
Vol.:(0123456789)1 3

Journal of Neuro-Oncology (2020) 146:41–53 
https://doi.org/10.1007/s11060-019-03352-3

LABORATORY INVESTIGATION

Transcription factors NFIA and NFIB induce cellular differentiation 
in high-grade astrocytoma

Kok‑Siong Chen1 · Caitlin R. Bridges1 · Zorana Lynton1,2 · Jonathan W. C. Lim1 · Brett W. Stringer3 · 
Revathi Rajagopal4 · Kum‑Thong Wong5 · Dharmendra Ganesan6 · Hany Ariffin4 · Bryan W. Day3 · 
Linda J. Richards1,7,8 · Jens Bunt1,8 

Received: 10 October 2019 / Revised: 12 November 2019 / Accepted: 16 November 2019 / Published online: 23 November 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Introduction  Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, 
low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular 
differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one 
(NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members 
NFIA and NFIB act as effectors of cellular differentiation in glioblastoma.
Methods  We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immuno-
fluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts 
via in vivo electroporation.
Results  The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular 
level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently 
demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma 
xenografts.
Conclusion  Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocy-
tomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation 
of targeting NFI-mediated differentiation as a potential differentiation therapy.
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Introduction

Astrocytomas are characterised by high cellular heterogene-
ity, resulting in complex combinations of proliferating and 
differentiated cells [1–3]. Compared with grade IV glioblas-
toma (GBM), lower grade astrocytomas consist predomi-
nantly of well-differentiated cells and are associated with 
reduced aggressiveness and better prognosis [2]. Hence, 
increasing cellular differentiation could render a tumour less 
aggressive and improve survival. This argument supports 
the notion that differentiation therapy could serve as a feasi-
ble therapeutic strategy. An example where this strategy has 
been remarkably successful is the treatment of acute promye-
locytic leukaemia (APML) using retinoic acid (RA) [4]. This 
success is the result of a multitude of studies investigating 
the role of RA in driving haematopoietic cell differentiation 
and targeting the fusion protein PML-RARα [5].

Investigation of the response of GBM cell lines to 
inducers of differentiation did not yield promising results, 
as the responses appear transient and vary between cell 
lines [6–8]. This is unsurprising given the endogenous 
function of these differentiation agents in normal brain 
cells. For example, RA has different functions depending 
on cell state, and is able to promote or inhibit differentia-
tion at different stages of astrogliogenesis [9]. It is also 
ineffective in driving neuronal progenitor cell differentia-
tion [10]. One approach to overcoming such challenges 
is to target the endogenous mechanisms that are directly 
involved in producing mature, differentiated glial cells and 
re-deploy them in astrocytomas.

A promising candidate that may regulate differentiation 
in astrocytomas is the nuclear factor one (NFI) family of 
transcription factors. These proteins are essential for nor-
mal glial differentiation [11–15]. During development, NFI 
are expressed in progenitor cells that give rise to various 
differentiated cell populations in the dorsal telencephalon 
[16, 17]. Their expression drives the differentiation of these 
cells [13–15], with NFIA and NFIB expression persisting in 
mature astrocytes [18]. In Nfia and Nfib knockout embryos, 
the generation of mature astrocytes is reduced, and progeni-
tor cells remain in a proliferative state for a prolonged period 
[11, 12]. Overexpression of these genes is also sufficient 
to rapidly convert induced pluripotent stem cells into func-
tional astrocytes in vitro [19–21]. These findings reflect the 
essential role of NFIA and NFIB as regulators of astrocytic 
differentiation.

In astrocytomas, higher expression levels of NFI cor-
relate with lower grade tumours that are composed of 
more differentiated cells [22, 23]. Loss of heterozygosity 
(LOH) of NFIB as a consequence of chromosome 9p loss 
is a common occurrence in the tumour progression and is 
present in 40% of all GBM [24, 25]. The down-regulation 

of NFI expression may be a mechanism by which tumour 
cells evade differentiation and thereby remain prolifera-
tive. This is in line with studies which report that the Nfi 
loci are common insertion sites in insertional mutagenesis 
mouse models of gliomas, suggesting that reduced expres-
sion promotes tumorigenicity [26, 27].

