to develop as early
as age 5 (Gonthier et al., 2019; Troller-Renfree et al., 2020; Wang
et al., 2021). Importantly, these findings provide empirical support
for the theoretical implications of WMC in the context of the
DMC framework—namely, that WMC enables active maintenance
of task and goal relevant information (see also Engle et al., 1999;
Engle & Kane, 2004; Kane et al., 2001; Kane & Engle, 2003; for
other related theoretical frameworks); and because proactive con-
trol essentially relies on this capacity, it stands to reason that
higher WMC should facilitate the use of proactive control.

Conceptual Ambiguities andMethodological Challenges

With that said, the studies to date have primarily relied on extreme-
group comparison (Redick, 2014; Redick & Engle, 2011; Wiemers &
Redick, 2018) or correlational (Belletier et al., 2019; Boudewyn et al.,
2015; Gonthier et al., 2019; Richmond et al., 2015; Stawarczyk et al.,
2014; Troller-Renfree et al., 2020; Wang et al., 2021) designs.
Although it is instructive to compare AX-CPT performance across
low versus high WMC individuals, the salient limitation of these
methods is that it precludes the ability to discriminate between the
tendency to engage in proactive control and the ability to implement
it. Without stringent experimental controls to standardize control strat-
egy use and establish appropriate comparisons, the admittedly porous
but potentially important boundary conditions between the tendency
and ability to implement different modes of control is likely to remain
analytically indistinguishable. Specifically, experimental manipula-
tions that involve explicit instruction of proactive/reactive control are
critical for interpreting observed individual differences in ability. This
is because failure to specify and standardize cognitive control strategy
use leaves open the unwanted possibility that participants may sponta-
neously vary their mode of control during task performance. In other
words, under conditions for which cognitive control strategy is not ex-
plicitly instructed and/or constrained, it is possible that observed indi-
vidual differences may reflect the tendency to spontaneously adopt a
control mode, or to flexibly switch among them, rather than the ability
to implement a singular mode of control when the task requires it.
In addition to resolving these ambiguities, a related but broader

challenge involves circumventing the psychometric and analytic limi-
tations commonly associated with using cognitive experimental be-
havioral paradigms when conducting individual differences research.
Here, we briefly highlight four pervasive and well-documented prob-
lems. First, use of conventional summary scores derived from aver-
aging across aggregated trial performance overlooks trial-level
variability, and as a consequence, can result in poor reliability and
underestimated effect sizes (Rouder & Haaf, 2019; Snijder et al.,
2022). Second, the equally common practice of using subtraction-

based difference scores can increase measurement error, constrain
between-subjects variance, and attenuate reliability (Caruso, 2004;
Cronbach & Furby, 1970; Draheim et al., 2019; Hedge et al., 2018).
Third, classic experimental psychology statistical approaches such as
ANOVA and ANCOVA often violate assumptions of independence,
and do not model subject-level variability as a unique source of var-
iance, potentially leading to overestimated effect sizes and increased
risk of type I error (Judd et al., 2012; Singmann & Kellen, 2019).
Fourth, the practice of null hypothesis testing (NHST), which has
been subject to increasing scrutiny (Cumming, 2014; Halsey et al.,
2015; Ioannidis, 2005; Simmons et al., 2011), only weighs evidence
against the plausibility of the null hypothesis but not evidence in
favor the alternative hypothesis, precluding inferential evaluation of
both the existence and magnitude of the hypothesized effect (Wagen-
makers, 2007; Wagenmakers et al., 2018).

Study Rationale

With these challenges in mind, the primary aims of the present
study are twofold: (a) to clarify the conceptual ambiguities regard-
ing the nature of the relationship between WMC and proactive
control; and (b) to remediate the common methodological issues
pertaining to measurement and analysis described above. As
alluded to above, the key to achieving the first aim lies in deriving
methods to place cognitive control mode under direct experimental
manipulation. Toward this end, one of the most comprehensive
efforts to date involves the development of the DMCC task battery
(see Braver et al., 2021; Snijder et al., 2022). In particular, the
DMCC version of the AX-CPT was designed to elicit selective
use of proactive, reactive, and baseline control across three sepa-
rate namesake testing sessions.

Briefly, the proactive session leverages prior work by explicitly
instructing participants to use contextual cue information in preparing
their responses (Gonthier et al., 2016), effectively training partici-
pants to implement a proactive strategy during task performance. On
the other hand, consistent with other approaches to reactive control,
the reactive session uses an implicit, item-specific cueing manipula-
tion (Braver et al., 2021; Bugg & Crump, 2012; Tang et al., 2021).
Specifically, in this session, the probe is presented in a distinct loca-
tion with unique borders on AY, BX, and no-go trials, serving as an
accentuated “just-in-time” stimulus signal to implement reactive con-
trol during high demand conflict trials. Finally, the baseline session
excludes the prior manipulations but retains no-go trials (presented
across all sessions), during which the probe is replaced by a numeri-
cal digit. Importantly, implementation of no-go trials decreases the
predictive utility of cue information, and is designed to reduce the
proactive bias observed in healthy young adults (Gonthier et al.,
2016)—rendering the baseline session an ideal “active control” con-
dition from which intended shifts of cognitive control can be eval-
uated via cross-session comparison (e.g., contrasting proactive vs.
baseline performance).

Importantly, the multisession, within-subject design of the DMCC
AX-CPT affords a powerful experimental-correlational approach to
clarify the influence of WMC on cognitive control (Cronbach,
1957). By standardizing cognitive control strategy use via experi-
mental manipulation, variability associated with the natural tendency
to adopt a preferred control mode is minimized, enabling any
observed associations between WMC and performance within a
given session to be interpreted as between-subjects differences in
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the ability or effectiveness of using a given control strategy instead.
Moreover, the addition of multiple sessions enables comparative
analyses to ascertain the relative specificity of the purported influ-
ence of WMC on control. For example, data can be aggregated
across sessions to explicitly test whether a hypothesized relationship
between higher WMC and enhanced proactive control is observed
preferentially within the proactive session, over and above any rela-
tionships present in the baseline and reactive sessions.
Together, these design features provide the inferential ability to

parse the extent to which observed correlations between WMC
and proactive control reflect the influence of WMC on the ability
to implement proactive control or the tendency to engage it. For
example, finding a specific association between higher WMC and
enhanced proactive control preferentially in the proactive session
(during which all participants are trained and instructed to engage
in proactive control) would link higher WMC with superior proac-
tive control ability. On the other hand, observing an association
between higher WMC and enhanced proactive control during the
baseline but not the proactive session would signal that WMC
influences the tendency to use proactive control during uncon-
strained conditions where strategy use is not actively manipulated.
Lastly, a third possibility involves finding that higher WMC is
associated with enhanced proactive control in both the proactive
and baseline sessions, suggesting that WMC may influence both
the tendency and ability to use proactive control.
To adjudicate between these competing possibilities, we prereg-

istered a set of initial analyses aimed at broadly replicating past
findings linking WMC with enhanced proactive control (see
https://osf.io/n9mqw). For full transparency, this initial preregis-
tration also included hypotheses aimed at testing the relationship
between trait anxiety and reactive control, which were not broadly
supported by preliminary analyses. Consequently, we elected to
focus investigative efforts around WMC and proactive control,
while prospectively committing to a second follow-up preregistra-
tion that was explicitly aimed at replication, as well as minimiza-
tion of researcher’s degrees of freedom, through the use of a
holdout dataset (described further below). Importantly, the holdout
dataset remained unanalyzed until after all variables, data inclu-
sion criteria, and statistical analytic procedures were specified in
the submission of the 2nd preregistration. The primary rationale
behind this “two-step” preregistration process was to balance
transparency and rigor with the flexibility to derive the most robust
yet tractable method for analyzing the data.
We hypothesized that higher WMC scores would be associated

with enhanced proactive control metrics in the baseline and or pro-
active sessions. Specifically, analyses focused on three indices of
proactive control: (a) A-cue bias, (b) BX interference, and (c) the d-
prime context effect. Briefly, A-cue bias assesses the propensity to
commit target responses across “A” trials, including both AX (hits)
and AY (false alarms) trials—rendering it a collective measure of
response bias based on contextual cue use and response preparation.
Because WMC is needed to store and actively maintain contextual
cue information, whereas proactive control enables preparatory cue
use (i.e., activation of the expected target response), we predicted
that higher WMC would be associated with stronger A-cue bias
(i.e., more target responding across “A” trials). The BX interference
effect contrasts errors and reaction time (RT) across BX and BY tri-
als, enabling measurement of the interference associated with the
presentation of an “X” probe following a nontarget (“B”) cue.

