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Abstract 
Individuals with schizophrenia can have marked deficits in goal-directed decision making. 

Prominent theories differ in whether schizophrenia (SZ) affects the ability to exert 

cognitive control, or the motivation to exert control. An alternative explanation is that 

schizophrenia negatively impacts the formation of cognitive maps, the internal 

representations of the way the world is structured, necessary for the formation of effective 

action plans. That is, deficits in decision-making could also arise when goal-directed 

control and motivation are intact, but used to plan over ill-formed maps. Here, we test the 

hypothesis that individuals with SZ are impaired in the construction of cognitive maps. 

We combine a behavioral representational similarity analysis technique with a sequential 

decision-making task. This enables us to examine how relationships between choice 

options change when individuals with SZ and healthy age-matched controls build a 

cognitive map of the task structure. Our results indicate that SZ affects how people 

represent the structure of the task, focusing more on simpler visual features and less on 

abstract, higher-order, planning-relevant features. At the same time, we find that SZ were 

able to display similar performance on this task compared to controls, emphasizing the 

need for a distinction between cognitive map formation and changes in goal-directed 

control in understanding cognitive deficits in schizophrenia.  
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Introduction 
Impairments in goal-directed behavior are a critical aspect of schizophrenia (Barch and 

Dowd 2010; Cooper et al. 2019; Culbreth et al., 2016; Liemburg et al., 2015). These 

impairments become prevalent before the onset of psychosis, stabilize afterwards 

(Green, 1996; Sheffield, Karcher, & Barch, 2018), and are resistant to treatment even 

when other symptoms are ameliorated (Green, 2016; Tripathi, Kar, & Shukla, 2018). 

Moreover, they predict long-term and daily life outcomes (Kring & Barch 2014; Cowman 

et al. 2021), such as a reduced lifespan and a higher likelihood of homelessness 

(Ayano, Tesfaw, & Shumet, 2019). Understanding how schizophrenia affects goal-

directed behavior is a critical step towards developing more effective diagnosis and 

treatment. However, the mechanistic underpinnings of these impairments remain poorly 

understood. 

 

Most prior research has explained these deficits in goal-directed behavior as the result 

of a reduced capacity for cognitive control (Barch, Culbreth, & Sheffield, 2017). For 

example, Cohen and Servan-Schreiber (1993) argued that disturbances of 

dopaminergic function reduce the quality of information processing in the prefrontal 

cortex, an area of the brain critical for cognitive control (Miller & Cohen, 2001). This may 

lead to a global reduction in the ability of patients to perform the computations needed 

to plan towards goals (Culbreth et al., 2016; Knolle et al., 2023). This might occur 

through a reduced ability to manipulate information in working memory (Kim et al. 

2004), to maintain relevant information (Thakkar and Park 2010; Gotra, Keedy, and Hill 

2022) or to suppress distraction (Reilly et al. 2008; Lesh et al. 2011). Another line of 

research argues that deficits in goal-direct control instead arise from perturbed 

estimations of mental effort demands (Gold et al., 2013; Gold et al., 2015), potentially 

driven by abnormal dopaminergic functioning (Westbrook et al., 2021). Under this 

explanation, reduced goal-directed control in schizophrenia reflects a decision to 

withhold mental effort (Cooper et al., 2019; Culbreth, Westbrook, & Barch, 2016) rather 

than an inability to apply it. In short, both theories focus on how a decrease in 

implemented control produces cognitive deficits in schizophrenia, only differing in 

whether capacity or perceived incentive is the source of disruption.  
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However, deficits in goal-directed behavior can also arise if one exerts appropriate 

control over ill-formed representations of the world (Feher da Silva & Hare, 2020; Feher 

da Silva et al., 2023). Representations of the world are key to effective goal-directed 

decision-making as they provide maps as to the stimuli and/or actions that could lead to 

varying outcomes. If individuals with schizophrenia are not able to generate accurate 

representations of the work, goal-directed decision-making impairments would manifest 

even if individuals with SZ were motivated and able to expend effort on a given task. 

That is, as long as internal models, or cognitive maps (Tolman, 1948), inaccurately 

reflect the structure of the world, any good faith attempt to plan or reason over them will 

result in performance deficits. Thus, deficits in goal-directed control in schizophrenia 

may occur because patients have difficulty constructing models of the environment. 

 

There is some preliminary evidence to suggest that schizophrenia interferes with the 

ability to construct appropriate internal representations of task structure. For example, 

individuals with schizophrenia often fail to integrate intrinsically linked characteristics of 

choice options (Morris et al. 2018; Cooper et al., 2019), need to be explicitly pointed to 

task structure to perceive differences in effort demands between choice options (Gold et 

al., 2015), and show blunted internal error monitoring signals (Kirschner & Klein, 2022). 

Individuals with schizophrenia are also impaired at combining previously learned 

associations to form new inferences (Armstrong, Williams, and Heckers, 2012), 

navigating complex virtual environments (Weniger and Irle, 2008), and updating internal 

representations of dynamically changing task rules (Everett et al. 2001; Waltz and Gold 

2007; Morris et al. 2018). Many of these deficits center on relational processing 

(Einstein & Hunt, 1980; Halford et al., 2010), which underlies a host of cognitive abilities 

ranging from decision-making (Abbasov et al., 2011) to episodic memory functions 

mediated by the hippocampus (Davachi, 2006; Shimamura, 2011; Whittington et al., 

2022).  Importantly, the hippocampus is thought to be critical for the formation of 

cognitive maps of the world around us (O’Keefe and Nadel 1978; Behrens et al. 2018). 
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This set of findings about cognitive impairments have led to the recently proposed 

“shallow cognitive map” hypothesis of schizophrenia. This hypothesis claims that these 

relational deficits stem from disorganization in hippocampal circuity, leading to 

disorganized thought (Musa et al. 2022). If mechanisms such as those in the 

hippocampus underlying the formation of cognitive maps (O’Keefe & Nadel, 1978; 

Whittington et al., 2022) are disrupted in schizophrenia, then many deficits in 

schizophrenia – including goal-directed decision making – may be a consequence of 

poorly-built internal representations of the world. However, this hypothesis has not been 

directly tested, especially in contexts in which people need to use goal-directed control 

to plan over their internal representations of a task’s structure. 