The induction of NFIA or NFIB in GBM cell lines 
in vitro induces the expression of astrocyte differentia-
tion markers such as GFAP and FABP7 [13, 23, 28, 29], 
indicating that overexpression of NFI might be sufficient to 
drive astrocytic differentiation. NFIA and NFIB function 
very similarly to drive glial differentiation in the develop-
ing brain [13–15]. We demonstrated recently that NFIB 
overexpression in vitro reduced GBM cell proliferation 
and inhibited growth when xenografted into mice [23], 
although whether NFIA plays a similar role is unknown. 
Here, we investigate whether NFIA and NFIB drive 
astrocytic differentiation in astrocytomas in vivo. Using 
expression datasets and immunofluorescence co-staining, 
we demonstrate that the endogenous expression of NFIA 
and NFIB positively correlate with each other, and that 
their expression in astrocytomas is associated with the 
expression of differentiated cell markers. Furthermore, 
by manipulating their expression in patient-derived GBM 
xenografts in vivo, we reveal that induced expression of 
either NFI is sufficient to promote tumour cell differen-
tiation. These findings suggest that the NFI-pathway is a 
promising therapeutic target to induce differentiation in 
astrocytomas.

Material and methods

Collection of GBM tissue and xenografts generation

De-identified fresh and fixed GBM tissues for research 
from consented patients were obtained from the Univer-
sity of Malaya Biobank and the Wesley Medical Research 
BioBank with approval from the University of Queensland 
Human Ethics Committee. The establishment of patient-
derived GBM xenografts (QBI-01, QBI-02, and QBI-03) 
was performed as previously described with minor modi-
fications [30]. Cell line-derived xenografts were generated 
from U251 [31] and from patient-derived GBM cell lines 
BAH1, SJH1, RKI1, and WK1 [32].

In silico analyses

To assess gene expression in human glioma samples, pub-
lic expression datasets GSE50161, GSE43378, GSE4290 
(Fig.  1a, b; Supplementary Table  S2), GSE108474, 
GSE16011 (Figs. 1a, b, 2a, b; Supplementary Table S2, 
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6 and 7), GSE49822, GSE7696, GSE53733, GSE118793 
(Fig. 1b), TCGA (Figs. 1a–c, 2a, b; Supplementary Tables 2, 
3, 6 and 7), GSE57872 (Figs. 1d, 2c, d; Supplementary 
Tables 4 and 8), GSE89567 (Figs. 1e, 2c, d; Supplementary 
Tables 4 and 8) and GSE4271 (Supplementary Table 10) 
were analysed and visualised using the R2: microarray anal-
ysis and visualization platform (http://r2.amc.nl) as previ-
ously described [33]. Gene set enrichment analyses were 
performed using The Database for Annotation, Visualization 
and Integrated Discovery (DAVID) 6.8 online tool [34].

Animals

All breeding and experiments were performed at The Uni-
versity of Queensland in accordance with the Australian 
Code of Practice for the Care and Use of Animals for Sci-
entific Purposes, and with the approval of the University 
of Queensland Animal Ethics Committee. Animals were 
housed on a 12 h dark/light cycle with water and food pro-
vided ad  libitum. The NOD.CB17-Prkdcscid/Arc (NOD-
SCID) mice used for patient-derived GBM xenograft experi-
ments were obtained from the Australian Animal Resources 
Centre.

In vivo electroporation of GBM xenografts

NFI expression in established GBM xenografts was driven 
using the piggyBac system as described previously [35]. 
pPBCAGIG, pPBCAGIG-NFIB or pPBCAGIG-NFIA donor 
plasmids were co-electroporated with pCAG-PBase as a 
helper plasmid into established xenografts of 0.1–0.2 cm3. 
The pCAG-PBase and pPBCAG-eGFP plasmids were kind 
gifts from Joseph LoTurco, University of Connecticut. Addi-
tional details are provided in the Supplementary Methods.