Here, enhanced B-cue use afforded from proactive control should
elicit greater preparation of correct nontarget responses and attenu-
ate “X” probe interference. Higher WMC is therefore expected to
be associated with reduced BX error (i.e., fewer errors) and RT in-
terference (i.e., faster RTs) on high conflict BX trials, referenced to
the low conflict BY trials. Last, the d-prime context effect compares
target responding across AX and BX trials, measuring the degree to
which the response to “X” probes discriminates target (“A”) and
nontarget (“B”) cues. Similarly, greater cue use should elicit more
target responses on AX trials (i.e., correct hits) relative to BX trials
(i.e., false alarms)—a metric referred to as d-prime sensitivity.
Extending the rationale developed above, higher WMC is expected
to be associated with enhanced d-prime sensitivity. Taken together,
these three indices provide a strong signature of proactive control
from which to observe sensitivity to individual differences in
WMC, and how these effects are impacted by the session manipula-
tion of cognitive control mode. Specifically, the presence of session
specific patterns that emerged to support these predictions (e.g.,
WMC positively correlated with A-cue bias in only the proactive
session but not the baseline session) were identified in the initial
dataset. As mentioned above, these were then treated as fixed pre-
dictions to be retested in a (second) preregistered follow-up replica-
tion analysis, using a separately collected holdout dataset (https://
osf.io/x96wn).

Regarding the second aim, we endeavored to address the afore-
mentioned methodological and analytic issues by adopting a trial-
level Bayesian mixed modeling approach. First, we used complete
trial-level data across all task conditions to appropriately capture
trial-level variability and obviate use of difference scores. Second,
we leveraged mixed modeling with random slopes and intercepts
to circumvent nonindependence and account for subject-level vari-
ability in task performance. Third, we used a Bayesian regression
approach to quantify and assess evidence in favor of the predicted
effects against the null. Moreover, as mentioned above, we used
this approach to showcase how results from a preregistered analy-
sis can be subject to sequential replication with Bayesian updating
procedures (Ly et al., 2019; Verhagen & Wagenmakers, 2014).
Although Bayesian statistical approaches are far from new, and
have become increasingly popular within various areas of psycho-
logical science (van de Schoot et al., 2017), to our knowledge, the
application of Bayesian approaches to investigate cognitive con-
trol remains relatively underused relative to traditional frequentist
approaches. Consequently, a final motivation for the current study
was to provide a practical demonstration of the advantages and
implementational features of this analytic and inferential approach,
as applied to the research prerogatives of the DMC framework and
of cognitive control studies more generally. Below, we separately
detail the specific methods and results of the initial and replication
analyses before synthesizing the collective implications of the
findings in the general discussion section at the end.

Initial Analysis

Method

Participants

Two-hundred seventy-eight participants were recruited via the
Amazon Mechanical Turk (MTurk) online platform. Data collection
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was completed in March 2018 and included two rounds of testing,
during which participants completed a retest assessment several
weeks after initial testing (see Tang et al., 2021, for details of the full
study protocol). Of this recruited set, 140 participants failed to com-
plete the full study protocol because they either did not complete the
sessions on time, experienced prohibitive technical issues, or failed
to comply with task instructions. Participants with overall accuracy
below 50% and or 3 SDs below the sample mean were excluded (one
participant), resulting in a final sample of 137 participants. Partici-
pants were not restricted with regard to age (22–64,M = 36.70, SD =
10.03; 85 females, 52 males). The TurkPrime interface was used for
all aspects of participant recruitment and management (e.g., adver-
tisement, communication, and payment). Prospective participants
were given a link to review and sign the consent form. On consent-
ing, the web-links for the tasks were made available over MTurk.
Participants were compensated a total of $122 for full completion
(includes test and retest). The study protocol (IRB #201608003) was
approved by the institutional review board of Washington University,
St. Louis.

Design and Procedure

The study protocol consisted of thirty testing sessions lasting 20–
40 minutes (15 sessions for test, and 15 sessions for retest), includ-
ing the baseline, proactive, and reactive sessions of the AX-CPT
among other components of the DMCC battery. For the purposes of
the current study (i.e., to maintain continuity with the replication
analysis described below), analyses focused exclusively on the test
data; the retest data were excluded from all analyses and not exam-
ined. The DMCC task battery was originally developed for the neu-
roimaging environment (Braver et al., 2021); the online behavioral
protocol and task variants (Tang et al., 2021), which included addi-
tional self-report/demographic questionnaires, are fully described
elsewhere (see Etzel et al., 2021). Participants were asked to com-
plete the sessions at a rate of five per week in fixed sequential order
(with baseline conditions completed first, followed by reactive, then
proactive), taking about three weeks to complete the full protocol.
Each five-session set was posted at the beginning of the week and
two reminder emails were sent to remind subjects to complete the
set by the end of the week. Completed sessions were checked for ac-
curacy and compliance (see Tang et al., 2021). Subjects who did not
complete the weekly set or failed to comply with instructions were
discontinued from future sessions and received a prorated pay-
ment for sessions completed.

Tasks

Ax-CPT. Participants were instructed to make either target
(“z”) or nontarget (“m”) button press responses to visually pre-
sented cue-probe pairs. Consistent with previous versions of the
AX-CPT, a target response was required to the probe on AX trials,
whereas a nontarget response was required to the probe on all
other trial types (AX, BX, BY), as well as to the cue on all trials.
As mentioned above, this version of the task also included no-go
trials, which required withholding response to the probe; no-go tri-
als were indicated by a digit (1–9) rather than letter probe (Gonth-
ier et al., 2016). There were a total of 216 trials, encompassing 72
AX trials, 72 BY trials, 18 AY trials, 18 BX trials and 36 no-go tri-
als (18 following an A cue, 18 following a B cue). The task was
performed in three 72 trial blocks with all trials presented in

random order. Subjects were instructed to take a minimum one-
minute rest break between blocks to mitigate fatigue. Across all
trials, the cue was presented at the center of a white screen for 500
milliseconds (ms). After a fixed blank duration of 4,000 ms, the
target probe was presented for 500 ms which was preceded by a
bounding box presented 250 ms earlier. Each trial concluded with
a 1,500 ms intertrial interval during which a triangle arrangement
of fixation crosses was presented at the center of the screen.

Baseline Session. The baseline session was identical to the
description above. Participants performed a 12-trial practice block
before beginning the actual session.

Proactive Session. Participants completed two phases of strat-
egy training prior to beginning the session (Gonthier et al., 2016).
In the first phase, an audio clip instructed participants how to pre-
pare their button presses in response to the cue across six hypo-
thetical trials (i.e., to prepare a target response following A cues
and nontarget otherwise). In the second phase, participants com-
pleted six practice trials by typing out “left” or “right” to indicate
the button they were preparing to press. Feedback was provided
after incorrect responses, reminding participants of the cue letter
and requesting them to try again. Finally, participants were
prompted with the visual message “Use the strategy!” during the
intertrial interval periods across the actual testing session. All
other task components were identical to the baseline session.

Reactive Session. The reactive session featured a new AX-CPT
variant that was adopted to preferentially encourage and enhance
use of reactive control (for further discussion of this version see
Braver et al., 2021; Tang et al., 2021). High conflict trials (AY, BX,
no-go) were preceded by a unique border color and further accentu-
ated by placing the probe in a distinct spatial location. Specifically,
on low-conflict AX and BY trials, the probe was presented on the
upper half of the screen, whereas the probe was presented on the
lower half of the screen during the high-conflict AY, BX, and no-go
trials. Furthermore, a black border preceded the probe on AX and
BY trials, whereas a red border preceded the probe on AY, BX, and
no-go trials. Cues were presented at the center of the screen. All
other trial parameters were identical to the baseline and proactive
sessions.

Working Memory Tasks.
Operation Span Task. An automated online version of the

Operation Span Task (OSPAN; Turner and Engle, 1989; Unsworth
et al., 2005) was used to assess WMC (https://www.millisecond
.com/download/library/ospan). During each trial, participants were
required to verify the accuracy of a mathematical equation before
being presented with a random letter to remember. The number of
math-letter sequences (i.e., set size) varied from three to seven per
trial. At the end of the trial, participants selected the presented let-
ters in the order that they had appeared. The task consisted of three
trials of each set size for a total of 15 trials and imposed a response
deadline for math problems based on average performance during
practice trials. Processing task accuracy was not an exclusionary
criterion. Performance was scored by summing the total number of
correctly recalled letters (i.e., partial span score).

Symmetry Span Task. Likewise, an automated online version
of the Symmetry Span Task (SYMSPAN; Unsworth et al., 2009)
was implemented to derive another measure of WMC (https://
www.millisecond.com/download/library/symmspan). Similar to
the structure of the OSPAN, participants were required to judge
whether a displayed shape is symmetrical along its vertical axis (a
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response deadline was again imposed based on average perform-
ance during practice trials) before being presented with a red
square in a 4 3 4 grid of potential locations to remember. At the
end of each trial, participants selected the location of the red
squares in the order of presentation. The number of symmetry-
location sequences (i.e., set size) ranged from two to five per trial.
The task consisted of three trials of each set size for a total of 12
trials. Again, processing task accuracy was not an exclusionary
criterion. Performance was scored by summing the total number of
correctly recalled square locations (partial span score).