 

We test this hypothesis by leveraging a recent formalization of goal-directed control in 

terms of “model-based” reinforcement learning (RL; Sutton & Barto, 2018). Model-based 

decision-makers search through their internal representation of the environment to find 

the lines of action that produce the maximal cumulative reward. This form of decision-

making is often contrasted with “model-free” reinforcement learning, which simply 

updates the value of actions that lead to reward without considering the structure of the 

task (Daw et al., 2005; Kool, Cushman, and Gershman, 2017; Drummond & Niv, 2020). 

It has been argued that human behavior reflects a weighted mixture of these two 

strategies. This RL framework of goal-directed behavior provides a computationally 

explicit distinction between control and the representations over which control is 

applied. The latter is a function that links actions to consequences (a cognitive map), 

whereas the former is an algorithm that uses this function to search for rewards.  

 

We have recently developed a novel behavioral approach that measures people’s 

subjective representation of a task structure that they need to navigate to earn rewards 

(Karagoz, Reagh, & Kool, 2024). At the heart of this approach lies a variant of a class of 

sequential decision-making tasks, called two-step tasks, that dissociate model-based 

from model-free control (Daw et al., 2011; Kool et al., 2016). This paradigm is paired 

with a behavioral representational similarity analysis (behRSA) approach (Karagoz, 

Reagh, & Kool, 2024). We developed this analysis to use simple similarity judgments 
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between objects encountered in the task to assess how participants represent the 

structure of the task (inspired by neural variants of this same analysis; Kriegeskorte et 

al., 2008). Importantly, this approach allows us to decompose participants’ cognitive 

maps into three increasingly complex components that represent distinct forms of 

structure in the two-step task. These components range from representing structure that 

is irrelevant to task performance to the most complex higher-order structure that is 

beneficial for planning. In our prior work, (Karagoz, Reagh, & Kool, 2024), we found that 

participants whose cognitive maps better aligned with higher-order structure in the task 

tended to use more model-based control, and performed better overall. Based on the 

shallow cognitive map hypothesis, we predicted that schizophrenia patients would 

construct mental representations of the task that overweight simple surface-level 

features and underweigh the more complex higher-order relationships that are relevant 

for planning. 

 

In order to test for motivational deficits in goal-directed control implementation, we 

included a “stakes” manipulation in this task, so that on certain trials the earned reward 

would be multiplied. This manipulation temporarily amplifies the benefit of model-based 

control, and results in a phasic increase in its use in conventional research populations 

(Kool et al., 2017; Karagoz, Reagh, & Kool, 2024; Patzelt et al., 2018). This shift has 

been argued to result from a cost-benefit tradeoff that pits the computational costs of 

planning against its increased accuracy (Kool & Botvinick, 2018; Kool et al., 2017). 

Even though schizophrenia appears not to affect reward processing (Heerey, Bell-

Warren, & Gold, 2008; Abler et al., 2008), it should still affect sensitivity to amplification 

of rewards if effort costs are higher (Kring & Barch, 2014; Treadway et al., 2015; Reddy 

et al., 2015; Cooper et al., 2019; Barch et al., 2023). For instance, patients might still 

integrate reward values but consistently deem the cost of effort to not be worth the 

increase in reward. The stakes manipulation allowed us to test this hypothesis. 

 

Our results provide novel evidence for the shallow cognitive map hypothesis of 

schizophrenia. The cognitive maps of patients tended to focus on features of the task that 

are not relevant to planning but are perceptually salient, whereas controls reported higher 
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similarity for some higher-order planning-relevant features. Interestingly, in this simple 

version of the two-step task, we found that patients and controls performed approximately 

equally well to one another. Taken together, this provides important evidence that model-

based control and cognitive map construction are separable constructs, and that internal 

models of task structure are indeed disrupted in patients with schizophrenia. Finally, we 

found that patients were not sensitive to motivational manipulations, providing additional 

evidence that schizophrenia affects the motivation to exert goal-directed control. 

 

Methods 
Participants 
We recruited 20 people with schizophrenia/schizoaffective disorder (SZ), and 23 control 

participants (CN) to participate in the study. Exclusion criteria included: 1) DSM-5 

diagnosis of substance abuse or dependence in the past 6 months; 2) IQ less than 70 

as measured by the Wechsler Test of Adult Reading (Wechsler 2001); and 3) history of 

severe head trauma and/or loss of consciousness. Additional exclusion criteria for 

patient group included inpatient or partial hospital status. Additional criteria for controls 

included: 1) no personal or immediate relative with a history of schizophrenia, 

schizoaffective disorder and 2) no current or past major depression. Finally, we also 

excluded participants based on failing to respond to more than 20% of trials in the 

decision-making task (a single control participant). All participants provided written 

informed consent to the protocol approved by the Washington University Institutional 

Review Board. Demographics for all groups are presented in Table 1. There were no 

group differences in either age, sex or parental education, though as is typical, the 

individuals with schizophrenia had slightly lower personal education. 
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Diagnostic and symptom assessment 
Diagnostic status was confirmed using the Structured Clinical Interview for DSM-5 

conducted by masters or Ph.D.-level clinicians. Clinician-rated negative symptoms were 

assessed in all patient groups using the Clinical Assessment Interview for Negative 

Symptoms (CAINS)(Kring et al. 2013), which includes a Motivation and Pleasure (MAP) 

and Expression (EXP) subscale. General psychiatric symptoms were assessed using 

the Brief Psychiatric Rating Scale (BPRS)(Overall and Gorham 1962) which includes a 

subscale of psychotic symptoms and depression. Participants completed the Motivation 

and Pleasure Scale (MAP-SR; Llerena et al. 2013) with higher scores equaling more 

motivation and pleasure across the week. Participants also completed the Snaith-

Hamilton Pleasure Scale to assess hedonic capacity with higher scores equaling more 

capacity (Snaith et al. 1995). Depression was assessed using the Center for 

Epidemiological Studies Depression Scale (CES-D; Radloff 1977). 

 
Decision-making task 
The decision-making task was designed to dissociate between model-free and model-

based decisions in a setting where participants need to learn about the structure of the 

task and was based on a recently developed ‘two-stage’ sequential decision-making 

task (Kool, Gershman, and Cushman 2017; Karagoz, Reagh, and Kool 2024). 
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Each trial of the task started randomly in one of two first-stage states. Each of these 

states offered a choice between a unique pair of ‘teleporters’, presented side-by-side. 

