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The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns
of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and
older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing
parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for
neonatal surface data. We next derive a set of 283 cortical surface parcels from a sample of n = 261 neonates. These parcels have highly
homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional
network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may
represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.

Key words: cortical areas; fMRI; functional connectivity; neonate; parcellation.

Introduction
The cerebral cortex is composed of discrete yet interconnected
cortical areas that are fundamental macroscale units of the cen-
tral nervous system. Cortical areas can be defined as contiguous
portions of cortex which are distinguished from their neigh-
bors by abrupt changes in function, architectonics, connectivity,
and topography (FACT) (Sejnowski and Churchland 1989; Felle-
man and Van Essen 1991). Sets of highly interconnected cortical
areas, in turn, comprise functional networks that support differ-
ent aspects of cognition and constitute a higher level of brain
organization (Petersen and Sporns 2015). An important goal of
human neuroscience is to identify and characterize these cortical
areas and functional networks.

“Parcels” are subdivisions of the cortex derived empirically in
neuroimaging studies based on abrupt transitions in patterns of
functional connectivity (FC) across the cortical surface (Cohen
et al. 2008; Wig et al. 2014; Gordon et al. 2016). These abrupt
transitions in FC may reflect differences between adjacent cor-
tical areas in function and connectivity (Gordon et al. 2016), two
of the four FACT criteria, suggesting that parcels could represent
cortical areas. Progress has been made in utilizing this method to

generate sets of parcels that cover the cortical surface (“parcel-
lations”) in older infants and adults (Glasser et al. 2016; Gordon
et al. 2016; Schaefer et al. 2018; Wang et al. 2023), and studies
using these parcellations have generated a wealth of knowledge
regarding adult human brain architecture, function, and relations
to individual differences in behavior (Wig et al. 2014; Laumann
et al. 2015; Gordon et al. 2017; Han et al. 2018; Shine et al. 2019;
Sydnor et al. 2021).

Despite the developmental, ontogenetic, and clinical signif-
icance of neonatal brain organization, neonatal cortical areas
have not been systematically characterized. To date, there are
no standard neonatal cortical surface parcellations based on
transitions in FC as there are for older infants and adults. Past
approaches dividing the neonatal brain into functionally relevant
subdivisions have used volume-based rather than surface-based
analyses (Scheinost et al. 2016; Shi et al. 2017). The suitability of
these volume-based parcels for surface-based analyses and their
relation to cortical areas is unclear. Further, adult parcellations
are unlikely to fit neonatal data because of the non-linear and
non-uniform cortical expansion that takes place over develop-
ment (Hill et al. 2010; Li et al. 2013).
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The lack of knowledge of neonatal cortical areas is a significant
gap, as the neonatal period is a landmark stage in neural devel-
opment that serves as a starting point for postnatal experience-
dependent learning (Rai et al. 2022). A characterization of the
number, locations, and network assignments of neonatal cortical
areas is needed to advance our understanding of typical and atyp-
ical brain development. A neonatal surface parcellation would
also provide a valuable tool for neonatal neuroimaging studies,
enabling researchers to reduce dimensionality, increase power by
averaging signals over homogeneous regions of cortex, reduce
problems of multiple comparisons, and increase methodological
consistency across studies and research groups (Wig et al. 2011).

Part of characterizing cortical areas in neonates includes a
description of their functional network organization. Functional
networks represent a higher level of brain organization and
can be defined based on sets of highly interconnected cortical
areas or parcels (Petersen and Sporns 2015). Because of the weak
long-range anterior–posterior FC of neonates, most prior work
describes neonatal networks as anatomically isolated chunks of
cortex rather than the distributed organization characteristic of
adults (Fransson et al. 2007, 2009; Gao et al. 2009, 2013, 2015, 2017;
Doria et al. 2010; Smyser et al. 2010, 2016; De Asis-Cruz et al. 2015;
van den Heuvel et al. 2015; Keunen et al. 2017; Sylvester et al.
2022). An important goal of developmental systems neuroscience
is to characterize the network “identities” of individual neonatal
parcels and track the evolving network relations of these parcels
over development. Such a description would inform the evolving
function of cortical areas over development and provide a
foundation for studies of typical and atypical development.

In the current study, we derived a set of neonatal cortical
surface parcels based on abrupt differences in FC across the
cortical surface in a sample of n = 261 neonates. To test the
reliability of the parcellation, we split neonates with the most data
(primary generation dataset; n = 131) into two halves, generated
parcellations from each half, and then tested each parcellation
on the held-out half of the data. To ensure the generalizabil-
ity of our parcellation, we then validated it in three external
datasets. Finally, we clustered the derived parcels into neona-
tal functional brain networks. Results provide a robust surface-
based neonatal parcellation, uncover putative neonatal cortical
areas, reveal properties of neonatal brain network organization,
and have practical utility for neonatal neuroimaging studies. The
derived parcellation (the “Myers-Labonte Parcellation”) and the
code used to derive the parcels is publicly available for use at
https://github.com/myersm0/WatershedParcellation.jl/.

Materials and methods
This study was approved by the Human Research Protection Office
at Washington University in St. Louis. All mothers of neonatal
participants provided informed consent prior to study initiation.
The primary dataset in this study, Early Life Adversity and Bio-
logical Embedding (eLABE), has been recently described (Lean
et al. 2022; Nielsen et al. 2022; Sylvester et al. 2022). The current
study focused on fMRI data collected from 261 healthy, full-term
neonates (average postmenstrual age (PMA) 41.3 wk, range 38–45;
Table 1) from the eLABE dataset scanned between September 2017
and March 2020.