Statistical Analyses and Predictions

Bayesian linear regression models were fit using the brms pack-
age in the R software environment (B€urkner, 2017). WMC was
quantified as a composite score and mean-centered by way of z-
scoring the average of OSPAN and SYMSPAN scores (each span
task was also z-scored first). Categorical variables (trial type, ses-
sion) were effect coded. As further detailed below, the data were
filtered so that trial type was rendered as a binary variable contin-
gent on the metric of interest. Logistic regression on trial-level
data was then used to model interference effects on response type
(target vs. nontarget) and accuracy (correct vs. incorrect). Simi-
larly, trial-level RTs were modeled using shifted lognormal func-
tions (Haines et al., 2020), with mixed-effects linear regression
used to estimate interference effects. Trial type, session (baseline,
proactive, reactive), and WMC score were predictors in the model.
Subject-level variability was modeled by entering the intercept
and trial type as random effects nested within subject. Owing to
the novel nature of the analyses, we conservatively elected to use
uniform priors on the fixed effects across all models. Random
effects were weakly informative based on brms defaults.
Below, we describe how each control metric was modeled and

tested. Models involving response type and accuracy was run
with 4 Monte Carlo chains, each containing 2,000 sample itera-
tions and 1,000 warm-up iterations, with the warmup iterations
discarded. The modeling of RT was likewise run with four
chains, but each containing 4,000 sample iterations and 2,000
warm-up iterations—sample iterations were doubled to ensure
sufficient effective sample sizes (ESS) across model parameters.
For every parameter estimate, we report the mean, standard devi-
ation, and the 95% credible interval (CI; quantile-based equal
tailed interval) of the posterior distribution, as well as the R-hat
and ESS values. Where applicable, log-odds were exponentiated
to odds and presented in the model summary tables. The prereg-
istration for this initial analysis is accessible at https://osf.io/
n9mqw. Moreover, all data, materials, and analysis code are
openly available at https://osf.io/zuvry/ (Lin et al., 2022).
A-Cue Bias. A-cue bias was modeled as the log-likelihood of

committing a target, relative to nontarget, probe response on AX/
AY trials. To test the general prediction that higher WMC would
be associated with stronger A-cue bias, we ran the following
model on AX/AY trial data aggregated across all sessions: Probe
Response � Trial Type 3 WMC 3 Session þ (1 þ trial type j
subject). Specifically, we expected to observe that higher WMC
would be associated with higher log-odds of committing target
responses in either the baseline session, proactive session, or both
(i.e., WMC3 session interactions). Although finding a main effect
of WMC was also a possibility (i.e., that higher WMC is

associated with higher log-odds of target responding irrespective
of session manipulations), we nonetheless expected that the effect
of WMC on A-cue bias would be most salient in the baseline or
proactive sessions based on prior work and theoretical grounds
(Richmond et al., 2015). Failure to obtain evidence for either
effect would serve as grounds for falsification that WMC is related
to A-Cue bias.

BX Interference. BX interference on trial accuracy was mod-
eled as the log-likelihood of committing a correct, relative to incor-
rect, response on BX/BY trials, whereas interference on RT was
modeled using lognormal linear regression on BX/BY trial RTs. To
test the prediction that higher WMC would be associated with
reduced BX interference, we applied the same predictors specified
above to estimate trial accuracy and RT. Here, we expected that
higher WMC would be associated with higher log-odds of correct
responses and faster RTs on BX trials relative to BY trials (i.e.,
reduced BX error and RT interference, respectively) in either the
baseline session, proactive session, or both. Note that in contrast to
the A-cue bias, the BX interference predictions are three-way inter-
actions that involve trial type (i.e., Session 3 WMC 3 Trial Type).
Again, it was also possible, but not predicted, that higher WMC
would be associated with reduced BX error and RT interference col-
lapsing across session (i.e., WMC 3 Trial Type). The absence of
these three-way interaction effects would fail to support the hypothe-
sized relationship between WMC and BX interference.

D-Prime Context Effect. Lastly, the d-prime context effect
was modeled as the log-likelihood of committing a target, relative to
nontarget, probe response on AX/BX trials. Similar to above, we
leveraged the same predictors to test the hypothesis that higher
WMC would be associated with enhanced d-prime sensitivity. Spe-
cifically, we expected that higher WMC would be associated with
higher log-odds of target responding on AX relative to BX trials
(i.e., more correct hits relative to fewer false alarms) in either the
baseline session, proactive session, or both. Similar to the BX inter-
ference predictions (but distinct from A-cue bias predictions), the d-
prime context predictions are three-way interactions that involve
trial type (i.e., Session 3 WMC 3 Trial Type). Once again, we
acknowledged the possibility, but did not predict, that higher WMC
would be associated with enhanced d-prime sensitivity collapsing
across all sessions (i.e., WMC 3 Trial Type). Failure to obtain evi-
dence for these three-way interaction effects would fail to support
the hypothesis that WMC is related to d-prime sensitivity.

Results

Descriptive statistics of all working memory measures are pro-
vided in Table 1. Full model summaries involving all parameter
estimates are provided in Tables 2–5. To maintain focus and tract-
ability, we circumscribe descriptive reporting to only the predicted
effects below. In particular, we do not provide descriptive or psy-
chometric characteristics of the full AX-CPT task data here,
because these are the focus of two additional reports on the
DMCC battery (Snijder et al., 2022; Tang et al., 2021).

In addition to the primary analyses reported below, we also ran
all models including age as a fixed effect covariate. In all of these
supplementary analyses, age did not alter the pattern or magnitude
of the WMC effects reported below. Consistent with prior findings
(Bopp & Verhaeghen, 2005; Borella et al., 2008; Park et al., 2002),
increasing age was associated with a decrease in WMC (r = �.23,
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p , .01). Likewise, age was associated with a small but statistically
significant increase in both BX/BY trial accuracy (b = .02, SD = .01,
95% CI [.01, .04]) and RT (b = .005, SD = .001, 95% CI [.003,
.007]), suggesting that age corresponded to a more cautious respond-
ing style that involved trading speed for accuracy, again consistent
with prior reports (cf. Braver et al., 2005). All code and full output
summaries for the age analyses are available online (https://osf.io/
zuvry/).

A-Cue Bias

Consistent with predictions, higher WMC was not significantly
associated with a general tendency to make a target response (i.e.,
nonsignificant main effect; b = .08, SD = .06, 95% CI [�.04, .19]),
but instead was uniquely associated with higher log-odds of target
responding in the proactive session (b = .16, SD = .03, 95% CI
[.09, .23]). Conversely, WMC was associated with relatively lower
log-odds of target responding in the reactive (b = �.08, SD = .04,
95% CI [�.15, �.01]) and baseline session (b = �.08, SD = .04,
95% CI [�.15, �.01]).

BX Interference

In analyzing trial accuracy, higher WMC was associated with
relatively higher log-odds of correct responses on BX trials rela-
tive to BY trials (i.e., reduced BX error interference, 3-way inter-
action) in the baseline session (b = .14, SD = .05, 95% CI [.06,
.23]), but not in the proactive (b = �.09, SD = .05, 95% CI [�.19,
.00]) or reactive session (b = �.05, SD = .04, 95% CI [�.13, .04]).
In contrast for RT however, higher WMC was associated with
faster RTs on BX relative to BY trials in the proactive session
(i.e., reduced BX RT interference, 3-way interaction; b = �.006,
SD = .003, 95% CI [�.011, �.001]),1 but not the baseline (b =
.001, SD = .003, 95% CI [�.004, .007]) or reactive session (b =
.005, SD = .003, 95% CI [.000, .010]).

D-Prime Context Effect

Contrary to expectations, WMC was unrelated to target
responding on d-prime sensitivity across all sessions (i.e., no sig-
nificant WMC 3 Trial or three-way interactions; bs , j.05j, all
CIs contain 0).

Summary

Briefly, the initial analyses broadly supported the hypothesized
relationship between higher WMC and enhanced proactive control.
In particular, higher WMC was associated with stronger A-cue bias

and reduced BX RT interference in the proactive session. Interest-
ingly and somewhat inconsistently, higher WMC was associated
with reduced BX error interference in the baseline session, with no
significant effect in the proactive session. Finally, WMC was unre-
lated to d-prime sensitivity. Although in need of further testing, this
constellation of findings suggested that the relationship between
WMC and enhanced proactive control may be relatively more spe-
cific to the proactive session as opposed to the baseline session.
Moreover, there is limited evidence in favor of a “session general”
effect of WMC on control metrics (i.e., that WMC is related to
enhanced indices of proactive control irrespective of session).

With these possibilities in mind, we aimed to replicate the
results prior to extrapolating the significance and implications of
the pattern of findings. Toward this end, all observed effects were
subject to retesting in a replication analysis, with the posterior pa-
rameter estimates obtained above entered as informed priors to
fully use the advantages of Bayesian updating and hypothesis test-
ing (Ly et al., 2019; Verhagen & Wagenmakers, 2014). Critically,
the specific predictions involving WMC and control metrics were
narrowed to mirror the results obtained in the initial analyses.
Below, we detail the model specifications and statistical analytic
procedures associated with the replicatory testing of each predic-
tion, including use of Bayes factors and probability of direction to
quantify the strength of evidence for the expected effects.