Participants used the ‘F’ key on their keyboard to choose the left teleporter, and the ‘J’ 

key to choose the right teleporter. This choice determined which one of two second-

stage states would be encountered. For each pair, one of the teleporters 

deterministically led to a purple second-stage state, and the other deterministically led 

to a red second-stage state. Importantly, each teleporter always led to the same 

second-stage state (Figure 1A). 

 

Each second-stage state contained a unique “generator” that was associated with a 

scalar reward. Participants were instructed to press the spacebar key to interact with the 

generator so that it provided them with “space treasure”, and they were told that the fuel 

rods used by the generators would sometimes yield more or less space treasure. The 

payoffs of the generators changed over the course of the experiment according to 

independent random walks. Their reward distributions were initialized randomly for each 

participant within a range of 0 to 9 points and then varied according to a Gaussian 

random walk (𝜎 = 2) with reflecting bounds at 0 and 9. 

 

The 6 objects were randomly assigned as teleporters and generators for each 

participant separately. 
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Figure 1. Task schematic. A. Task transition structure. two distinct first-stage each 
contain two unique choice objects. Each of these objects deterministically leads to one 
of two second-stage states, as depicted by the colored arrows. These first-stage states 
were associated with different amounts of reward that changed across the task. B. 
Possible relationships between items that can be inferred from task experience. First, 
items that appear together can become more subjectively related (co-occurrence). 
Second, items that form an action outcome pair can become more subjectively related 
(direct). Third, items that share a goal state can become more subjectively related 
(indirect). C. Example trials from the relatedness task. Participants see a pair of objects 
they experienced in the context of the decision-making task and are asked to move a 
slider to indicate the degree of ‘relatedness’. D. A portion of a hypothetical matrix of 
similarity ratings generated from the behRSA task. behRSA = behavioral 
representational similarity analysis 
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This task distinguishes between model-based and model-free strategies, since only a 

model-based decision maker generalizes experiences from one starting state to all 

other starting states. That is, after receiving a high reward in a second-stage state, a 

model-based learner can use their knowledge of the transition structure to plan their 

way back to that same second-stage state. A model-free agent, on the other hand, 

learns through action-reward associations and will only become more likely to choose 

that same action in the same first-stage state, not transferring experiences from one 

first-stage state to the others (Kool, Cushman, and Gershman 2016). If we imagine a 

trial starting in the desert first-stage state that leads to a better-than-expected reward in 

the red second-stage state, a purely model-free agent will not use this information if the 

next trial starts in the forest first-stage state. The computational model, described below, 

uses reinforcement-learning to capture this distinction in a single model-based 

weighting parameter. 

 

In order to introduce differing incentives for model-based control, we introduced a 

‘stakes’ manipulation in this task (Kool, Gershman, and Cushman 2017). At the start of 

each trial, an incentive stake cue indicated by how much the reward obtained at the end 

of the trial would be multiplied. On some trials, this cue indicated that the points would 

be multiplied by 5 (high stakes). On other trials, the cue indicated that the points would 

be multiplied by 1 (low stakes). For example, if a participant earned 5 space treasure 

pieces on a high-stakes trial, the multiplier would result in a total of 25 points. On a low-

stakes trial with the same amount of space treasure, the participant would earn 5 points. 

The chance of a high stakes trial was equivalent for both first-stage states. On each 

trial, there was a 50% chance that a trial would be a high stakes trial and a 50% chance 

it would be a low stakes trial. 

 

At the start of each trial, participants saw the first-stage background and the stake 

multiplier for 1 second. Then, the stake moved to the top left corner and the teleporters 

were presented. Participants were then given a time limit of 3 seconds to choose between 

them. After their response, the selected option was highlighted, and the non-selected 

option was greyed out for the remainder of the response period. There was a 500ms 
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interval between the end of the first stage response period and the onset of the second 

stage. Following a 200ms interval after the generator was selected, the space treasure 

pieces produced by the generator were displayed at the top of the screen for 1.5 seconds. 

Each piece was individually converted to a point value (100ms for each) and then the 

points for that trial were multiplied by the stake before being added to the score in the top-

right. There was a 500ms intertrial interval (ITI). Participants completed a total of 200 

trials with an optional short break in the middle. 

 

Behavioral representational similarity task  
 
To test how task experience affects structure learning, we used a behavioral 

representational analysis technique previously described by Karagoz and colleagues 

(2023). In this task, participants provided relatedness ratings of pairs of novel 3D objects 

that were also used as choice options in the decision-making task (adapted with 

permission from (Hsu, Schlichting, and Thompson-Schill 2014; Schlichting and Preston 

2015). On each trial, they were shown two of the objects experienced in the task 

horizontally centered in the screen (image sizes of 400 x 400 pixels). At the top of the 

screen the prompt read “In terms of the task, how related are these two objects?”. Below 

the images, participants were shown a ‘slider’ bar and were asked to use the mouse to 

move the slider to their perceived level of ‘relatedness’ between the two objects they had 

just seen (Figure 1C). Participants had unlimited time to respond, with a 1 second inter-

stimulus interval between submission and the next relatedness trial. Participants 

performed pairwise ratings of all 6 objects in both left and right positions, resulting in 30 

trials. 

 

We have used this approach prior work (Karagoz, Reagh & Kool 2024), where we have 

shown that participants’ relatedness ratings reveal their assessment of task structure. For 

example, a participant may think that a first-stage teleporter and the second-stage reward 

generator it leads to, are related, while the same teleporter is not related to the generator 

on the other second-stage state. As we detail below, our analytic method allows us to 

quantify these correspondences using a-priori components. 
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Working memory task 
Participants completed a Running Span task to assess working memory. Letters were 

presented on a computer screen one at a time, spaced 2-s apart. During a trial, an 

unpredictable number of letters was presented, and participants were asked to remember 

the last x number of letters from the list. The task began with participants recalling the last 

letter presented and progressed in difficulty in each successive block of 4 trials. 

Participants had to complete 2 out of 4 trials correctly to move on to the next block. The 

dependent measure was the total number of correct letters recalled in correct order 

across all trials. 

 
Procedure 
Participants completed one visit to the laboratory as part of a larger study examining 

motivation and cognition. Participants completed a diagnostic interview followed by tasks 

assessing reinforcement learning, working memory and questionnaires assessing 

symptom domains as described above. Participants were compensated $40 for their time 

and for any task bonus they received.   