Primary dataset
Neuroimaging was performed in full-term neonates during nat-
ural sleep using a Siemens 3T PRISMA scanner and 64-channel
infant specific head coil. Prior to scanning, neonates were fed,

swaddled, and positioned in a head-stabilizing vacuum fix wrap
(Mathur et al. 2008). A T2-weighted image (sagittal, 208 slices,
0.8-mm isotropic resolution, time to echo (TE) = 563 ms, tissue
T2 = 160 ms, repetition time (TR) = 3200 ms) was collected. Func-
tional imaging (fMRI) was performed using a BOLD gradient-
recalled echo-planar multiband (MB) sequence (72 slices, 2.0-mm
isotropic resolution, TE = 37 ms, TR = 800 ms, MB factor = 8). Using
the same parameters, spin-echo field maps were also obtained.
Depending on tolerability of the scan, between 2 and 9 fMRI BOLD
scans were acquired for each neonate (mean 3.75 runs). Runs were
420 frames, ∼5.6 min in length, and were collected in both the
anterior-to-posterior (AP) and posterior-to-anterior (PA) direction;
a typical scan session included 2 AP runs and 2 PA runs. AP and PA
scans were concatenated following fMRI preprocessing, but prior
to FC processing. Framewise integrated real-time MRI monitoring
(FIRMM) was used during scanning to monitor real-time neonate
movement (Dosenbach et al. 2017; Badke et al. 2022).

Validation datasets
Several independent datasets were used to validate results. Each
dataset comes from studies that were approved by the Human
Research Protection Office at Washington University in St. Louis.
The first validation set, CUDDEL+OXYGEN, is a combination
of two datasets, Prenatal Cannabis Use and Development of
Offspring Brain and Behavior During Early Life (CUDDEL) and
Maternal Oxygen in Labor (OXYGEN), both identical to the
primary dataset (eLABE) in recruitment methods, demographics,
neuroimaging acquisition, and processing. CUDDEL is enriched for
mothers who reported cannabis use during pregnancy, and 33%
of the cohort used in these analyses were exposed to cannabis
in-utero. OXYGEN recruited mothers during labor with the goal
of scanning healthy neonates within the first 72-h of life. As both
CUDDEL and OXYGEN were ongoing studies during the time of
our analyses, we restricted our use of the data to the sample sizes
that were available at the start of these analyses (n = 36 and n = 5,
respectively). Supplementary Fig. 1 shows that we obtained robust
results with these sample sizes.

A second validation dataset, Precision Baby (PB003), consists
of a single neonate (Male; 44-wk PMA) scanned across five
consecutive days for a total of 3.27 h of low-motion fMRI data
(FD < 0.25). Recruitment of this neonate was the same as the
primary dataset (eLABE), and neuroimaging acquisition and
processing were also largely similar. A T2-weighted was collected
using the same parameters as the primary dataset and was
used to align functional data across all scan sessions for each
neonate. fMRI was performed using a BOLD gradient-recalled
echo-planar multiband sequence (60 slices, 2.4-mm isotropic
resolution, TE = 37 ms, TR = 1,200 ms, MB factor = 4). Using the
same parameters, spin-echo field maps were also obtained.

The third external validation dataset, WUNDER, consists of
70 full-term neonates scanned between 2007 and 2016, and has
been previously described (Smyser et al. 2010). Neuroimaging for
this dataset was performed during natural sleep using a Siemens
3 T TRIO scanner and infant-specific head coil. Structural images
were collected with a turbo spin-echo T2-weighted sequence
(TE = 160 ms, TR = 8,600 ms, 1 mm isotropic resolution). fMRI was
performed using a gradient-echo echo planar image sequence
sensitized to T2∗ BOLD signal changes (2.4 mm isotropic resolu-
tion, TE = 28 ms, TR = 2,910 ms). Spin-echo field maps were also
obtained using the same parameters. A total of 200 frames were
collected over 10 min for each run. A minimum of one run was
required for inclusion, but some infants had up to four runs.
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Table 1. Full primary dataset demographics table.

Neonatal characteristics (n = 261) n Mean SD

Sex
Male 141
Female 120

Gestational age at birth (weeks) 38.5 1.0
Postmenstrual age at scan (weeks) 41.3 1.3
Birthweight in grams 3274.0 489.9
Area deprivation index 67.9 24.9
Child’s race

African American 158
White 101
Chinese 3
Other Pacific Islander 1
Other 1

Ethnicity
Hispanic 6
Non-Hispanic 253
Unspecified 2

Neonatal fMRI Characteristics n Mean SD

fMRI data collected (minutes) 19.1 5.2
fMRI data retained (minutes) 16.6 4.4

fMRI preprocessing
All datasets underwent identical preprocessing and FC processing
except WUNDER, which is described below.

fMRI preprocessing included correction of intensity differences
attributable to interleaved acquisition, linear realignment within
and across runs to compensate for rigid body motion, bias field
correction, intensity normalization of each run to a whole-brain
mode value of 1000, distortion correction, and linear registration
of BOLD images to the adult Talairach isotropic atlas (Talairach
and Tournoux 1988) using in-house software (ftp://imaging.wustl.
edu/ pub/raichlab/4dfp_tools/). Field distortion correction was
performed using the FSL TOPUP toolbox (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/TOPUP). BOLD images for each subject were registered
as follows: BOLD → individual T2 → cohort-specific T2 atlas →
711-2 N Talairach atlas (adult space). The cohort-specific T2 atlas
was created from a subset of 50 neonates from the eLABE dataset.

The volumetric preprocessed BOLD data were then mapped to
subject-specific surfaces prior to FC-processing. The Melbourne
Children’s Regional Brain Atlases (MCRIB) (Alexander et al. 2017;
Adamson et al. 2020), a surface-based neonatal tissue segmen-
tation approach, was used to generate surfaces for each subject
from their T2 image following linear transformation to adult
Talairach (711-2 N) space. One subject in the held-out half of
the dataset (n = 130), which was not used to generate the Myers-
Labonte parcellation, did not have a T2-weighted image, but
instead had a T1-weighted image which was utilized to gen-
erate a faux T2-weighted image for segmentation and surface
reconstruction with MCRIB. Subject-specific surfaces were aligned
across subjects into the “fsLR_32k” surface space using spher-
ical registration procedures (Glasser et al. 2013) adapted from
the Human Connectome Project as implemented in Connectome
Workbench 1.2.3 (Marcus et al. 2011, 2013). All volumetric and
surface registrations were visually inspected to ensure accuracy.
Additional information regarding surface reconstruction can be
found in the Supplemental Materials.