Replication Analysis

Method

Participants

Two-hundred forty-five participants enrolled in the study in
October 2020. Of this recruited set, 135 participants completed

Table 1
Descriptive Statistics of Working Memory Measures Separated by Study Wave

Measure Study wave M SD Skew Kurtosis a Correlation

OSPAN Initial 60.92 12.6 �1.87 4.36 0.85 .34**
SYMSPAN 29.96 7.12 �0.42 �0.35 0.73 —

WMC Composite 0.01 0.99 �0.86 1.17 — —

OSPAN Replication 60.69 13.00 �1.85 4.35 0.85 .32**
SYMSPAN 28.85 6.99 �0.47 �0.13 0.71 —

WMC Composite 0 1.00 �0.99 1.10 — —

Note. OSPAN = Operation Span Task; SYMSPAN = Symmetry Span Task; Correlation = Pearson correlation between OSPAN and SYMSPAN for each
study wave.
** p , .001.

1 Because RTs were fit to a lognormal distribution, effect estimates
involved small values. Consequently, we report parameter estimates to the
third decimal place. It is important to acknowledge that this effect differed
from what was described in the second preregistration (i.e., that we initially
obtained and expected to replicate null effects for BX RT interference).
The preregistered prediction was informed by a model that inadvertently
retained the assumption of a normal distribution, which failed to properly
account for the skewness of RT data. We remediated this issue by updating
the model to specify a shifted log-normal distribution. We acknowledge
that this updating of the statistical model did occur after the 2nd pre-
registration, thus adding additional researcher degrees of freedom, but we
believe this was outweighed by the improved statistical estimation
obtained.

6 LIN, BROUGH, TAY, JACKSON, AND BRAVER

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

292

https://osf.io/zuvry/
https://osf.io/zuvry/


the full MTurk task battery; the remainder failed to complete
the study because they either did not finish sessions on time,
experienced prohibitive technical issues, or failed to comply
with task instructions. Once again, participants were also
excluded for overall accuracy below 50% and or 3 SDs below
the sample mean (two participants excluded), resulting in a
final sample of 133 participants. The TurkPrime interface was
again used for all aspects of participant recruitment and man-
agement. All participants reviewed and signed the consent
form prior to study enrollment. Similarly, participants were not
restricted to age (18–77, M = 39.30, SD = 11.28; 73 females,
59 males, one prefer not to answer), and were paid $51 for full
completion of the study (which did not include a retest compo-
nent). The study protocol (IRB #201608003) was approved by
the institutional review board of Washington University, St.
Louis.

Design and Procedure

The second wave of data collection did not include a retest phase
and therefore comprised 15 sessions. Likewise, in this wave of data
collection, a fixed session order was used, but this was slightly dif-
ferent from the 2018 wave in that although the baseline sessions
were first, the proactive sessions came before reactive. This change
was made to counterbalance against the possibility of order-related
carryover effects. If the effects of the first study could be replicated
with a different order, then the findings were unlikely influenced by
session order. The baseline session was always presented first
because it did not contain strategic/contextual manipulations that
would be prone to carryover (also because it reduced the number of
possible counterbalance orders from 6 to 2). All other aspects of the
tasks, materials, and procedures were otherwise identical to what
was previously described regarding the first wave.

Table 2
Model Output From Initial A-Cue Bias Logistic Regression Analysis

Model Fixed effects Estimate 95% CI Odds (SD) R-hat Bulk ESS Tail ESS

A-Cue Bias Intercept 0.23 (0.06) [0.11, 0.35]a 1.26 (0.08) 1.00 1,918 2,895
Base �0.37 (0.04) [�0.45, �0.30]a 0.69 (0.03) 1.00 6,016 3,417
Pro 0.61 (0.03) [0.55, 0.68]a 1.85 (0.06) 1.00 5,707 3,062
Rea �0.24 (0.04) [�0.32, �0.17]a 0.79 (0.03) 1.00 6,740 3,256
WMC 0.08 (0.06) [�0.04, 0.19] 1.08 (0.06) 1.00 1,995 2,486
Trial �2.89 (0.07) [�3.04, �2.76]a 0.06 (0.00) 1.00 1,268 2,010
Base:WMC �0.08 (0.04) [�0.15, �0.01]a 0.92 (0.04) 1.00 5,157 3,114
Pro:WMC 0.16 (0.03) [0.09, 0.23]a 1.17 (0.04) 1.00 6,173 3,238
Rea:WMC �0.08 (0.04) [�0.15, �0.01]a 0.92 (0.03) 1.00 6,359 3,325
Base:Trial �0.24 (0.04) [�0.32, �0.16]a 0.79 (0.03) 1.00 5,223 3,385
Pro:Trial 0.36 (0.03) [0.30, 0.43]a 1.44 (0.05) 1.00 6,690 3,196
Rea:Trial �0.12 (0.04) [�0.20, �0.04]a 0.89 (0.03) 1.00 6,402 3,213
WMC:Trial 0.06 (0.07) [�0.09, 0.20] 1.06 (0.08) 1.01 1,394 2,198
Base:WMC:Trial 0.00 (0.04) [0.04, �0.07] 1.00 (0.04) 1.00 5,696 3,615
Pro:WMC:Trial �0.01 (0.03) [�0.07, 0.06] 0.99 (0.03) 1.00 6,126 3,451
Rea:WMC:Trial 0.00 (0.04) [�0.07, 0.08] 1.00 (0.04) 1.00 6,423 3,446

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.

Table 3
Model Output From Initial BX Error Interference Logistic Regression Analysis

Model Fixed effects Estimate (SD) 95% CI Odds (SD) R-hat Bulk ESS Tail ESS

BX Error Interference Intercept 3.62 (0.10) [3.24, 3.82]a 37.4 (3.80) 1.00 1,319 1,858
Base �0.31 (0.05) [�0.39, �0.21]a 0.74 (0.03) 1.00 5,241 3,466
Pro 0.30 (0.05) [0.21, 0.40]a 1.36 (0.07) 1.00 6,133 3,419
Rea 0.00 (0.05) [�0.09, 0.10] 1.01 (0.05) 1.00 6,441 3,549
WMC 0.06 (0.10) [�0.14, 0.24] 1.06 (0.10) 1.00 1,299 2,118
Trial �1.51 (0.07) [�1.66, �1.38]a 0.22 (0.02) 1.00 2,604 2,520
Base:WMC �0.12 (0.05) [�0.21, �0.03]a 0.89 (0.04) 1.00 5,360 3,385
Pro:WMC 0.02 (0.05) [�0.08, 0.11] 1.02 (0.05) 1.00 5,827 3,616
Rea:WMC 0.10 (0.05) [0.01, 0.19]a 1.11 (0.05) 1.00 6,588 3,362
Base:Trial �0.13 (0.05) [�0.21, �0.03]a 0.88 (0.04) 1.00 5,741 2,882
Pro:Trial 0.05 (0.05) [�0.05, 0.15] 1.06 (0.05) 1.00 5,603 3,275
Rea:Trial 0.07 (0.05) [�0.02, 0.16] 1.08 (0.05) 1.00 6,425 3,394
WMC:Trial 0.08 (0.06) [�0.03, 0.21] 1.09 (0.07) 1.00 2,230 2,744
Base:WMC:Trial 0.14 (0.05) [0.06, 0.23]a 1.15 (0.05) 1.00 4,982 3,488
Pro:WMC:Trial �0.09 (0.05) [�0.19, 0.00] 0.91 (0.05) 1.00 6,007 3,424
Rea:WMC:Trial �0.05 (0.04) [�0.13, 0.04] 0.96 (0.04) 1.00 5,703 3,571

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.
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Statistical Analyses and Predictions

Again, all Bayesian linear regression models were fit using the
brms package in the R software environment (B€urkner, 2017).
Coding of variables and mixed effect modeling procedures were
identical to what was specified in the initial analyses. The key dif-
ference is that posterior parameter estimates obtained from the first
dataset were modeled as informed Gaussian priors (specified as
the mean and SD of the distribution) to evaluate the influence of
new data on previous estimates. Indeed, the central aim of the
analysis was to replicate the key findings involving WMC and pro-
active control. Models involving response type and accuracy were
again run with four Monte Carlo chains, each containing 2,000
sample iterations and 1,000 warm-up iterations, whereas modeling
of RT used 4,000 sample iterations and 2,000 warm-up iterations.
Similarly, for every parameter estimate, we again report the mean,
standard deviation, and the 95% CI of the posterior distribution.