 
Analysis 
Performance. We computed average performance on the decision-making task as the 

average number of points earned per trial. To correct for baseline differences in available 

reward (as a result of the random Gaussian walks), we then subtracted the average 

available reward across both second-stage states. We also computed the average 

performance based on the stake effects. For this, we took the difference between 

participant performance in high-stakes vs low-stakes trials to indicate a measure of 

motivational modulation of performance. 

 

Reinforcement learning model. We adapted an established hybrid reinforcement 

learning model that we used in prior work to assess participants’ behavior in the decision-

making task, specifically dissociating model-free and model-based decision making (Kool 
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et al. 2016; Bolenz et al. 2019; Karagoz, Reagh, and Kool 2024). Full details of the model 

and fitting procedure are discussed in the Supplementary Methods. 

 

After each action, the model-free system computes a prediction error, which is simply the 

difference between the current value (both future and immediate reward) and the reward 

expectation. It then uses a temporal difference-learning algorithm (Sutton & Barto 2018) 

to increase values for actions in response to positive prediction errors and lower values 

that lead to negative prediction errors. The model-based learner combines the transition 

structure of the task with second-stage model-free values to plan its first-stage choices, 

and does not rely on first-stage model-free values. 

 

These two learning systems are combined using a weighting parameter (w) bounded 

between 0 and 1, where 0 is fully model-free control and 1 is fully model-based. The 

combined system then made choices using a stochastic choice rule (soft-max), using an 

inverse-temperature parameter β that governs the explore/exploit tradeoff. The model 

also included a learning-rate ɑ that determines the degree to which prediction errors 

update existing action values, an eligibility trace parameter λ that controls how the 

outcome at the second stage informs the first-stage, and finally π and ρ which capture 

perseveration on either response or stimulus choice. 

 

We used maximum a posteriori estimation to fit this dual-system RL model to behavior on 

this task, using empirical priors previously reported by Bolenz et al. (2019). The average 

fit per group for each of these parameters is reported in Table 2. 
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Behavioral Representational Similarity Analysis. We used participants relatedness 

ratings of objects to measure the structure of their cognitive maps (Figure 1CD). Based 

on our previous work with this variant of the task, we hypothesized that experience with 

the decision-making task would yield participants to represent the task structure across 

three different levels of abstraction (Karagoz, Reagh, and Kool 2024). These levels of 

abstraction map onto the possible relationships highlighted in Figure 1B. We call the 

first level of abstraction ‘visual co-occurrence’, which corresponds to relatedness 

between items observed in the same first-stage state. Even though this relationship 

between items is valid, it does not aid goal-directed control. The second “direct 

association” is defined as the relationship between a first-stage transporter and the 

second-stage generator, and the third highest-order “indirect association” is the 

relationship between two first-stage teleporters that share the same goal. Though these 

differ in terms of level of abstraction, both these components are relevant for planning. 

Using the direct associations allows participants to infer the consequence of a first-

stage action, whereas the indirect associations allows them to infer that two items that 

both lead to the same second-stage state are functionally equivalent. To test this 

hypothesis, we compared their matrices of relatedness ratings to three a-priori model 

matrices, which reflected these levels of representation of the decision-making task 

structure. This was done using a multiple regression approach where the flattened 

vector of similarity ratings provided by participants was the dependent variable. Each of 

the a-priori model matrices was also flattened and modeled as an independent variable. 

The final regression formula was as follows: 

 

Participant Similarity Matrix = 𝛽!‾ + 𝛽"‾ × Visual Co-occurrence Model Matrix+
𝛽#‾ × Direct Item Model Matrix+
𝛽$‾ × Indirect Item Model Matrix

 

 

This formulation allowed us to analyze the participant similarity matrix as a weighted average of 

the different planning relevant and irrelevant features in the task. We used these beta values as 

further regressors to see if amount of reported similarity along one of our a-priori features 

predicted either performance or use of model-based control. 
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Hierarchical linear mixed effects model (behRSA). We modeled the relationship 

between the inferred task structure, clinical group, and the degree of complexity of task 

structure features using a hierarchical linear mixed effects model. Specifically, we model 

edthe estimated regression coefficients described in the previous section as a function of 

categorical regressor that encoded clinical group (patient vs. control) and an ordinal 

regressor that encoded the complexity of the component (co-occurrence = -1, direct = 0, 

indirect = 1), while including random intercepts for each participant.  

 

Linear model for effect of self-report data on w. We modeled the relationship between 

use of model-based control, clinical group, and the self-report scores from both the 

Snaith-Hamilton Pleasure Scale and the Motivation and Pleasure Scale (MAP-SR) using 

a linear model. Before incorporating the raw scores into the model, we first z-scored each 

self-report measure within group. These values were then used in the linear model with 

a binary indicator of clinical group where control is 0 and patient is 1. 

 

Statistical approach. In our statistical analyses, we relied on two-tailed tests wherever 

prior research did not inform a predicted direction of the effect. We used one-tailed tests 

when previous results from our group allowed us to make directional predictions about 

effects. When running independent samples t-tests between our groups we use Welch’s 

tests.  

 
Results 

Differences in task behavior 
Inconsistent with prior research on schizophrenia and model-based control, we found 

that the patients performed the task in a qualitatively similar way to controls. 

Patients and controls did not differ in terms of chance-corrected reward rate 𝑡(30.91) =

−0.28, 	𝑑 = 0.09, 	𝑝 = 0.779) (Figure 2A). One intuitive hypothesis for this finding is that 

patients spent more time on first-stage choices, but we found no group difference in 

first-stage response times (𝑡(38.16) = −1.04, 	𝑑 = 0.32, 	𝑝 = 0.304). We also assessed 

to which degree patients and controls failed to respond on a trial. Numerically, the 

control group showed a smaller average percentage of missed trials (mean % missed = 
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0.04 in controls and 0.06 in patients), but this difference between group non-responses 

was not significant (𝑡(30.23) = −1.30, 𝑑 = 0.41, 𝑝 = 0.203). 

 

The computational model fits provided consistent results. In contrast to previous 

findings, we saw no difference in the model-based control parameter between the two 

groups (𝑡(38.55) = −1.55, 	𝑑 = 0.48, 	𝑝 = 0.129) (Figure 2B). One interesting possibility 

is that this is driven by the fact that increased use of model-based control in our task 

leads to an increased payoff (Kool et al., 2016), whereas the original version of this 

(Daw et al., 2011) used in prior work (Culbreth et al., 2016) does not. Another 

explanation is that model-based control in this task is less demanding because it does 

not require reasoning over probabilistic transitions (unlike the original version). In short, 

these results suggest that patients were able and willing to engage in control over goal-

directed behavior. 