Following initial preprocessing and surface reconstruction and
registration to fsLR_32k space with a small smoothing kernel

(σ = 1 mm), BOLD time series were censored at framewise dis-
placement (FD) < 0.25 mm, and only epochs of at least 3 con-
secutive frames with FD < 0.25-mm were included. A minimum
of 10 min (750 frames) of usable data were required from each
subject for inclusion. This data then underwent FC processing as
follows (Power et al. 2014; Gordon et al. 2016): (i) demean and
detrend within each run, ignoring censored frames; (ii) multiple
regression with nuisance time series including white matter, ven-
tricles, and whole brain (average gray matter signal), as well as 24
parameters derived from head motion, ignoring censored frames.
Finally, retained data were interpolated at censored timepoints to
allow band-pass filtering (0.005 Hz < f < 0.1 Hz).

Time courses for surface data were smoothed with geodesic
2D Gaussian kernels after FC processing (σ = 2.25 mm). FC
was computed as the Fisher z-transformed Pearson correlation
between time courses from pairs of surface parcels or vertices, as
detailed below.

In contrast to the other datasets, BOLD and FC pre-processing
in the WUNDER dataset was done in volume-space as has been
previously described (Smyser et al. 2010; Herzmann et al. 2019).
Key differences in FC processing from the other datasets included
low-pass filtering (<0.08 Hz) rather than band-pass filtering; and
the timeseries for the white matter and CSF nuisance regressors
were obtained from hand-drawn samples of these areas rather
than automated segmentations. Following FC processing, data
were mapped to each individual’s surface in fs_LR32k space and
then spatially smoothed (σ = 4.1 mm). These spatially smoothed
surface-aligned timeseries were used for computing FC. Only
subjects having at least 5 min of low-motion fMRI data were
included in the analysis; this more lenient threshold was allowed
for the older WUNDER dataset to include as many subjects as
possible in the group average.

Boundary map generation
Following the notion that adjacent cortical areas should be sepa-
rated by abrupt changes in function and connectivity (Felleman
and Van Essen 1991), the method described in (Gordon et al. 2016)
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was used to identify transitions in FC across the cortical surface.
First, pairwise FC of all ∼ 60k cortical surface vertices was
computed for each subject, resulting in a 60k × 60k square
resting state functional connectivity (RSFC) matrix where each
row or column is the “correlation map” of a particular vertex:
a vector of values characterizing a single vertex’s correlation
with all other vertices. Next, a 60k × 60k “similarity matrix” was
generated for each subject as the pairwise correlations between
all the correlation maps; the similarity matrix thus represents
how similar the correlation maps are between every possible
pair of vertices. The first spatial derivative of each subject’s
similarity matrix was then computed, producing a 60k × 60k
matrix in which each column is the “gradient map” of a particular
vertex, representing how abruptly that vertex’s similarity in RSFC
with other vertices changes as one moves across the cortex.
Vertex-wise gradient maps were then averaged across all subjects,
creating an across-subjects average gradient map for each vertex,
and smoothed with a kernel of σ = 2.55 mm. The watershed
algorithm (Beucher and Lantuejoul 1979) was applied to each
vertex’s average gradient map. With this method, regions are
“filled up” from their local minima (low points in the gradient
map) until they reach border vertices that could be assigned
to more than one region; such borders represent locations of
peak spatial gradient (i.e. rapid changes in FC similarity) across
participants. We experimented with a parameter to control
the number of bins into which continuous-valued heights are
discretized for iteration within the watershed algorithm. In
the original algorithm outlined for adults in (Gordon et al.
2016), this steps parameter was set to 400 bins to improve
computation time; however, noting that higher values of this
parameter (i.e. smaller bins for each iteration of the watershed)
produced sharper edge maps in our dataset, we modified this
parameter to 1,600 bins. This parameter was also modified
and set to 1,600 to recompute the adult boundary maps from
Gordon et al. (2016) to show fair comparisons between adults
and neonates. The binary maps of gradient peaks (borders)
were then averaged across all gradient maps to produce a
“boundary map,” which represents the probability of each
particular vertex being classified as a border. A flowchart of
this method can be seen in Supplementary Fig. 2. Adult and
neonatal boundary maps were compared with a smoothness
metric using a built-in Connectome Workbench command
(wb_command -cifti-estimate-fwhm).

Parcel generation
Parcels were generated using the same watershed procedure
described above to fill the boundary map from its local minima.
Several parameters can influence the sizes and shapes of the
resulting parcels. One of these parameters concerns the tendency
for two neighboring parcels to be combined into one parcel. Two
neighboring parcels may be combined into a single parcel if
a relatively small boundary between them suggests that their
respective connectivity patterns are not sufficiently different.
To select an appropriate value for this parameter, we visually
inspected a range of thresholds (from 0.25 to 0.4) and chose
the value (0.38) that best respected the salient boundaries we
observed in the boundary map.

The second parameter concerns the height at which we
stopped “filling” the regions, the height criterion. In the original
method outlined for adults in (Gordon et al. 2016), this value was
selected as the 90th percentile of all height values, such that
the 10% of vertices exceeding this height were left unassigned
(i.e. not belonging to any parcel). These unassigned values may

be considered transitional zones in which the connectivity is
rapidly changing. This parameter determines the approximate
percentage of the cortex that is to be covered by the parcellation.
We tested several thresholds for this height criterion parameter,
ranging from the 25th to 90th percentiles (see Fig. 4). The highest
homogeneity of the parcels in external datasets was observed
using the 50% height threshold. Thus, this threshold was used to
generate the parcellation used for all subsequent analyses.