Novel to the replication analysis, however, is the use of Bayes
factors (BFs)—specifically, the Savage-Dickey density ratio (SDR)
and evidence ratio (ER)—and the probability of direction (PD) met-
ric to evaluate the strength of replication. For each predicted effect
outlined below, the SDR was computed to evaluate the extent to
which the mean parameter estimates obtained from the initial data-
set differed as a function of incorporating the replication sample.
Briefly, the SDR is formalized as the posterior density divided by
the prior density at the specified point value, which for our pur-
poses will be the mean value of the prior distribution (i.e., mean
parameter estimate obtained from the initial analysis). Moreover,
we calculate the ER to evaluate the overall amount of evidence
favoring the presence of the predicted effect against the null. Con-
textualized within the scope of the research question, this involves
testing the extent to which effects involving WMC and proactive
control metrics are greater or less than 0, contingent on the specific
directionality of the original finding. For example, when attempting

Table 4
Model Output From Initial BX RT Interference Lognormal Regression Analysis

Model Fixed effects Estimate (SD) 95% CI R-hat Bulk ESS Tail ESS

BX RT Interference Intercept 6.107 (0.014) [6.079, 6.135]a 1.00 410 804
Base 0.060 (0.003) [0.055, 0.065]a 1.00 12,119 6,662
Pro �0.107 (0.003) [�0.112, �0.102]a 1.00 11,393 7,121
Rea 0.048 (0.003) [0.043, 0.053]a 1.00 11,705 6,661
WMC �0.040 (0.015) [�0.069, �0.010]a 1.00 509 1,557
Trial 0.078 (0.004) [0.069, 0.085]a 1.00 1,598 3,684
Base:WMC 0.008 (0.003) [0.003, 0.013]a 1.00 12,995 6,254
Pro:WMC �0.008 (0.003) [�0.014, �0.003]a 1.00 11,512 6,380
Rea:WMC 0.000 (0.003) [�0.005, 0.005] 1.00 12,489 6,641
Base:Trial �0.012 (0.003) [�0.017, �0.007]a 1.00 12,269 6,723
Pro:Trial �0.036 (0.003) [�0.041, �0.031]a 1.00 12,586 6,798
Rea:Trial 0.048 (0.003) [0.043, 0.053]a 1.00 11,946 6,420
WMC:Trial �0.001 (0.004) [�0.009, 0.008] 1.00 1,737 3,776
Base:WMC:Trial 0.001 (0.003) [�0.004, 0.007] 1.00 13,278 7,375
Pro:WMC:Trial �0.006 (0.003) [�0.011, �0.001]a 1.00 11,650 6,620
Rea:WMC:Trial 0.005 (0.003) [0.000, 0.010] 1.00 12,653 6,804

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.

Table 5
Model Output From Initial d-Prime Sensitivity Logistic Regression Analysis

Model Fixed effects Estimate (SD) 95% CI Odds (SD) R-hat Bulk ESS Tail ESS

D-Prime Sensitivity Intercept 0.47 (0.05) [0.36, 0.57]a 1.60 (0.08) 1.00 1,476 2,231
Base 0.15 (0.03) [0.08, 0.21]a 1.16 (0.04) 1.00 5,853 3,421
Pro �0.04 (0.03) [�0.11, 0.02] 0.96 (0.03) 1.00 6,355 3,382
Rea �0.10 (0.03) [�0.17, �0.04]a 0.90 (0.03) 1.00 5,199 3,565
WMC �0.05 (0.05) [�0.14, 0.05] 0.96 (0.05) 1.00 1,911 2,477
Trial 2.66 (0.08) [2.51, 2.81]a 14.3 (1.13) 1.00 902 1,657
Base:WMC �0.05 (0.03) [�0.11, 0.01] 0.95 (0.03) 1.00 6,758 3,303
Pro:WMC 0.11 (0.03) [0.05, 0.18]a 1.12 (0.04) 1.00 6,501 2,955
Rea:WMC �0.06 (0.03) [�0.13, 0.00] 0.94 (0.03) 1.00 6,580 3,280
Base:Trial �0.28 (0.03) [�0.34, �0.22]a 0.76 (0.02) 1.00 5,412 3,213
Pro:Trial 0.30 (0.03) [0.23, 0.36]a 1.12 (0.04) 1.00 5,867 3,809
Rea:Trial �0.02 (0.03) [�0.08, 0.04] 0.98 (0.03) 1.00 5,874 3,320
WMC:Trial 0.08 (0.08) [�0.07, 0.23] 1.08 (0.08) 1.01 982 2,015
Base:WMC:Trial �0.03 (0.03) [�0.09, 0.03] 0.97 (0.03) 1.00 6,100 3,221
Pro:WMC:Trial 0.05 (0.03) [�0.01, 0.12] 1.05 (0.04) 1.00 6,081 3,246
Rea:WMC:Trial �0.02 (0.03) [�0.08, 0.04] 0.98 (0.03) 1.00 7,043 3,548

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.
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to replicate a hypothetical main effect of WMC on A-cue bias (i.e.,
higher WMC associated with stronger A-cue bias), the ER is the ra-
tio of the posterior probability that WMC . 0 (i.e., alternative hy-
pothesis) relative to the posterior probability of WMC , 0 (i.e., null
hypothesis). Lastly, we present the PD, computed as the posterior
probability that a parameter estimate is positive or negative, to eval-
uate the amount of evidence that the effect falls within the expected
direction.
Together, the SDR, ER, and PD provide a quantification of

point estimate replicability (i.e., the degree to which the parameter
means changed after incorporating replication data), as well as the
overall strength of evidence favoring the presence of the predicted
effect (i.e., the relative proportion of the posterior distribution fall-
ing above or below 0 in the predicted direction). When the SDR is
greater than one, it indicates that the weight of evidence is in favor
of the prior mean; conversely, SDRs less than one indicate that the
prior and posterior mean may differ. When the ER is greater than
one, it indicates that the evidence is in favor of the tested hypothe-
sis; conversely, ER values less than one indicate evidence against
the tested hypothesis. Per Lee and Wagenmakers (2014), values
between 1–3 (1–1/3) suggest anecdotal evidence, 3–10 (1/3–1/10)
moderate evidence, 10–30 (1/10–1/30) strong evidence, greater
than 30 (less than 1/30) very strong evidence. The PD has a direct
correspondence to the frequentist p-value, such that a PD of 95%,
97.5%, and 99.5% is approximately equivalent to a two-sided
p value of .10, .05, and .01, respectively. To further aid interpreta-
tion of these metrics, we provide plots of the prior and posterior
distributions as a visual supplement.
Lastly, we plotted predicted probability figures of each model,

graphed as a function of WMC and session, and separated by trial
type using the interactions package in R (Long, 2019). Impor-
tantly, it needs to be noted that the transformation of logits to pre-
dicted probabilities is nonlinear, and also that probability slope
estimates are derived as an aggregated function of all model pa-
rameters (Ai & Norton, 2003; Osborne, 2019). Consequently,
some of the hypothesized effects, which are based linearly in logits
and involve higher order interactions, are not always visualizable
in the probability domain. Nonetheless, we present these graphs to
provide a more comprehensive portrayal of our models and to
solicit engagement of other researchers whom might be interested
in extending this work more formally into the probability domain
(e.g., via the Stata methods outlined in Mitchell & Chen, 2005).
The preregistration for this replication analysis is available at
https://osf.io/x96wn, whereas all data and code used to conduct
the analyses are openly available at https://osf.io/zuvry/ (Lin et al.,
2022).

Results

Full model summaries involving all parameter estimates are pro-
vided in Tables 6–9. We again circumscribe descriptive reporting to
only the effects of interest. Visualization of the prior and posterior
distribution for each predicted effect is presented on Figure 1. Pre-
dicted probability graphs for each model are presented sequentially
on Figures 2–5. Finally, Table 10 provides a summarized output for
all control indices and relevant effect estimates collated across both
initial and replication analyses.
As was done for the initial dataset, in addition to the primary

analyses, we conducted supplementary analyses of all models that

included age as a fixed effect covariate. Again, age did not alter
the pattern of the WMC effects reported below. Replicating the
initial dataset, increasing age was associated with a decrease in
WMC (r = �.27, p , .01). Likewise, we replicated the small but
significant effect of age on both BX/BY trial accuracy (b = .01,
SD = .01, 95% CI [.01, .02]) and RT (b = .006, SD = .001, 95% CI
[.004, .007]), consistent with the interpretation that increasing age
was associated with a more cautious responding style, resulting in
higher accuracy but slower responses on BX trials. All code and
full output summaries for the age analyses are available online
(https://osf.io/zuvry/).

A-Cue Bias

Confirming the original finding, higher WMC was uniquely
associated with higher log-odds of target responding in the proac-
tive session (b = .12, SD = .02, 95% CI [.08, .16], ER = Inf2, PD =
100%), but not in the baseline condition (b = �.02, SD = .03, 95%
CI [�.06, .04]). Interestingly, higher WMC was associated with
relatively lower log-odds of target responding in the reactive ses-
sion (b = �.12, SD = .03, 95% CI [�.17, �.06]). The SDR com-
paring the posterior and prior density at the prior mean (b = .16)
for the predicted effect that WMC would be associated with stron-
ger A-cue bias in the proactive session was .25, indicating that the
prior mean estimate may have been overestimated in the original
dataset. Nonetheless, given that the ER approached infinity and
the PD was 100%, there was decisive evidence supporting the
presence of the predicted effect (see Figure 1A).