 

Next, we turned our attention to the incentive manipulation. Prior work has shown that 

people increase model-based control when higher reward is available (Kool et al. 2017; 

Bolenz et al. 2019; Karagoz et al., 2023). In our study, we found that we find in healthy 

controls an increase in points earned in the high-stake trials compared to the low-stake 

trials (𝑡(22) = 	2.29, 𝑑 = 0.48, 𝑝	 = 	0.032), but patients showed no such sensitivity to 

the stake manipulation (𝑡(19) = 	0.09, 𝑑 = 0.02, 𝑝	 = 	0.926) (Figure 2C). More 

specifically, patients had similar means in both stake conditions (µhigh = 0.263, µlow =

0.256), while controls differed in mean points stakes (𝜇high = 0.344, 𝜇low = 0.101) (Figure 

S2). The computational modeling fits were consistent with this pattern of behavior. For 

controls, we saw an effect of stake on model-based control with higher stakes resulting 

in higher model-based control (𝑡(22) = 2.57, 	𝑑 = 0.54, 	𝑝 = 0.017), but we did not see 

this effect in patients (𝑡(19) = 1.21, 	𝑑 = 0.27, 	𝑝 = 0.242) (Figure 2D). 
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Figure 2. Differences in task performance. A. Baseline adjusted points earned during the 
task. B. Model-based control parameter 𝑤 C. Differences in points earned by stake 
condition. D. Differences in model-based control by stake condition. (* indicates p < 0.05, 
error bars are standard error of the mean) 
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Differences in cognitive maps 
In order to test the shallow cognitive map hypothesis of schizophrenia, we analyzed the 

data from the behRSA task. In previous work, this task allowed us to characterize 

participants’ cognitive maps across three independent components, increasing in 

complexity. We found that the more complex components predicted task performance 

(Figure 1B, direct and indirect item associations) (Karagoz, Reagh, and Kool 2024). Here, 

we used this approach to assess whether patients and controls differ in the way they 

construct cognitive maps. 

 

To do so, we ran a hierarchical linear mixed-effects with participants’ model matrix 

coefficients as the dependent variable and both clinical group (patients vs. controls) and 

the complexity of the component (co-occurrence = -1, direct = 0, indirect = 1) as 

regressors. There was no significant main effect of clinical group, (𝛽 = 6.40, 𝐶𝐼95% =

[−3.1,15.9], 	𝑝 = 0.18) or component complexity (𝛽 = −1.9, 𝐶𝐼95% = [−13.3,9.5], 	𝑝 =

0.74). However, there was a significant interaction between clinical group and 

component complexity (𝛽 = −14.6, 𝐶𝐼95% = [−28.6, −0.7], 	𝑝 = 0.039), indicating that 

cognitive maps of schizophrenia patients underweighted the more abstract and complex 

features of the task structure (see Figure 3). 
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Figure 3. Differences in cognitive map building. A. Behavioral representational similarity 
analysis approach. Participants’ post-task judgments of relatedness are turned into a 
pairwise similarity matrix. The lower triangle of this matrix is then compared to three model 
matrices corresponding to 3 hypotheses about features participants may use in their 
mental representation. B. Patients show a heightened sensitivity to visual co-occurrence, 
rating it quantitatively higher than control participants. The two groups show 
approximately equal weighting of direct associations that link first-stage items to their 
second-stage counterparts. Patients seem to not use the indirect association between the 
two first-stage items that lead to the same second-stage item. Controls report this feature 
in keeping with previous work. (Error bars are standard error of the mean; ⦻	indicates a 
significant interaction between group and fit across model matrices.) 
 
Next, we aimed to assess whether patient and control representations contain group 

consistent structure that is not accounted for by our model. Therefore, we calculated the 
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Spearman rank correlation between the lower triangle values of the behRSA matrix of a 

given participant and the mean values for all other participants within their group. We then 

repeated this, leaving each participant out once, until we had an estimate for the intra-

class correlation of the behRSA representations. Interestingly, patients had a relatively 

high mean intra-class correlation (average Spearman rho = 0.252, std = 0.255). Control 

participants meanwhile had a lower average intra-class correlation value, with more 

variance (average Spearman rho = 0.129, std = 0.377). Thus, individuals with 

schizophrenia were more similar to each other when performing the relatedness task. 

Control participants, on the other hand, were more varied. Given that several pairwise 

relationships between items could be identified (as is seen in our prior work; Karagoz, 

Reagh, & Kool, 2024), this could indicate that patients were more constrained in the set 

of relationships that they represented in their cognitive maps.  

 

After investigating these group differences of the principal measures of our tasks, we 

turned our attention towards individual differences. We first focus our analyses on 

individual differences in model-based control, and then report a set of analyses that 

explore individual difference in cognitive map formation. 

 

Individual differences in model-based control 
Basic effects. The two-step decision-making task that we used in this study was 

designed in such a way that increased model-based control produces increased 

rewards. Indeed, previous work using variants of this task have confirmed this through 

robust correlations between the degree of model-based control, as measured by the 𝑤 

parameter, and points earned in the task (Kool et al., 2016; Bolenz et al. 2019; Karagoz 

et al., 2023). 

 

In our control sample, we replicate this relationship (𝑟(21) = 	0.55, 𝐶𝐼	95%	[0.18,0.79],	 

	𝑝 = 0.006) (Figure 3A in blue). Interestingly, we do not find a significant correlation 

between patient use of model-based control and reward gained in the task (𝑟(18) =

0.08, 	𝐶𝐼	95% = [−0.38,0.5], 	𝑝 = 0.741) (Figure 3A in orange). One potential explanation 

for this difference is that patient choice was more exploratory or random, but we found 
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no difference in the inverse-temperature parameter (𝛽) between groups, (see Table 2). 

We also examined whether differences in the explore/exploit tradeoff (as indicated by 𝛽) 

accounted for the difference in correlations between model-based control and 

performance. However, we found no evidence that controlling for individual variation in 

the inverse-temperature parameter uncovered a relationship between 𝑤 and points 

earned for patients (Supplementary Table 1). 