Immunohistochemistry, image acquisition 
and analysis

Fluorescence immunohistochemistry, image acquisition 
and analysis were performed as previously described with 
minor modifications [17, 18]. The primary antibodies used 
are listed in Supplementary Table 1b. Additional details are 
provided in the Supplementary Methods.

Statistical analysis

Linear regression was used to determine the correlation of 
two genes in expression datasets, using the R2 platform as 
previously described [33]. The differential expression of NFI 
between tumour types was compared with a ratio paired t test 
on normalised data. To compare the co-staining distribution 
of NFIA or NFIB with other cell markers between GBM 
tissues or to determine gene enrichment, a paired one-way 

ANOVA with Bonferroni’s multiple comparison correction 
was performed. To compare the co-staining of GFP-posi-
tive electroporated cells with markers in GBM xenografts 
between different plasmids, a Welch’s t test was performed. 
These tests were computed with GraphPad Prism 7 (Graph-
Pad Software).

Results

NFIA and NFIB expression is decreased in grade IV 
GBM

To compare the expression of NFIA and NFIB, and their 
relationship in different grades of astrocytomas, we ana-
lysed seven large mRNA expression datasets of human 
astrocytoma samples. Both NFIA and NFIB expression were 
reduced in GBM as compared to grade I–III astrocytomas 
(Fig. 1a), demonstrating that the expression of both NFIA 
and NFIB is higher in tumours with more differentiated cells 
and lower in poorly differentiated tumours. We also observed 
a positive correlation between NFIA and NFIB expression 
in GBM samples across ten datasets (Fig. 1; Supplementary 
Table 2). Although the strength of the correlation coefficient 
varied among datasets, this variability may be explained by 
loss of heterozygosity (LOH) of NFIB observed in a subset 
of GBM samples [24, 25]. Separating tumour samples based 
on NFIB copy number significantly improved the correlation 
coefficient between NFIA and NFIB expression in samples 
where these data were available (Fig. 1c). The trendlines 
representing the NFIB-diploid and haploinsufficient tumour 
samples had a similar correlation coefficient and were sepa-
rated by approximately one 2log unit. This meant that when 
comparing between samples with similar NFIA expression, 
NFIB expression was halved in NFIB-haploinsufficient sam-
ples, as would be expected when one NFIB allele is lost. 
Similar analyses for NFIA haploinsufficiency, which is rarely 
observed in GBM, resulted in only a small improvement in 
the correlation coefficient (Supplementary Table 3).

NFIA and NFIB are co‑expressed at the cellular level 
in GBM tumours

The correlation between NFIA and NFIB expression in 
tumour samples does not necessarily mean that these genes 
are co-expressed within the same cells. We investigated 
this by first examining NFIA and NFIB expression in GBM 
tumours analysed by single cell RNA-seq [3, 36].

Similar to our observations with whole tumour sam-
ples, we observed that the expression of NFIA and NFIB 
positively correlated with each other at the single-cell level 
(Fig. 1d, e; Supplementary Table 4). To validate this at 
the protein level, we then performed immunofluorescence 

http://r2.amc.nl
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Fig. 1   NFIA and NFIB share a similar expression pattern in astrocy-
toma. a Based on seven mRNA expression datasets, the expression of 
both NFIA and NFIB decreases in grade IV GBM as compared to grade 
I–III astrocytoma (ratio paired t test). b NFIA and NFIB expression 
positively correlate with each other within all analysed mRNA expres-
sion datasets of GBM (GSE49822, GSE50161, GSE7696, GSE16011, 
TCGA, GSE43378, GSE53733, GSE118793, GSE108474, GSE4290) 
c By separating GBM samples in the TCGA mRNA dataset based on 