BX Interference

Replicating the initial finding, higher WMC was associated with
higher log-odds of correct responses on BX trials relative to BY
trials (i.e., reduced BX error interference) in the baseline session
(b = .09, SD = .03, 95% CI [.03, .16], ER = 443.44, PD =
99.78%), but not in the proactive (b = �.02, SD = .03, 95% CI
[�.08, .04]) and reactive sessions (b = �.05, SD = .03, 95% CI
[�.11, .00]). The SDR comparing the posterior and prior density
at the prior mean (b = .14) for the predicted effect that higher
WMC would be associated with reduced BX interference in the
baseline session was .64, suggesting that the prior mean may have
been slightly overestimated. The ER of 443.44 and PD of 99.78%
provided very strong evidence in favor of the predicted effect,
indicating that the vast majority of the distribution fell above 0
(see Figure 1B).

The RT interference effect was also replicated. Consistent with
the finding from the initial analysis, higher WMC was associated
with faster RTs on BX relative to BY trials (i.e., reduced BX RT
interference) in only the proactive session (b = �.006, SD = .002,
95% CI [�.010, �.003], ER = 799, PD = 99.99%). In contrast,
higher WMC was associated with comparatively slower RTs on
BX relative to BY trials in the reactive session (b = .005, SD =
.002, 95% CI [.001, .008]). WMC did not influence BX-BY RTs
in the baseline session (b = .001, SD = .002, 95% CI [�.002,
.005]). The SDR comparing the posterior and prior density at the
prior mean (b = �.006) was 1.42, indicating increased evidence in

2 An ER approaching infinity indicates that the entire posterior
distribution exceeded the test value in the predicted direction.
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support of the prior mean estimate. The ER of 799 and PD of
99.99% decisively confirmed the predicted effect (see Figure 1C).

D-Prime Context Effect

Notably, the null effects involving d-prime sensitivity were not
replicated. Instead, higher WMC was associated with higher log-
odds of target responding on AX trials relative to BX trials (i.e.,
enhanced d-prime sensitivity) in the proactive session (b = .06,
SD = .02, 95% CI [.02, .10], ER = 499, PD = 99.80%). The emer-
gence of this finding is not necessarily surprising given that there
was already trending evidence in support of this relationship in the
initial analysis (see Figure 1D for comparison of the prior and pos-
terior distributions). Interestingly, higher WMC was associated
with relatively lower log-odds of AX-BX target responding in the
reactive session (i.e., reduced d-prime sensitivity; b = �.08, SD =
.02, 95% CI [�.12, �.04]), whereas WMC did not influence d-
prime sensitivity in the baseline session (b = .04, SD = .02, 95%

CI [�.01, .08]). As shown in Figure 1D, the SDR comparing the
posterior and prior density at the prior mean (b = .05) for the effect
that higher WMC would be associated with enhanced d-prime sen-
sitivity in the proactive session was 1.32, demonstrating that incor-
poration of additional data narrowed the posterior distribution
closer to the prior mean estimate. Importantly, the ER of 499 and
PD of 99.80% provided decisive evidence for the presence of the
effect.

General Discussion

The current study sought to advance understanding of the nature
of the relationship between WMC and proactive control using the
theoretically optimized DMCC versions of the AX-CPT task. Impor-
tantly, the DMCC AX-CPT places cognitive control mode under ex-
perimental manipulation across three testing sessions, each designed
to elicit selective engagement of proactive and reactive control in

Table 6
Model Output From Replication A-Cue Bias Logistic Regression Analysis

Model Fixed effects Estimate (SD) 95% CI Odds (SD) R-hat Bulk ESS Tail ESS

A-Cue Bias Intercept 0.24 (0.04) [0.16, 0.32]a 1.27 (0.05) 1.00 2,842 2,989
Base �0.36 (0.03) [�0.41, �0.31]a 0.70 (0.02) 1.00 6,231 2,683
Pro 0.51 (0.02) [0.47, 0.55]a 1.66 (0.04) 1.00 7,774 2,906
Rea �0.20 (0.03) [�0.25, �0.14]a 0.82 (0.02) 1.00 7,548 3,102
WMC 0.16 (0.04) [0.07, 0.24]a 1.17 (0.05) 1.00 3,503 3,416
Trial �2.89 (0.05) [�2.99, �2.80]a 0.06 (0.01) 1.00 2,677 2,821
Base:WMC �0.02 (0.03) [�0.06, 0.04] 0.99 (0.03) 1.00 6,950 2,467
Pro:WMC 0.12 (0.02) [0.08, 0.16]a 1.13 (0.02) 1.00 6,080 3,203
Rea:WMC �0.12 (0.03) [�0.17, �0.06]a 0.89 (0.02) 1.00 7,543 2,930
Base:Trial �0.28 (0.03) [�0.33, �0.23]a 0.76 (0.02) 1.00 7,602 3,369
Pro:Trial 0.34 (0.02) [0.29, 0.38]a 1.40 (0.03) 1.00 7,895 3,090
Rea:Trial �0.08 (0.03) [�0.14, �0.03]a 0.92 (0.02) 1.00 7,978 2,615
WMC:Trial �0.03 (0.05) [�0.12, 0.07] 0.97 (0.05) 1.00 3,054 2,643
Base:WMC:Trial �0.08 (0.03) [�0.13, �0.03]a 0.92 (0.02) 1.00 7,344 3,282
Pro:WMC:Trial 0.00 (0.02) [�0.04, 0.04] 1.00 (0.02) 1.00 6,596 3,052
Rea:WMC:Trial 0.07 (0.03) [0.02, 0.12]a 1.07 (0.03) 1.00 6,875 3,136

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.

Table 7
Model Output From Replication BX Error Interference Logistic Regression Analysis

Model Fixed effects Estimate (SD) 95% CI Odds (SD) R-hat Bulk ESS Tail ESS

BX Error Interference Intercept 3.64 (0.07) [3.50, 3.78]a 38.2 (2.76) 1.00 1,177 1,968
Base �0.29 (0.03) [�0.35, �0.22]a 0.75 (0.02) 1.00 4,473 3,030
Pro 0.14 (0.03) [0.07, 0.20]a 1.15 (0.04) 1.00 5,091 3,192
Rea 0.09 (0.03) [0.02, 0.15]a 1.09 (0.04) 1.00 4,795 3,433
WMC 0.18 (0.07) [0.05, 0.32]a 1.20 (0.08) 1.00 1,111 2,032
Trial �1.46 (0.05) [�1.56, �1.37]a 0.23 (0.01) 1.00 2,417 2,801
Base:WMC �0.06 (0.03) [�0.12, 0.00] 0.94 (0.03) 1.00 4,836 3,301
Pro:WMC 0.02 (0.03) [�0.04, 0.09] 1.02 (0.03) 1.00 5,041 3,070
Rea:WMC 0.03 (0.03) [�0.03, 0.09] 1.04 (0.03) 1.00 5,300 3,021
Base:Trial �0.16 (0.03) [�0.22, �0.10]a 0.85 (0.03) 1.00 4,978 3,266
Pro:Trial 0.02 (0.03) [�0.05, 0.08] 1.02 (0.03) 1.00 5,372 2,828
Rea:Trial 0.13 (0.03) [0.07, 0.20]a 1.14 (0.04) 1.00 5,352 3,020
WMC:Trial 0.05 (0.04) [�0.03, 0.13] 1.05 (0.04) 1.00 2,619 2,797
Base:WMC:Trial 0.09 (0.03) [0.03, 0.16]a 1.10 (0.04) 1.00 4,645 3,236
Pro:WMC:Trial �0.02 (0.03) [�0.08, 0.04] 0.98 (0.03) 1.00 5,107 3,106
Rea:WMC:Trial �0.05 (0.03) [�0.11, 0.00] 0.95 (0.03) 1.00 4,971 2,801

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.
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addition to a baseline reference condition. Capitalizing on this core
task feature, we adopted a unique experimental-correlational investi-
gative approach to parse the extent to which WMC influences the
tendency to engage proactive control relative to the ability to imple-
ment it. Moreover, to address broader relevant methodological
issues pertaining to the ambiguities of using summary/subtraction-
based difference scores, statistical nonindependence of repeated
subject-level observations, and the inferential limitations of NHST,
we leveraged trial-level Bayesian mixed modeling to conduct initial
hypothesis testing and subsequent replication analysis across two
separate data sets.