 

Importantly, other key RL parameters from our model fits predicted performance in both 

groups. For example, differences in the inverse temperature positively predicted points 

earned in both the control group,(	𝑟(21) = 0.70, 	𝐶𝐼	95% = [0.40,0.86], 	𝑝 < 0.001), and 

the patients, (𝑟(18) = 0.55, 	𝐶𝐼	95% = [0.14,0.8], 	𝑝 = 0.012). Analogously, individual 

differences in the learning rate parameter predicted performance in the control group,( 

𝑟(21) = 0.63, 	𝐶𝐼	95% = [0.29,0.83], 	𝑝 = 0.001 ), and in patients(	𝑟(18) =
0.63, 	𝐶𝐼	95% = [0.26,0.84], 	𝑝 = 0.003). These results confirmed the general predictive 

validity of our RL modeling approach. 
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Figure 4. Correlations between model-based control and performance. A. Controls, but 
not patients, show a strong correlation between model-based control and task 
performance. B. The amount to which control participants increase their model-based 
control in high-stakes contexts is correlated with increased performance in those 
contexts. This relationship is absent in patients. C. Working memory correlates strongly 
with model-based control in healthy controls, but not in patients. D. Working memory does 
not predict increases in model-based control in response to the stakes manipulation. 

 

 

The effect of stakes incentives. Next, we examined the correlations between the 

benefits of heightened control and increased performance in the high-stakes context. In 

the control group, we found that the degree to which control is heightened in high stakes 

trials positively predicts the degree of increased performance (𝑟(21) = 0.59, 	𝐶𝐼	95%	 =
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[0.23,0.8], 	𝑝 = 0.003). Meanwhile, in the patient group we found no such benefit of 

modulation of control (𝑟(18) = 0.30, 	𝐶𝐼	95%	 = [−0.17,0.66], 	𝑝 = 0.200) (Figure 4B). 

 

Working memory. Next, we investigated task correlations with the working memory 

scores that we measured with the Running Span task. It is important to note that due to 

missing data from a control participant the working memory results have 22 controls and 

20 individuals with schizophrenia. In line with previous work (Culbreth et al. 2016; Otto 

et al., 2013), we found a significant relationship between use of model-based control 

and working memory in healthy controls (𝑟(21) = 0.51, 	𝐶𝐼	95% = [0.11,0.77], 	𝑝 =

0.015), but we found no such correlation for patients’ (𝑟(18) = −0.29, 	𝐶𝐼	95%	 =

[−0.65,0.18], 	𝑝 = 0.219). We also assessed whether working memory capacity was 

coupled with the increase of model-based control on high-stakes trials, but we found no 

relationship between modulation of control and working memory in controls 

(𝑟(21) = 0.16, 	𝐶𝐼	95% = [−0.28,0.54], 	𝑝 = 0.489) or patients (𝑟(18) = 0.06, 	𝐶𝐼	95%	 =

[−0.39,0.49], 	𝑝 = 0.801). As noted under Basic Effects above, we found no relationship 

between model-based control and reward earned in patients. We examined whether this 

lack of relationship in patients relative to controls could be explained by differences in 

working memory capacity. Modeling Running Span as a covariate in a group-wise 

regression analysis, we found that working memory differences did not explain 

decoupling of model-based control from reward in patients (see Supplemental Materials, 

Table S7).     

 

Finally, we assessed correlations between use of model-based control and our 

measures of motivation and pleasure seeking as well as hedonic capacity. We found 

that, within both groups, hedonic capacity as measured by the Snaith-Hamilton 

Pleasure Scale and motivation as measured by MAP-SR were positively correlated 

(𝑟(41) = 0.33, 	𝐶𝐼	95%	 = [0.03, 0.57], 	𝑝 = 0.033). To assess how these self-reported 

measures interact with use of model-based control we ran a linear model predicting the 

effect of each along with interactions with clinical group. Our measure of hedonic 

capacity did not predict the use of model-based control in healthy controls (𝛽 =

0.057, 𝐶𝐼	95% = [−0.063,0.176], 	𝑝 = 0.342). In previous work, Culbreth and colleagues 
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(2016) found a positive relationship between an estimate of model-free control and 

hedonic response. Here, we replicate this finding. In our model, where lower w values 

indicate more model-free control, we found that use of model-free control was again 

correlated with higher hedonic capacity (but only in patients). More specifically, we 

found a negative relationship between hedonic capacity and model-based control in 

patients (𝛽 = 	−1.62, 𝐶𝐼	95% = [−0.314,−0.010], 	𝑝 = 0.037). Motivation and pleasure-

seeking scores did not predict model-based control in healthy controls (𝛽 =

−0.079, 𝐶𝐼95% = [−0.181,0.022], 	𝑝 = 0.123). Interestingly, we observed a trending 

interaction where motivation and pleasure-seeking predict a relative increase in use of 

model-based control in patients (𝛽 = 0.126, 𝐶𝐼95% = [−0.017,0.269], 	𝑝 = 0.082). We 

further ran models assessing how self-report measures predicted other features of our 

task such as modulation of control, these are reported in the Supplemental Results: 

MAP-SR and Snaith-Hamilton section.  

 
Individual differences in cognitive map formation 
In our previous work, we found that participants who had stronger representations of the 

direct item and indirect item associations showed increased task performance (Karagoz, 

Reagh, and Kool 2024).  

 

Even though our current sample size was considerably smaller than in our previous study, 

we found modest evidence that these effects replicate. Due to our previous results, we 

ran one-tailed tests here for positive correlations. In controls, we found a correlation 

between task performance and the strength of the direct item associations (𝑟(21) =

0.40, 	𝐶𝐼	95%	[0.05, 1.0], 	𝑝 = 0.030), but we found no such effect for indirect item 

associations (𝑟(21) = 0.18, 	𝐶𝐼	95%	[−0.18, 1.0], 	𝑝 = 0.206, both of these were one-tailed 

tests based on our prior work). In patients, representation of the direct item association 

showed no relationship with task performance (𝑟(18) = 0.18, 	𝐶𝐼	95%	[−0.28, 0.58], 	𝑝 =

0.437), neither did the indirect item association (𝑟(18) = 0.14, 	𝐶𝐼	95%	[−0.32, 0.55], 	𝑝 =

0.544). We next assessed whether components of the behRSA were associated with 

differences in the use of model-based control. In the present data, we found no indication 
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in either our controls or patients that model-based control was coupled with behRSA 

components. 