The “final” parcellation was generated using the procedure
above in the primary dataset, the half of subjects with the most
data following frame censoring (n = 131). This restriction ensured
that the parcellation was generated from subjects with data
with the lowest noise, as well as to test the parcellation in the
held-out half of the as described in the results (“Parcellation
generated from neonatal data has high homogeneity in external
datasets”). This procedure resulted in 304 parcels tiling the corti-
cal surface, 153 parcels in the left hemisphere and 151 parcels
in the right. Parcels with fewer than 15 vertices outside of the
low signal areas (mean signal <750 after mode 1,000 normal-
ization) (Ojemann et al. 1997; Gordon et al. 2016) were removed
because they were unlikely to be reliable. This procedure removed
22 parcels primarily in the inferior temporal and orbito-frontal
lobes, resulting in 282 parcels tiling the cortical surface. We
also identified four parcels that did not appear biologically plau-
sible because of their shapes. Parcel #217 was trimmed. One
parcel with a biologically implausible shape was split into two
parcels (#4, #137). We removed one vertex from parcel #33. We
added two vertices to parcel #121 to fill in a hole in the mid-
dle. The resulting final Myers-Labonte Parcellation consisted of
283 parcels, with 146 parcels in the left hemisphere and 137 in
the right.

Parcel homogeneity
The parcel generation procedure outlined above creates parcels
based on distinct boundaries which indicate differences in FC
patterns among adjacent cortical regions (Gordon et al. 2016).
These generated parcels should both be distinct from neighbor-
ing parcels in connectivity and show homogenous connectivity
within each parcel. To measure the homogeneity of a parcel, a
principal components analysis (PCA) is run in which the inputs
are the connectivity patterns from all the individual vertices
comprising a parcel in the group average data. Following (Gordon
et al. 2016), we define homogeneity as the percent of variance
explained by the first component.

Homogeneity is highly related to the size of a parcel such
that smaller parcels tend to have higher homogeneity than larger
parcels (Gordon et al. 2016; Arslan et al. 2018). To provide a fair
point of comparison, we considered a null distribution of random
parcellations having parcels of the same sizes and shapes, and
in the same configuration as our true parcellation, but randomly
relocated about the cortical surface. To do this, we replicate the
rotation method described in (Gordon et al. 2016). Briefly, the
original parcellation was randomly rotated around each of the
x, y, and z axes on a spherical expansion of the cortical surface,
allowing for the random relocation of each parcel while maintain-
ing their size, shape, and relative positions to one another. This
rotation procedure was repeated 1,000 times, whereby each hemi-
sphere was rotated symmetrically with each iteration. The aver-
age homogeneity of the original parcellation (described above)
was then compared with the homogeneity values of each of the
randomly rotated parcellations, calculated as a z-score [(original
homogeneity—mean of random homogeneities)/standard devia-
tion of random homogeneities].
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Parcel reliability
To test the reliability of our parcellation, we randomly split the pri-
mary dataset (n = 131) in half, generated parcellations from each
half separately, and evaluated the overlap of resulting parcels.
To quantify the spatial overlap, the Dice similarity coefficient
(DSC) was computed on binarized parcel identity maps for the
two halves. To assess the significance of this result, we randomly
rotated both parcellations 1,000 times (previously described in
detail under “Parcel Homogeneity”), each time computing the
DSC of the two randomly rotated parcellations to derive a null
distribution against which to compare the value obtained in the
true parcellations.

Identification of parcel network structure
The community detection algorithm Infomap was used to empir-
ically derive functional brain networks from our parcels (Rosvall
and Bergstrom 2008; Power et al. 2011). For each subject in the
primary dataset, we created a parcellated time series by calcu-
lating the mean within-parcel time series over each of the 283
parcels. We then cross-correlated these parcellated time series
to generate a parcel-wise correlation matrix. Parcel-wise corre-
lation matrices were Fisher z-transformed and averaged across
all subjects to generate a single parcel-wise correlation matrix,
which was then masked to remove functional connections with a
distance <30 mm along the cortex between the nearest vertices of
each pair of connected parcels. Functional connections surviving
this distance threshold were then binarized to isolate only the
strongest positive connections over a range of thresholds chosen
to achieve varying degrees of sparseness (in 40 steps ranging from
0.25% to 10%). The resulting 40 connection matrices were then
used separately as inputs to the Infomap algorithm, to assign
parcels to communities (or networks) based on the maximization
of within-community random walks in the connection matrix.
This produced 40 network solutions, one for each of the edge
densities.

Putative network identities were then assigned by matching
communities at each threshold to a set of previously described
neonate-specific vertex-wise networks (Supplementary Fig. 3)
[from the 1.25% edge density vertex-wise Infomap solution as
illustrated in Fig. 3A in (Sylvester et al. 2022)]. This matching
approach proceeded as follows. At each density threshold, all
identified communities were compared (using spatial overlap,
quantified with the Jaccard index) to each of the networks in turn.
The best-matching (highest-overlap) parcel-wise community
was assigned that network identity; that community was not
considered for comparison with other networks within that
threshold. Matches lower than Jaccard = 0.1 were not considered
(to avoid matching based on only a few vertices). Matches were
first made with larger networks (Anterior and Posterior Default,
Lateral Visual, Motor, Fronto-Parietal, Dorsal Attention), and
then to the smaller networks (Orbito-Frontal and Premotor). A
“consensus” network assignment was then derived by collapsing
assignments across thresholds, giving each parcel the assignment
it had at the sparsest possible threshold by which it was
successfully assigned to one of the known networks.

A few manual modifications were made to the “consensus” net-
work assignments, which were evident in Infomap solutions, but
that did not appear in the neonate-specific vertex-wise network
template used in the consensus procedure described above. The
motor network, which appeared as a single network in the tem-
plate, was divided into motor hand and motor mouth networks,
based on assignments at the sparest edge threshold (0.25%).