Conceptual andMethodological Implications

Overall, our findings were consistent with prior work (Belletier
et al., 2019; Boudewyn et al., 2015; Redick, 2014; Redick & Engle,
2011; Richmond et al., 2015; Stawarczyk et al., 2014; Wiemers &
Redick, 2018)—higher WMC was indeed broadly associated with

enhanced proactive control, as indicated by stronger A-cue bias,
reduced BX RT interference, and to a lesser extent enhanced d-prime
context sensitivity (i.e., although overall Bayesian evidence for the
d-prime effect was strong, it was only statistically significant in
the replication study). Central to the novel aim of the investigation,
we observed that most of these associations were specific to the proac-
tive session relative to the baseline and reactive sessions. Conse-
quently, our findings demonstrate that the influence of WMC on
proactive control is most robust under regularized conditions during
which participants are explicitly trained and instructed to use proactive
control across task performance. Although the tendency to use proac-
tive control is undoubtedly intertwined with the ability to implement
it, this pattern suggests that within the current experimental approach,
the relationship between WMC and proactive control may be more
influenced by between-subjects variation in the ability to implement
proactive control than the preferential tendency to engage it.

With that said, the notable exception is that WMC did not influ-
ence BX error interference in the proactive session but was rather

Table 8
Model Output From Replication BX RT Interference Lognormal Regression Analysis

Model Fixed effects Estimate (SD) 95% CI R-hat Bulk ESS Tail ESS

BX RT Interference Intercept 6.106 (0.010) [6.085, 6.126]a 1.00 590 1,037
Base 0.065 (0.002) [0.062, 0.068]a 1.00 14,614 6,412
Pro �0.082 (0.002) [�0.086, �0.079]a 1.00 15,302 6,154
Rea 0.028 (0.002) [0.025, 0.032]a 1.00 16,177 6,493
WMC �0.043 (0.011) [�0.065, �0.022]a 1.00 678 1,514
Trial 0.079 (0.003) [0.073, 0.084]a 1.00 3,099 4,688
Base:WMC 0.011 (0.002) [0.008, 0.015]a 1.00 16,724 6,402
Pro:WMC �0.012 (0.002) [�0.015, �0.008]a 1.00 14,934 6,591
Rea:WMC �0.001 (0.002) [�0.005, 0.002] 1.00 14,234 6,162
Base:Trial �0.013 (0.002) [�0.017, �0.010]a 1.00 15,536 6,168
Pro:Trial �0.041 (0.002) [�0.044, �0.037]a 1.00 16,074 6,138
Rea:Trial 0.056 (0.002) [0.053, 0.060]a 1.00 16,418 6,613
WMC:Trial �0.002 (0.003) [�0.008, 0.004] 1.00 3,760 5,265
Base:WMC:Trial 0.001 (0.002) [�0.002, 0.005] 1.00 15,483 6,575
Pro:WMC:Trial �0.006 (0.002) [�0.010, �0.003]a 1.00 14,834 6,715
Rea:WMC:Trial 0.005 (0.002) [0.001, 0.008]a 1.00 16,286 5,892

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.

Table 9
Model Output From Replication d-Prime Sensitivity Logistic Regression Analysis

Model Fixed effects Estimate (SD) 95% CI Odds (SD) R-hat Bulk ESS Tail ESS

D-Prime Sensitivity Intercept 0.45 (0.04) [0.37, 0.52]a 1.57 (0.06) 1.00 1,942 2,755
Base 0.19 (0.02) [0.15, 0.23]a 1.21 (0.03) 1.00 7,194 3,071
Pro �0.02 (0.02) [�0.06, 0.02] 0.98 (0.02) 1.00 7,464 3,254
Rea �0.14 (0.02) [�0.18, �0.10]a 0.87 (0.02) 1.00 5,820 2,748
WMC �0.02 (0.04) [�0.09, 0.06] 0.99 (0.04) 1.00 2,023 2,323
Trial 2.69 (0.05) [2.59, 2.80]a 14.80 (0.80) 1.00 1,545 2,460
Base:WMC 0.01 (0.02) [�0.03, 0.05] 1.01 (0.02) 1.00 6,905 2,925
Pro:WMC 0.07 (0.02) [0.02, 0.11]a 1.07 (0.02) 1.00 7,043 3,113
Rea:WMC �0.08 (0.02) [�0.12, �0.04]a 0.92 (0.02) 1.00 7,339 2,919
Base:Trial �0.28 (0.02) [�0.32, �0.24]a 0.76 (0.02) 1.00 7,868 3,077
Pro:Trial 0.20 (0.02) [0.16, 0.24]a 1.22 (0.03) 1.00 7,911 3,166
Rea:Trial 0.03 (0.02) [�0.01, 0.07] 1.03 (0.02) 1.00 6,507 2,984
WMC:Trial 0.21 (0.05) [0.11, 0.31]a 1.24 (0.07) 1.00 1,414 2,175
Base:WMC:Trial 0.04 (0.02) [�0.01, 0.08] 1.04 (0.02) 1.00 5,887 2,520
Pro:WMC:Trial 0.06 (0.02) [0.02, 0.10]a 1.06 (0.02) 1.00 7,166 3,171
Rea:WMC:Trial �0.08 (0.02) [�0.12, �0.04]a 0.92 (0.02) 1.00 5,450 3,228

Note. WMC = working memory capacity; Base = baseline session; Pro = proactive session; Rea = reactive session; Trial = trial type.
a 95% CI does not contain 0.
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associated with reduced error interference in the baseline session.
To contextualize this unexpected finding, it is important to note
that relative to the baseline session, the proactive session yielded
higher overall likelihood of committing correct responses collaps-
ing across trial type, but did not preferentially increase the log-
odds of BX trial accuracy (no interactive effect of the proactive
session on trial type; see Table 6). Together, this introduces the
possibility that the proactive manipulation may have instituted a

ceiling effect on trial accuracy, thereby restricting the variability
needed to detect the expected relationship between WMC and BX
error interference.

It is further worth mentioning that the RT interference analy-
sis showed that higher WMC was associated with reduced BX
RT interference in the proactive session, suggesting that
although the potency of the proactive manipulation may have
instituted a ceiling effect on trial accuracy, participants with

Figure 1
Posterior and Prior Density Distributions of A-Cue Bias, BX Error, and RT Interference, and d-Prime Sensitivity Estimates

Note. Prior distributions reflect parameter estimates obtained during initial analysis, which were entered as informed priors to derive the posterior dis-
tributions of the replication analysis. WMC = working memory capacity; Base = baseline session; Pro = proactive session. See the online article for the
color version of this figure.
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higher WMC were nonetheless able to respond more quickly
when using proactive control. On the other hand, not only did
the baseline session produce slower overall RTs, WMC was
associated with slower RTs in the baseline session relative to
the other sessions. Rather than reflecting increased tendency to
engage in proactive control per se, the possible presence of a
speed-accuracy tradeoff suggests that that individuals with
higher WMC may have adopted a more cautious style of
responding during the baseline session, slowing down to the
benefit of increased accuracy. Given these considerations, the
overall pattern of results appears consistent with the emerging
picture that the relationship between WMC and proactive con-
trol is more circumscribed to the proactive session.
From a broader perspective, it is also worth noting that the rela-

tionship between WMC and BX interference effects seems vari-
able in the literature across RT and accuracy. For example, some
investigations, including the current study, report associations
between WMC and BX RT interference (e.g., Redick & Engle,
2011), whereas others primarily find WMC differences in relation
to accuracy but not RTs (e.g., Redick, 2014; Richmond et al.,
2015). Fundamentally, deriving separate measures of RT and ac-
curacy creates two possible indices of variability, which although
related, may exhibit differential relationships to a common indi-
vidual difference measure, such as WMC. This is particularly evi-
dent when considering performance from a decision-making
framework, insofar that the amount of time and evidence needed
to prepare and execute a response varies across individuals; thus,
task related factors are likely to exert a systematic influence on

these parameters, including speed-accuracy tradeoff dynamics. In
other words, natural interindividual variation in evidence response
thresholds could contribute to mixed findings, with apparent
inconsistencies across studies being likely to occur if the task and
sample related characteristics differ across them.

To better account for this variability, promising solutions might
involve improved experimental manipulation and/or measurement
of response thresholds. For example, adapted response deadline
approaches have been used to constrain RT windows so that mean-
ingful performance variability is circumscribed to accuracy (see
Draheim et al., 2021, for a detailed discussion and task examples).
Likewise, accuracy can be constrained (e.g., demanding a criterion
level of trial accuracy while elongating response windows) so that
performance variability is shifted toward RTs. Lastly, an analytical
way to address this issue involves the use of generative models
(e.g., drift diffusion modeling; Ratcliff et al., 2016) that integrate
both accuracy and RT into the analysis, partitioning the observable
data into evidence accumulation and response threshold parame-
ters. Collectively, these approaches represent promising options
for future studies to adopt to further clarify the relationship
between BX interference and WMC, and strengthen investigation
of individual differences in cognitive control more generally.