 

Correlation of cognitive map components and stake effects. Due to the fact that we 

saw differences in control modulation of w between high and low stakes conditions we 

ran a model to examine whether modulation of control was predicted by the presence of 

different associations in participant model matrices. That model did not account for any 

variance in the data (Supplement: w modulation by behRSA). 

 

We then ran a model to look if differences in points earned were predicted by the subject 

behavioral representations. We found that there was a difference in the degree to which 

direct item associations predicted the modulation of reward by stakes. In the healthy 

controls, there was a positive relationship between the presence of direct item 

associations and the degree to which more points were earned in higher-stakes (𝛽 =

0.009, 𝐶𝐼95% = [0.003,0.015], 	𝑝 = 0.005). Meanwhile, we observed an interaction 

indicating that this relationship is not present in patients (𝛽 = −0.015, 𝐶𝐼95% =

[−0.015,−0.004], 	𝑝 = 0.01). Interestingly, we found a trending opposite effect in the more 

abstract indirect item association. In control participants, increased reporting of indirect 

associations was linked to less modulation of performance (𝛽 = −0.006, 𝐶𝐼95% =

[−0.012,0.000], 	𝑝 = 0.056). Interestingly, in patients, the presence of indirect item 

associations in the cognitive map was linked to increase performance modulation (𝛽 =

0.010, 𝐶𝐼95% = [0.001,0.019], 	𝑝 = 0.035). These results indicate major differences in the 

way control participants and patients represented components of the task, and how these 

representations were used to guide behavior. In particular, patients’ representations of 

the task do not assist them in modulating their effort to increase reward. (full results of the 

model are displayed in Table 3).  
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General Discussion 
 

Patients with schizophrenia often show marked deficits in goal-direct behavior (Barch 

and Dowd 2010). These deficits are typically understood as an inability or a reduced 

willingness to exert control (Barch, Culbreth, & Sheffield, 2017; Culbreth, Westbrook, & 

Barch, 2016; Knolle et al. 2023). Here, we report evidence that suggests that such 

deficits may also arise because of a reduced ability to construct representations of the 

environment. Making use of a novel behavioral representational similarity approach, we 

found that patients construct cognitive maps of a decision-making task that favor 

simpler, easily inferable, relationships and that undervalue higher-order ones that are 

more relevant to planning. In addition, the cognitive maps of patients were more uniform 

with one another (patients had higher intra-class correlation) than those of controls, 

suggesting patients are more uniform in representing the task. Interestingly, these 

simpler and less optimal cognitive maps in patients did not lead to a reduction in goal-

directed control. While this may seem surprising at first, we found that the cognitive 

maps of patients reliably represented simple but planning-relevant relationships 

between actions and subsequent states, which are enough to optimally perform the 

task. This dissociation provides unique evidence for the idea that schizophrenia affects 

map formation independently of impairments in the implementation of control. In line 

with previous work, we also found that patients are unable or unwilling to modulate their 

degree of effort in exchange for increased payoffs (Gold et al. 2013, Cooper et al. 

2019). Together, these results indicate that deficits in goal-directed control in 
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schizophrenia are multifaceted, emphasizing the need for precise behavioral and 

computational tools to distinguish between multiple contributions. 

 

Our framework is an example of this approach. Specifically, it allows for simultaneous 

measurement of model-based control and the representations that such control is 

exerted over (Karagoz, Reagh, and Kool 2024). As noted above, we found relatively 

intact model-based control, but a deterioration of more complex representations of task 

structure. These differences in the representations of task structure were coupled with a 

general increase in uniformity for the cognitive maps reported by patients. These 

findings are consistent with and provide novel evidence for the recent shallow cognitive 

map hypothesis of schizophrenia (Musa et al. 2022). This theory posits that dysfunction 

of the hippocampus in patients results in a shallowing of ‘attractors’, stable states of 

activity that represent distinct components of memory representations. This shallowing, 

or instability, of attractors would then cause spurious associations between various 

features of cognitive maps. In our case, these spurious associations could underlie two 

key observations in the patients’ behavior. First, their tendency to perceive all items in 

the task as being broadly more similar to one another than controls. Second, their 

tendency to regard items that simply occurred together in the task as being highly 

related, even though such items in fact led to opposite outcomes. Relatedly, one could 

hypothesize that this shallowing of cognitive maps is more likely to affect higher-order 

relationships that rely on relationships across multiple pairs of stimuli. In future work. our 

novel approach can be combined with neuroimaging to more directly measure the 

change in hippocampal representations posited by the shallow cognitive maps 

hypothesis, and with computational modeling using neural networks to formalize how 

schizophrenia affects the encoding of structural information (Sučević and Schapiro 

2023). 

 

Previous work from our group has reported reductions in model-based control in 

individuals with schizophrenia compared to healthy controls (Culbreth et al. 2016). 

While we find that model-based control is quantitatively lower in patients, this difference 

was not significant in the present data. Several important factors may explain this 
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difference. First, in contrast with the task used by Culbreth et al. (2016; Daw et al., 

2011), the two-step task reported here is designed to reward model-based control (Kool 

et al. 2016). Therefore, individuals with schizophrenia may have been more motivated 

to use model-based control. Second, goal-directed control may simply be less 

demanding in our task, as it does not require participants to reason over stochastic 

transitions. Indeed, young children show hints of model-based control on a similar 

variant of this simpler task, but not on the more complicated original version (Smid et 

al., 2023). In sum, individuals with schizophrenia might have less difficulty exerting 

control here than in the task used by Culbreth and colleagues (2016). Thus, the current 

two-step task provides an excellent tool for studies of goal-directed control in 

schizophrenia. Moreover, our findings introduce the possibility that reductions in model-

based control found by Culbreth and colleagues (2016) are driven by ill-formed 

cognitive maps. This hypothesis could be tested using our behRSA approach (Karagoz, 

Reagh, and Kool 2024). 

 

This interpretation of our data is complicated by the surprising finding that patients do 

not show a correlation between the degree to which they exert model-based control and 

the rewards they earn in the task. This is particularly striking since we have reported 

such correlations in prior work (Kool et al. 2017, Patzelt et al. 2018, Bolenz et al. 2019, 

Karagoz, Reagh, and Kool 2024), and we also find this correlation in the control group. 