Further, parcel number 161 was changed from the lateral visual
to the medial visual network, based on the network that had been
assigned at sparser edge densities rather than the assignment
from the consensus algorithm described above. This decision was
made based on the overall pattern across edge densities. Brain
surface visualizations were generated in Julia version 1.8.3 with
the Makie plotting library (Danisch and Krumbiegel 2021).

Spring-embedded plots were also generated to visualize how
clustering patterns of parcels changed across various edge densi-
ties. All plots were generated using the igraph library in R (Nepusz
2006).

Results
Performance of adult and infant parcels on
neonatal data
We first investigated how well surface-based parcels generated
from adults and older infants, as well as neonate-specific volume-
based parcels, performed on our neonatal data. Publicly available
surface-based adult (Glasser et al. 2016; Gordon et al. 2016;
Schaefer et al. 2018) and older-infant parcellations (Wang et al.
2023), as well as neonate-specific volume-based parcellations
(Scheinost et al. 2016; Shi et al. 2017) were tested on the half of the
dataset which was not used to generate the neonatal parcellation
(n = 130). Most of the adult surface-based parcellations performed
no better than chance in neonatal data (Schaefer: P = 0.771,
Glasser: P = 0.012, Gordon: P = 0.658) (Supplementary Fig. 4). While
the Glasser et al. parcellation performed slightly better than
chance, the z-score of 2.3 was much lower than z-scores typically
reported for well-fitting parcellations in adults (Gordon et al.
2016). Surface-based parcellations from older infants (Wang
0-2Yr: P = 0.188, Wang 0-3Mo: P = 0.247) and neonate-specific
volume-based parcellations (Scheinost: P = 0.932, Shi: P = 1.000)
similarly did not perform better than chance in our surface-based
neonatal data (Supplementary Fig. 4). Thus, neither surface-
based parcellations derived from older samples nor volume-based
parcellations derived from neonates adequately capture neonatal
surface-based FC patterns, underscoring the need for a neonate-
specific surface-based parcellation.

Neonatal boundary map
A neonatal boundary map was generated from the primary
dataset (n = 131; Supplementary Table 1), identifying transitions
in patterns of FC across the cortex (Fig. 1). Neonatal boundaries
(Fig. 1A) appeared thicker and smoother compared to an adult
dataset (Fig. 1B). Quantitatively, the spatial smoothness of the
neonatal boundary map was 4.06 mm FWHM, compared to
3.2 mm FWHM for the adult group average boundary map,
suggesting that the borders are less “sharp” in data averaged
across neonates compared to data averaged across adults. In
addition, we noted that smoothness of the neonatal boundary
map increased with increasing number of neonates included
in creating the average (Supplementary Fig. 5), suggesting that
the smoothness of borders may result from variability in border
placement across neonates. Consistent with this hypothesis,
the spatial smoothness of a boundary map from an individual
neonate (PB003) was 2.82 mm FWHM, comparable to the adult
group average boundary map (Fig. 1C).

Neonatal parcel creation
The primary dataset (top half of participant in terms of data
quality; n = 131) was split randomly into split-half 1 (n = 65) and
split-half 2 (n = 66). Supplementary Table 2 shows demographic
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Fig. 1. RSFC boundary maps generated based on abrupt changes in FC.
A) Neonatal RSFC boundary map generated based on the average of all
131 subjects’ gradient maps. B) Adult RSFC boundary map based on the
average of 120 subjects. C) Neonatal RSFC boundary map generated based
on a single neonate’s gradient maps. Boundaries are indicated by color
based on height percentile of edge density, where bright colors indicate
locations where abrupt transitions in RSFC patterns were consistent
across many cortical vertices, and darker colors represent areas of cortex
where the RSFC patterns were relatively stable.

information for each split half. For each split half, we created a
separate boundary map (similar to Fig. 1A) and then generated a
series of parcellations over a range of height criteria (from the 25th
to the 90th percentile of height values). Figure 2A illustrates how
each split-half parcellation performed at each height threshold
against both its generating sample and the held-out sample. Par-
cellations performed extremely well when tested against the held-
out sample (z ∼ 9–10) at lower height thresholds (25th through
50th percentiles). Performance steadily declined as height criteria
increased beyond an inflection point at the 50th percentile. Perfor-
mance was lowest at the 90th percentile but still significantly bet-
ter than chance for the held-out samples (z close to or above 3.3,
P < 0.001). Thus, we concluded that the optimal height criteria for
our neonatal parcellation in terms of generalizability and within-
sample testing was 50%. Notably, parcellations derived from the
50% versus 90% height thresholds covered 48% versus 81% of the
cortical surface, respectively. Also of note, parcels derived using
data from a single individual subject at the 90% height threshold
worked extremely well in held-out data from the same individual
collected on a separate day (z = 13.2). This result suggests that
the relatively poorer fit of the parcels derived using the 90%
height threshold in the group data is likely due to averaging data
across subjects rather than something inherent to neonatal data.
For example, the poor fit of the 90% parcels in group-average
data could be due to variation in the precise location of parcel
boundaries across individuals (Supplementary Fig. 6).

Figure 2B illustrates the parcels generated from each split-half
at the 50% height threshold. Parcels from split-half 1 are shown
in blue, parcels from split-half 2 are shown in green, and areas
of parcel overlap are colored cyan. Visual inspection of Fig. 2B
indicates good overlap between the parcels generated from the
two split halves across most of the cortical surface. The Dice
coefficient of overlap in parcels from the two split halves was 0.69
and was highly significant based on rotation-based null models
(z = 19.5).

Our “final” parcellation was generated from the primary
dataset (n = 131) at the 50% height criterion and is shown in Fig. 3.
There were 283 parcels in this final Myers-Labonte Parcellation,
with 146 parcels in the left hemisphere and 137 in the right.