Interestingly, WMC was demonstrably associated with less A-
cue bias, d-prime sensitivity, and BX interference attenuation in
the reactive session relative to the other sessions. Considering that
one of the major aims of the DMCC task battery is to empirically
dissociate between proactive and reactive control, the opposing
directionality of effects consistently observed in the reactive

Figure 2
Predicted Probability of Target Responding Plotted as a Function of WMC and
Session Separated Across AY and AX Trials

Note. WMC = working memory capacity. See the online article for the color version of
this figure.
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session introduces the intriguing possibility that between-session
dissociations may be evidenced in relation to individual differen-
ces. One specific interpretation of this pattern is that individuals
with higher WMC possess more flexibility in shifting toward or
away from a prospective cue-based strategy (i.e., proactive con-
trol) to meet the contextual demands of the situation.
Indeed, this possibility is an extension of the emergent notion that

higher WMC does not necessarily translate to a ubiquitously
increased tendency to engage proactive control. Even though higher
WMC may enable relatively more effective use of proactive control,
it does not appear to lead to overreliance of proactive control during
situational conditions that call for the use of reactive control. Put
another way, higher WMC is not associated with more proactive con-
trol at the expense of less reactive control per se. Although the cur-
rent data cannot fully resolve whether proactive and reactive control
are independent constructs or polar ends of a dimensional continuum
(see also Gonthier et al., 2016), it does demonstrate that experimen-
tally induced shifts in proactive and reactive control can yield differ-
ential relationships between performance and a common individual
difference variable. From this broader perspective, the results support
and further illustrate the extent of orthogonality between these two
modes of control.
Methodologically speaking, the findings reflect the strengths

and unique advantages of our analytic approach, enabling us to
conduct sequential replication analyses to rigorously test open-
ended hypotheses while mitigating common statistical concerns
prevalent in the field. First, aggregated trial-level mixed model-
ing allowed us to leverage the entire dataset while appropriately

accounting for nonindependence and subject-level performance
variability. Consequently, the results obtained here make full use
of the data without relying on the computation of summary and
difference scores, and do not involve arbitrary partitioning of the
data, or imposing multiple sets of analyses unnecessarily (e.g.,
separating across session). Second, we applied Bayesian regres-
sion to derive posterior distribution estimates for each model pa-
rameter. Furthermore, we showcased how Bayesian updating
procedures can be used to conduct confirmatory replication anal-
yses by modeling the posterior parameter distributions obtained
from the initial dataset as informed priors in analysis of separate
holdout data (Ly et al., 2019; Verhagen & Wagenmakers, 2014).
Collectively, this allowed us to visually and quantitatively assess
how incorporation of new data influences the likelihood or
amount of evidence favoring the predicted effect relative to the
null as opposed to traditional NHST.

With all that said, it must be acknowledged that our conclu-
sions are not unequivocal. In particular, a very recent study using
a similar experimental-correlational approach reported null find-
ings, observing that the relationship between WMC and proac-
tive control was not moderated by experimental condition
(Rosales et al., 2022). In fact, WMC was unrelated to proactive
control performance across baseline, proactive, or reactive con-
ditions. Instead, higher WMC was associated with generally
faster RTs across all trial types, leading to the contradictory con-
clusion that WMC may have a domain general influence on per-
formance but is not related to the specific tendency (or ability) to
use proactive control. In attempting to reconcile the mixed nature

Figure 3
Predicted Probability of Trial Accuracy Plotted as a Function of WMC and
Session Separated Across BX and BY Trials

Note. WMC = working memory capacity. See the online article for the color version of
this figure.

14 LIN, BROUGH, TAY, JACKSON, AND BRAVER

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

300



of these findings, it may be valuable to consider several key
methodological factors that might differentiate the current study
from Rosales et al. (2022).
First, although the proactive control manipulation was essen-

tially identical across the studies, the baseline and reactive condi-
tions differed substantially. Specifically, Rosales et al. (2022)
used no-go trials to induce reactive control, whereas here we imple-
mented an item-specific cueing approach for reactive control, while
including no-go trials across all conditions. As detailed elsewhere
(Braver et al., 2021; Tang et al., 2021), the purpose of this change
was to explicitly distinguish selective enhancement of reactive con-
trol from reduced engagement of proactive control (i.e., the effect
of no-go trials)—our baseline condition was therefore equivalent to
the reactive condition in Rosales and colleague’s study. Conse-
quently, the experimental distinctions across the control conditions,
in combination with our aggregated trial-level mixed modeling
approach (designed specifically to assess for session-level interac-
tions) may have increased performance variability and enhanced
sensitivity to detect relationships between WMC and proactive con-
trol. Second, the mode of study recruitment and task administration
(i.e., online MTurk vs. in-person university study) may have also
played an influential role, specifically by increasing sample hetero-
geneity in the current study and introducing risk of participant
cheating (though the automated response deadlines imposed during
the WMC tasks ward against this possibility, but see Hicks et al.,
2016, regarding threat of cheating). Finally, the current study was
not age restricted and as a consequence had a relatively older partic-
ipant sample. To address this issue, we conducted supplementary

analyses that included age as a covariate and found that it did not al-
ter any of the pattern of findings we reported. Nevertheless, the use
of an older as opposed to younger sample might have resulted in
greater performance variability, which may have buffered against
issues related to range restriction.

Although further research is needed to adjudicate between these
different possibilities, we ultimately view these studies as comple-
mentary efforts toward elucidating the nature of the relationship
between WMC and cognitive control. In fact, our findings strongly
support Rosales and colleagues’ astute postulations that: (a) indi-
viduals with higher WMC may be better at adapting/shifting mode
of control in response to changing task demands; and (b) stronger
and more explicit manipulations, such as item-specific cueing and
strategy training, may be better suited to induce respective reactive
and proactive control strategy shifts, than manipulations such as
the inclusion of no-go trials. Indeed, it appears reasonable that the
ability to detect relationships between WMC and proactive/reac-
tive control (and the strength of the relationship itself) may be con-
tingent on the potency of the manipulations. Taken together, there
is considerable promise in conducting follow-up investigations
that seek to validate and build off our approach in service of test-
ing and extending these possibilities. Toward this end, we outline
some specific directions for future research below.

Conclusion and Future Directions

The current study leveraged the design innovations of the
DMCC task battery to show that the influence of WMC on

Figure 4
Predicted Trial RT Plotted as a Function of WMC and Session Separated Across
BX and BY Trials

Note. WMC = working memory capacity. See the online article for the color version of
this figure.
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proactive control may be better characterized as individual
differences in the ability to implement control, rather than the
tendency to spontaneously engage it. Furthermore, we also found
that although individuals with higher WMC exhibited more proac-
tive control in the proactive session, they also exhibited greater
shifts away from proactive control in the reactive session—
suggesting that proactive and reactive control may be partially
dissociable in relation to WMC. Indeed, from the perspective that
proactive and reactive control represent orthogonal dimensions of
control, it stands to reason that neither the ability nor tendency to
engage in proactive control should necessarily have to come at the
expense of reactive control (and vice versa), even though some
individual differences may very well confer specific influence on
only one mode of control.
With these considerations in mind, three immediate and poten-

tially fruitful future directions involve: (a) leveraging the retest
component of the initial dataset to determine the extent to which
the reported associations are reliable across repeated testing over
time within the same individuals; (b) examining whether the cur-
rent pattern of findings can generalize to other DMCC tasks such
as the Stroop or Cued Task-Switching; and (c) investigating how
other individual differences, ideally ones that are both theoreti-
cally relevant to the DMC framework and fall within close
nomological proximity to WMC, might be related to control
using the DMCC task battery. Indeed, the two waves of MTurk
data from which the current article is based are well equipped to
address all of these questions, and we ourselves intend to pursue
many of these avenues in the near future. With that said, we

strongly encourage other investigators to make full use of our
shared data to collaboratively accelerate progress along these
domains. Critically, these directions synergize to enable incre-
mental evaluation of the construct validity of the DMC frame-
work across repeated assessment, different tasks, and other
individual difference constructs, all the while providing a natural
avenue through which to adjudicate between the mixed findings
mentioned above. Obtaining convergent evidence across these
domains would not only strengthen confidence in the validity
and generalizability of the conclusions we make here, but would
also further substantiate the explanatory power of the DMC
framework and methodological sensitivity of the DMCC task
battery in predicting and testing within-individual and between-
individual variability in cognitive control (Braver et al., 2021;
Snijder et al., 2022; Tang et al., 2021).

Finally, to bolster these efforts, we encourage future research-
ers to consider adopting our Bayesian mixed modeling approach,
because this makes full use of trial-level data while also enabling
estimation of the evidence for both the presence and magnitude
of predicted effects. For example, the posterior parameter distri-
butions reported here can be used to develop reasonable priors
for future studies, including direct replication attempts or new
investigations involving different DMCC tasks or individual dif-
ference measures. As we have shown here, this enables an accretive
approach to research, continuously quantifying and reassessing
evidence for the alternative hypothesis or effect of interest across
new studies and accumulated data. In conclusion, we hope that
other investigators will take interest in using the DMCC task

Figure 5
Predicted Probability of Target Responding Plotted as a Function of WMC and
Session Separated Across AX and BX Trials

Note. WMC = working memory capacity. See the online article for the color version of
this figure.
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battery and applying these methods to their own work. Together,
we look forward to furthering understanding of the role of indi-
vidual differences in shaping the development and use of cogni-
tive control.
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