Several intuitive explanations for this dissociation come to mind. Perhaps participants 

behaved more randomly, or learned less about the task, and this reduces the impact of 

the model-based control parameter on decision making. However, we find no 

discernable differences between groups in performance on the task. Potentially, the 

patients in our study are relying on a choice strategy that is not well captured by our RL 

model. For example, it has recently been suggested that people may rely on “successor 

representations” when solving RL tasks (Momennejad et al. 2017). These are cached 

representations of expected future transitions from a given state (i.e., which states 

typically follow the current one), and stand in contrast with cognitive maps that contain 

the full transition structure. This form of RL is computationally distinct from the 

representations used by model-free and model-based choice strategies. Our finding that 
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patients encoded the direct association (linking previous and future states), but not the 

indirect one (linking first-stage states), provides preliminary evidence for this hypothesis. 

Future investigations, that allow for the measurement of a less dichotomous set of RL 

strategies (Collins & Cockburn 2020) may provide a better insight into this puzzle.  

 

The tradeoff between model-based and model-free control has been suggested to be 

governed by a cost-benefit analysis (Kool and Botvinick 2018; Kool Gershman 

Cushman 2018). At the core of this claim lies a set of studies that demonstrate that 

people exert more model-based control when more rewards at stake (Kool et al. 2017, 

Bolenz et al. 2019, Karagoz, Reagh, and Kool 2024). We replicate these findings in 

healthy controls, but this motivational modulation of model-based control does not seem 

to occur in patients. This could be due to patient deficits in rapidly integrating the 

presence of the stake cue and using it to shift strategies (Cooper et al. 2019). Another 

possibility is that the modulation of control is not seen as worthwhile as patients 

previously have been shown to be less sensitive to effort demands (Gold et al. 2015). 

Regardless of the underlying mechanism, these results are consistent with the idea that 

patients are less easily motivated to exert cognitive control (Gold et al. 2015; Culbreth, 

Westbrook, and Barch 2016). 

 

In our previous work, we found a strong coupling of planning relevant features in the 

cognitive map and task performance (Karagoz, Reagh, and Kool 2024). Our current 

data partly replicates this finding in a much smaller sample, but also reveals a 

decoupling in patients. As before, we find that the planning-relevant direct item 

association correlates with general performance in healthy controls. However, we also 

found that task representations the modulation in planning in response to the stakes 

manipulation. In control participants, the direct item associations predicted increased 

performance in the high-stakes condition. Indeed, if planning is costly, it may be 

particularly useful to rely on the task structure when rewards are temporarily amplified. 

Interestingly, this coupling is not found in patients even though they report a similar 

amount of direct item association as controls. Note that this result mirrors the lack of a 

correlation between model-based control and performance discussed above. This 
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provides yet further evidence for altered representational frameworks in patients, and 

once again emphasizes the need for the development of tasks that measure a range of 

decision-making strategies. 

 

We found that working memory capacity predicted reliance on model-based control in 

our control sample (Culbreth et al. 2016). This finding is in line with a set of studies that 

relate cognitive control, RL, and working memory (Otto et al. 2013, Culbreth et al. 2016, 

Gillan et al. 2016, Collins et al. 2014), which suggest that model-based control critically 

draws on executive functioning capacities implemented by the prefrontal cortex. In the 

clinical group, however, this correlation was absent. One possible explanation for this 

difference, apart from the ones mentioned above, is that working memory performance 

was generally lower for patients. That is, individual differences may become less 

reliable when people perform poorly on working memory tasks. Future, higher-powered, 

replications of this effect will be needed to assess these relationships more definitively. 

 

There are a variety of neural circuits that have previously been implicated in deficits in 

goal-directed behavior in schizophrenia. First, there is evidence of general dysfunction 

in the dorsolateral prefrontal cortex (DLPFC) (Barch and Ceaser 2012), which may 

reduce patients ability to exert control in pursuit of goals. However, previous work that 

has found DLPFC dysfunction in schizophrenia has not separately examined the task 

representations that patients use. Therefore, it could be that this apparent dysfunction of 

DLPFC is instead driven by this region attempting to exert control over ill-formed maps, 

leading to patients abandoning these attempts after failure. Second, the hippocampal 

formation is thought to be crucial for the construction of cognitive maps (Behrens et al. 

2018, Boorman et al. 2021). This region is strongly impacted by schizophrenia (Yasuda 

et al. 2022, Tamminga et al. 2010), and it communicates with PFC during goal-directed 

behavior (Schmidt, Duin, and Redish 2019). It is therefore possible that our results are 

driven by the interplay between representations in the hippocampal formation and goal-

directed decision making mediated by DLPFC. Future neuroimaging studies can 

explicitly test this hippocampal-prefrontal relationship by simultaneously measuring map 
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formation in the hippocampus, as well as its interactions with PFC during goal-directed 

behavior. 

 

Our work has several limitations. First, because our data were collected as part of a 

larger initiative (Barch et al. 2023), we do not have access to patient medication status 

for the specific session in which they engaged in the tasks presented here, and so we 

are unable to control for this. Previous studies, however, have reported a lack of 

relationships between reinforcement learning and medication in schizophrenia (Culbreth 

et al., 2016; Geana et al., 2022). Concerning our specific variant of the two-step task, 

patients and controls may have learned the transition structure at different rates. 

However, in previous work, we have shown incremental learning of the transition 

structure these values quickly converge to the true structure regardless of the learning 

rate (Karagoz, Reagh, and Kool 2024). Finally, even though we used a guiding prompt 

during the behRSA task (“In terms of the task, how related do you think these objects 

are?”), it’s possible that patients and controls interpreted this task differently. Though we 

cannot rule out differences in basic task comprehension, we note that all participants 

were given an opportunity to ask for clarification pertaining to instructions as needed. 

Neuroimaging work, which would allow us to measure task representations implicitly, 

would ameliorate this concern. 

 

In sum, our study shows that schizophrenia affects how people construct models of the 

environment. This may at least partly explain deficits in goal-directed control, which 

have long been considered a defining feature of the disorder. These results provide 

novel insights into the potential mechanisms underlying cognitive deficits in 

schizophrenia, and may inspire experimental manipulations that help patients construct 

better cognitive maps, which we predict will lead to increased goal-directed control. In 

turn, this could lead to specific, targeted interventions for the treatment of negative 

symptoms in schizophrenia. 
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