Neonatal parcellation has high homogeneity
The homogeneity value of each parcel in the final Myers-Labonte
Parcellation is illustrated in Fig. 3A. Most generated parcels
(red dots) had homogeneity values higher than expected by
chance compared against random parcel rotations (black dots)
on the cortical surface (Fig. 3C). As depicted in Fig. 3B, and as
previously noted (Gordon et al. 2016), larger parcels tended
to be less homogenous; however, larger parcels tended to do
better against the null rotations compared to smaller parcels,
due to smaller parcels having high homogeneity in many of
the null rotations. The parcellation as a whole also had higher
homogeneity averaged across all 283 parcels (Fig. 3C; red dot)
compared against the average homogeneity from any of the 1,000
null rotations (P < 0.001) (Fig. 3C; black dots). The homogeneity
of the real parcellation was 9.36 standard deviations above the
mean of the null rotations.

Parcellation generated from neonatal data has
high homogeneity in external datasets
The final Myers-Labonte neonatal parcellation was validated
against three separate external neonatal datasets by comparing
the average homogeneity across all parcels against average
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Fig. 2. Parcels generated at the 50% height threshold from split halves of the primary dataset highly overlap with one another. A) the primary dataset was split
into split half 1 and split half 2 and used to generate parcellations at varying height thresholds between 25% and 90%. Each split-half parcellation
was then tested against the sample that generated the parcellation and the other split half. The left panel represents the homogeneity z-statistic of the
parcellation generated from split half 1 tested against itself (blue) and the other split half (green) at varying height thresholds. The right panel represents
the homogeneity z-statistic of the parcellation generated from split half 2 tested against itself (green) and the other split half (blue) at varying height
thresholds. B) Medial and lateral view of the right and left hemisphere showing parcels which are identified in split half 1 only (blue), split half 2 only
(green) and in both split halves (cyan).

Fig. 3. The parcellation generated from the primary dataset (n = 131) shows 283 highly homogenous parcels at 50% height threshold. A) Parcels are colored based
on homogeneity value, calculated based on percent variance explained by the first principal component of the connectivity patterns of the individual
vertices comprising each parcel. B) the homogeneity of each parcel (red dots) is plotted as a function of parcel size. Black dots indicate the homogeneity
of each parcel over 1,000 null rotations. Note that many parcels had true homogeneity values higher than the average of null rotations, especially larger
parcels. C) the performance of the entire parcellation scheme tested against 1,000 null rotations. The black dots indicate the average homogeneity value
across all 283 parcels for each of the 1,000 null rotations. The red dot represents the average homogeneity value across all 283 parcels in the true data.
The average homogeneity across all parcels was 9.36 standard deviations above the mean of the null rotations.

homogeneity from 1,000 null rotations. In Fig. 4A, bars illustrate
testing of the parcels against the excluded half of the dataset
(the half of the dataset with lower amounts of retained data
after censoring; n = 130) and against three different external
datasets. The parcellation generated from the primary dataset
performed very well against its excluded half (z = 9.0), the
CUDDEL external group dataset (z = 8.92), and the precision
dataset (PB003) from a single highly sampled neonate (z = 6.55).
The parcellation also performed well against the older, single-
band WUNDER dataset (z = 3.22). Parcels generated from the
primary dataset at height thresholds other than 50% also
outperformed chance in external datasets as illustrated in
Supplementary Fig. 7. Parcellation homogeneity remained

robust even in external datasets with small sample sizes
(Supplementary Fig. 1).

As internal and external validation suggested that the neonatal
parcellation performed best using a 50% height criterion, which
was substantially different than the criterion previously used
for the published adult parcellation [90%; (Gordon et al. 2016)],
we also generated “Gordon parcels” at varying height thresh-
olds (25%–90%) with our modified steps parameter (n = 1,600). We
tested these “Gordon parcels” generated from different height
thresholds against our neonatal dataset (Fig. 4B), and the adult-
based parcels performed no better than chance in the primary
neonatal dataset at every height threshold. We further tested
the published “Gordon parcels” without any modifications (90%
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Fig. 4. Validation of neonatal parcellations. A) The primary dataset (n = 131)
was used to generate a parcellation which was tested in four datasets.
The bar graph represents the homogeneity z-statistic of the parcel-
lation generated from the primary dataset against the second, held-
out half of the dataset (n = 130; black dot) and three external datasets
(CUDDEL+OXYGEN, C; precision baby, P; WUNDER, W). B) Adult “Gordon
parcels” were generated using the same parameters as used in generating
the neonatal parcels and were applied to the primary dataset (black
dots), as well as external datasets (CUDDEL+OXYGEN, C; precision baby,
P; WUNDER, W), to test the fit of adult parcels on the neonatal FC
data across height thresholds (25–90%). Markers in the red rectangle
denote testing of “Gordon parcels” with original published parameters
(90% height threshold; n = 400 steps) on each neonatal dataset. Note that
adult parcels do a poor job of capturing neonatal FC patterns.

height threshold; n = 400 steps) (Gordon et al. 2016) on our external
neonatal datasets and found that these parcels also performed no
better than chance. Thus, the improved fit of neonatal-generated
as compared to adult-generated parcels on neonatal data are not
due to the difference in the height threshold used to generate the
parcels from the boundary map.

Network identities of parcels
We assigned functional network identities to each parcel using
the Infomap algorithm. Figure 5 shows “consensus” networks
obtained by using information across all edge densities. Supple-
mentary Fig. 8 shows assigned network identities at a selection
of edge densities (0.25–10%). Supplementary Table 3 lists all
individual parcels by their associated ID number, consensus
network assignment, and color in Fig. 5. Figure 6 shows a spring-
embedded representation of the parcels and their network
configuration across four representative edge densities. Together,
Figs. 5 and 6 provide key insights into how neonatal parcels are
organized into networks.