NFIB copy number, the correlation between NFIA and NFIB expression 
improves, resulting in higher correlation coefficients for both groups. 
d and e NFIA and NFIB expression positively correlate in single-cell 
expression data of seven GBM tumours (GSE57872 and GSE89567). f 
Immunofluorescence co-staining of NFIA and NFIB proteins (arrows) 
in two patient-derived GBM xenograft tissues. g Quantification of 
NFIA+/NFIB+ cells as a percentage of all NFIA+ or NFIB+ cells. Scale 
bar in f = 50 μm. Error bars represent the standard deviation of the mean.
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co-staining of NFIA and NFIB in patient-derived GBM 
xenografts (Supplementary Tables 1a and 5). Quantifica-
tion was performed with two biological replicates in two 
non-necrotic 500 × 500 μm regions of interest per tumour. 
In the QBI-01 xenograft, which represents a tumour with 
fewer NFI-positive cells in general, half of all NFIA-positive 

cells co-stained for NFIB, whereas over a third of the NFIB-
positive cells were also NFIA-positive (Fig. 1f, g). The co-
expression of NFIA and NFIB was observed in more cells 
for the QBI-02 xenograft, in which at least 80% of cells 
expressed both NFIA and NFIB. We therefore conclude that 
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Fig. 2   NFI expression in GBM is associated with neurodevelopment 
and mature astrocytic genes. a Gene ontology (GO) analyses were 
performed on gene sets generated from three large GBM expression 
datasets (GSE108474, GSE16011 and TCGA). Four gene sets were 
generated for each large dataset, representing the top 500 genes that 
positively correlate or negatively correlate with NFIA or NFIB. Of 
the 345 GO Biological Process terms obtained from the six positive 
gene sets (pos), 45% were shared by both NFIA- or NFIB-correlated 
gene sets, but were absent from all of the negatively correlated gene 
sets (neg). b The 14 GO terms present in all six gene sets that posi-
tively correlated with NFI expression. c Similar GO analyses were 
performed on two large GBM single-cell mRNA-seq datasets (mgh45 

and mgh57 from GSE89567). Of the 220 GO Biological Process 
terms obtained from the four gene sets representing the NFIA or 
NFIB positively correlated genes, 32% of the GO terms were shared 
between NFIA- and NFIB-correlated genes in both datasets. d Rela-
tive enrichment of genes associated with mature astrocytic (AST), 
oligodendrocytic (OLI) and neuronal (NEU) signatures derived from 
the positive and negative gene sets that were generated for all eight 
datasets. NFI positively correlated genes were associated with mature 
astrocytic genes. Statistical significance was determined using a 
paired one-way ANOVA with Bonferroni’s multiple comparison cor-
rection.
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NFIA and NFIB show a high degree of co-expression within 
the same cells in GBM tumours.

NFIA and NFIB expression correlates with astrocytic 
differentiation genes in GBM cells

GBM tumours consist of a heterogenous mix of cell types 
[1, 3]. Highly aggressive tumours that consist predominantly 
of proliferating cells still harbour differentiated tumour cells 
that are not proliferating [2]. Given their role as regulators 
of cell differentiation during development, we hypothesised 
that NFIA and NFIB are associated with genes that corre-
spond with a differentiated cell state. To investigate this, we 
performed gene ontology (GO) analyses on gene sets that 
were independently derived from each of the three largest 
GBM mRNA expression datasets (GSE108474, GSE16011 
and TCGA; Supplementary Tables 6 and 7). We generated 
four gene sets for each mRNA expression dataset, with each 
set consisting of 500 genes. The first two sets consisted of 
the top genes that positively correlated with NFIA or NFIB, 
respectively, while the remaining two sets consisted of the 
top genes that showed negative correlation with NFIA or 
NFIB. Each set was then subjected to GO analyses to iden-
tify which GO Biological Process terms were enriched.

The six gene sets that were positively correlated with 
NFIA or NFIB (two sets for each of the mRNA expression 
datasets) returned a combined total of 345 unique GO terms 
(p < 0.001) (Fig. 2a; Supplementary Table 7). 114 of these 
terms (33%) occurred in at least four of the six positively 
correlated gene sets, but were completely absent from the six 
gene sets that are negatively correlated with NFIA or NFIB. 
These included GO terms associated with transcription, 
metabolic processes and development. 14 of these terms 
were shared between all six positively correlated gene sets. 
These are likely to represent genes that are co-expressed in 
NFIA+ and NFIB+ cells, and are enriched for terms rep-
resentative of neurodevelopment and cell differentiation 
processes (Fig. 2b). Overall, these findings are in line with 
the strong co-expression of NFIA and NFIB observed in 
these datasets (Fig. 1b–g), and indicative of their overlap-
ping function in regulating differentiation. Notably, no GO 
terms associated with proliferation were enriched in any of 
the positively or negatively correlated gene sets, suggesting 
that NFI expression is indicative of tumour differentiation 
state and not proliferative potential.