In general, parcels tended to group into networks reminiscent
of anatomically isolated sub-portions of adult networks (i.e. most
neonatal “networks” only included sets of physically adjacent
parcels). For example, the four networks in shades of yellow
(see Supplementary Table 3 for color names) each included only
physically adjacent parcels, but together the four networks cover
spatially distributed portions of cortex roughly corresponding
to the adult fronto-parietal network (FPN). Similarly, the two
networks in shades of red together cover portions of cortex
roughly corresponding to the adult default mode network (DMN).
Additional networks were identified similar to adult dorsal

attention (DAN), ventral attention, salience, premotor, motor,
visual, and auditory networks. Both the DAN and the posterior
DMN included parcels distributed across cortex that were not
physically adjacent. Notably, we did not identify a network that
clearly corresponded to the cingulo-opercular network (CON);
though we did identify several networks that we named based on
anatomical location (e.g. cingulate network) that may correspond
to sub-portions of the CON.

Spring-embedded representations (Fig. 6) are useful for exam-
ining within- and between- network relations of the entire par-
cellation. In such representations, stronger connections tend to
pull parcels closer together, and so the proximity of parcels to
each other is related to their inter-connectivity. Spring-embedded
representations can be drawn when considering different edge
densities, i.e. considering only the strongest functional connec-
tions (low edge densities) or considering progressively weaker
functional connections (higher edge densities).

The spring-embedded plots reveal that at sparse edge densities
that include only the strongest functional connections, parcels
cluster by network (color) and then by proximity on the cortical
surface (frontal vs. posterior cortex). At the 4% edge density,
for example, the frontal lobe networks are in close proximity to
each other with few connections to the posterior networks. At
denser edge densities, however, (e.g. 10%), there are more func-
tional connections between frontal and posterior parcels, with
some selectivity in these connections based on adult network
properties. For example, the neonatal networks that putatively
correspond to the posterior and anterior portions of the adult-
DMN seem to draw together at denser edge densities, as do the
posterior and anterior portions of the adult-FPN.

The neonatal connectivity matrix (Supplementary Fig. 9) also
reflected the nascent features of adult-like organization. For
example, the motor networks were all positively correlated with
each other but negatively correlated with parcels from remaining
networks, and the two halves of the putative DMN showed positive
correlation with each other.

Discussion
The current study generated a set of 283 highly homogeneous,
reproducible, and externally validated parcels on the cortical
surface of the neonatal brain (Myers-Labonte Parcellation).
Parcels from the published literature generated in surface-space
from older infants and adults, as well as in volume-space parcels
in neonates, in contrast, provided a poor fit to surface-based
neonatal data. The boundaries denoting transitions in group-
average neonatal connectivity between homogeneous parcels
were thicker and smoother compared to adult datasets, possibly
due to heterogeneity across neonates in the exact placement of
parcel borders. As a result, the most generalizable results were
obtained when restricting parcels to cover 50% of the neonatal
cortical surface. This neonatal parcellation showed high validity
both within-sample and across three external datasets, including
neonates with a large range of socioeconomic backgrounds and
in-utero drug exposure. Network assignments derived for the
neonatal parcels were consistent with prior work: “networks”
consisted largely of anatomically adjacent clusters of parcels, but
specific sets of neonatal networks together covered anatomical
territory reminiscent of adult networks.

Adult and older infant parcellations do not fit
neonatal data
Surface-based adult and older-infant brain parcellations, as well
as neonate-specific volume-based brain parcellations, generally
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Fig. 5. Assigned functional network identities for each parcel. Consensus network assignments for each parcel based on information across all edge densities.
Colors and network names were assigned based on adult networks in similar anatomical locations.

Fig. 6. Spring-embedded plots of neonatal parcels across different edge densities reveal neonatal network properties. A spring-embedded layout of neonatal
functional connections at various edge densities between 4% and 10%. Each colored circle corresponds to a particular parcel, colored based on consensus
network assignment. Lines represent functional connections between parcels at a given edge density (e.g. at 4% edge density, only the top 4% of
positive functional connections are shown). In the spring-embedded representation, stronger connections tend to pull parcels closer together, and so
the proximity of parcels to each other is related to their inter-connectivity. Note that when only considering the strongest connections (e.g. 4%), parcels
cluster mainly by network (color) and anatomical location (e.g. frontal networks are all near each other); but when considering weaker connections (e.g.
10%), there is some evidence of selective connections between anatomically distant parcels that end up forming the same adult network (e.g. the red
and watermelon parcels draw close to each other; these parcels may be precursors of the adult default mode network). Inset shows consensus network
assignment of each parcel for reference (identical to Fig. 5).
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performed no better than chance in neonatal data, emphasizing
the need for a neonate-specific surface-based parcellation. The
neonatal brain is about one-fourth the size of the adult brain,
and expansion of the cortical surface over development is non-
linear and non-uniform (Hill et al. 2010; Li et al. 2013). This non-
uniform expansion is the most likely explanation for the poor fit
of adult and older-infant surface-based parcels on neonatal data.
Volume-derived neonatal parcellations also provided a poor fit for
neonatal surface FC data, likely because volume-derived parcels
can combine portions of cortex that are near to each other in
volume-space but more distant in surface-space (such as tips of
physically adjacent gyri). For this reason, surface-derived parcels
may provide more biologically plausible candidates for cortical
areas than volume-derived parcels.

A consequence of the results described above is that neonatal
neuroimaging studies using surface-based representations
should use neonatally derived surface parcellations such as
the currently presented Myers-Labonte parcellation. Surface-
based infant/adult parcels and volume-based neonatal parcels
will not capture functionally homogenous portions of cortex
in surface-based neonatal data. The problem with using poorly
fitting parcels is that they will mix signals from cortical areas with
different functional properties. Work in adults and older infants
demonstrates that studies using such poorly fitting parcels are
less likely, in general, to detect brain-behavior relations (Wang
et al. 2018; Kong et al. 2021). Studies that do detect brain-behavior
relations using poorly fitting parcels would be more difficult to
interpret, because they are mixing signals from more than one
biologically relevant subdivision of the brain.

Neonatal boundaries between parcels are thicker
and smoother than in adults in group-average
data
The zones of transition in FC patterns across the cortical sur-
face, or “boundaries” were thicker and smoother in group-average
neonatal datasets compared to adults. Because the boundary
smoothness of an individual neonate was comparable to that
of adults and parcels generated in an individual neonate were
highly homogenous and reliable even at the 90% height threshold,
the most likely explanation of this difference is greater vari-
ation across different neonates in exact placement of bound-
aries. This hypothesis is further supported by the observation
that measured border smoothness increased with the number of
neonates included in the average. The most likely explanation for
increased variability of neonatal boundaries is that the neona-
tal period is a time of rapid development (Nielsen et al. 2022).
As a result, differences in structural development (e.g. cortical
folding, surface area) make it more difficult to obtain precise
registration of functional data across neonates even with surface
registration (Wang et al. 2023). A practical consequence is that
parcellations that cover large portions of the neonatal brain (e.g.
90%) include portions of the thick boundaries and thus do not
provide as good of a fit to good average data as parcellations
that are restricted to the wells between the thick boundaries (e.g.
the parcellation generated using the 50% height threshold). While
we make both the 90% and 50% height threshold parcellations
publicly available, we recommend use of the version generated at
50% because these parcels are demonstrated to be highly valid in
external datasets. The parcellation generated from the 90% height
threshold may be useful to researchers interested in studying
variation across individuals or areas of the brain undergoing rapid
development.

Neonatal parcels can be grouped into functional
networks
Functional networks are sets of cortical areas that have high inter-
connectivity and have shared functional properties (Petersen and
Sporns 2015). Functional networks thus represent an important
organizational property of the human brain. In the current study,
we used the Infomap algorithm to assign each neonatal parcel to a
functional brain network, to aid studies that want to contextualize
results by network. Consistent with prior work in neonates,
empirically derived “networks” in neonates consisted largely of
clusters of anatomically adjacent parcels and sets of these net-
works together comprised the approximate anatomical locations
of anatomically distributed adult-like networks. For example,
four of the neonatal networks combined together resembled the
adult FPN and two of the neonatal networks combined resembled
the adult DMN. Spring-embedded representations suggested
that there was weak but selective FC between distinct neonatal
networks that putatively combined later in development to be
a single network, consistent with prior work (Doria et al. 2010;
Smyser et al. 2010, 2016; Keunen et al. 2017; Molloy and Saygin
2022; Sylvester et al. 2022). An important goal of future work
is to track how network organizational properties change over
development.

Neonatal parcels provide an important
foundation for studies of human brain
development
The neonatal period is a critical stage in neural development
that serves as a starting point for postnatal experience-dependent
learning (Rai et al. 2022). Complex human behaviors are posited to
depend on a tightly coordinated sequence of brain development
that extends from the in-utero period through at least early adult-
hood (Tierney and Nelson 3rd. 2009). Many brain illnesses, includ-
ing many psychiatric and neurological disorders, are thought
to have their origin in very early brain development (Sylvester
et al. 2018, 2021; Fleiss et al. 2019). Thus, characterizing neonatal
cortical brain areas and their functional network characteristics
is an important goal for systems neuroscience investigations into
typical and atypical development. Parcels in the current study
may represent cortical areas and thus provide an important start-
ing point for characterizing human brain development.

Limitations
The present study should be viewed considering its limitations. As
noted throughout, biological and methodological challenges may
make it more difficult to functionally align groups of neonates
compared to older samples using purely anatomical landmarks
(i.e. surface-based registration). Consistent with this interpreta-
tion, some prior work in older infants has used functional brain
properties to improve functional alignment across individuals
(Wang et al. 2023). We chose not to incorporate functional align-
ment in the current study so that the derived parcels would
be most generalizable for future neonatal neuroimaging studies,
where in most cases it will be impractical to include functional
alignment. The presented surface-based neonatal parcellation
only includes a parcellation of the cortical surface and does not
include subcortical brain structures. Parcellation of the subcortex
was excluded from the Myers-Labonte parcellation because the
surface-based approach used in the current study is not relevant
to subcortical structures, i.e. relevant units of processing in the
subcortex are more naturally captured by volumes. The proposed
Myers-Labonte cortical surface parcellation could be combined

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/2/bhae047/7609844 by The U

niversity of N
otre D

am
e Australia user on 27 February 2024



Myers et al. | 11

with other publicly available volume-based functional parcella-
tions which include subcortical structures (Scheinost et al. 2016;
Shi et al. 2017) or by utilizing publicly available structural divi-
sions from tools like MCRIB (Adamson et al. 2020) for those
interested in extending their analyses to include subcortical and
cerebellar structures. Both the primary dataset and two of the
external datasets were collected on Siemens Prisma 3T scanners,
and a third validation dataset was collected on an older Siemens
Trio; future work is required to determine how well the generated
parcels fits data acquired on other scanners. All neonatal data
in the current study were collected during natural sleep. While
sleep state impacts some properties of FC in adults (Tagliazucchi
and Laufs 2014), it is not known whether sleep state impacts the
abrupt changes in FC that are used to define the borders of the
parcels presented in the current paper. In theory, the location of
cortical areas should not depend on sleep state, but it remains
unknown whether sleep state impacts the measure used in the
current paper to operationally define cortical areas. Future work
should ascertain how well the parcels fit functional data from
awake neonates. Finally, our neonates ranged in age from 38 to
45 wk PMA, and additional work is required to determine the
specific ages in which it is most appropriate to use these parcels.

Conclusion
We generated a highly reliable set of 283 surface-based parcels
for the neonatal brain that were validated using three exter-
nal datasets. We additionally provide functional brain network
assignments for each parcel. This parcellation will aid neonatal
neuroimaging studies that seek to describe results contextualized
by functionally relevant cortical areas.
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