We next performed similar analyses using the two larg-
est single-cell mRNA-seq datasets derived from individ-
ual GBM tumours (mgh45 and mgh57 from GSE89567). 
Other single-cell datasets were excluded, as these did not 
contain sufficient cells for reliable correlation analyses. 
The four gene sets representing NFI positively correlated 
genes were enriched for a combined total of 220 GO terms 
(p < 0.00005). 70 of these terms (32%) were shared at least 

once between the NFIA and NFIB gene sets, but were com-
pletely absent from the gene sets representing negatively 
correlated genes (Fig. 2c; Supplementary Tables 8 and 9). 
Similar to our analyses of whole GBM tumours, the 38 GO 
terms shared between all four positively correlated gene sets 
represented neurodevelopmental processes, such as neuro-
genesis, gliogenesis, and cell differentiation (Supplementary 
Table 9). These findings also held true for gene expression 
datasets of two GBM cell lines collected from different pas-
sages and culture conditions (nob0308 and nob1228 from 
GSE4271; Supplementary Tables 10 and 11) [37], further 
supporting the premise that NFI expression is a marker of 
differentiated cells.

To determine whether the correlated gene sets were 
associated with specific cell types, we compared these sets 
with gene expression signatures that represent mature astro-
cyte, oligodendrocyte or neuron-specific genes as reported 
by three independent groups (Supplementary Table 12) 
[38–40]. The NFIA and NFIB positively correlated gene sets 
were associated with astrocytic genes (Fig. 2d). In contrast, 
genes that negatively correlated with NFIA or NFIB were 
enriched for oligodendrocytic markers. This suggests that 
NFI-expressing tumour cells are likely to resemble mature 
astrocytes rather than oligodendrocytes or neurons.

NFIA and NFIB proteins mark non‑proliferating, 
differentiated tumour cells

To determine whether NFI expression is associated with 
astrocytic markers in GBM tumours in vivo, we performed 
immunofluorescence co-staining on sections derived from 
five primary GBM samples (GBM-01 to -05), five xeno-
grafts derived from GBM cell lines (BAH1, SJH1, RKI1, 
WK1, U251) and three patient-derived xenograft tumours 
(QBI-01 to -03) (Fig. 3; Supplementary Figs. 1 and 2) [32]. 
All samples expressed both NFIA and NFIB, and displayed 
co-staining of markers of astrocytic differentiation. Cell 
counts demonstrated that the majority of NFIA- or NFIB-
positive cells (~ 80%) were also positive for GFAP or S100B 
(Fig. 4; Supplementary Tables 13 and 14). In contrast, only 
one third of the NFIA- or NFIB-positive cells co-stained 
with the proliferation marker Ki67. Hence, NFI expression is 
associated with the expression of mature astrocytic markers.

To further delineate the differentiation state of NFI-
expressing cells, we analysed the combined co-staining of 

Fig. 3   NFI-expressing cells in GBM are predominantly associated 
with the astrocytic differentiation marker GFAP. a and b Representa-
tive images of co-staining of NFIA (a) or NFIB (b) with GFAP and 
the proliferation marker Ki67. c and d Co-staining of NFIA (c) or 
NFIB (d) with the astrocytic marker S100B in GBM tissues. Closed 
arrowhead: NFI, GFAP and Ki67 co-localisation; open arrowhead: 
NFI and Ki67 co-localisation; arrow: NFI and GFAP co-localization. 
Scale bar (a–d) 50 μm.

◂
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GFAP and Ki67 (Figs. 3, 4; Supplementary Figs. 1 and 2; 
Supplementary Tables 13 and 14). No difference in the co-
staining pattern was observed between NFIA-positive or 
NFIB-positive cells. Over half of the NFI-positive cells co-
expressed only GFAP (Fig. 4c), indicative of more differenti-
ated cells, whereas less than a third of these cells were both 
GFAP- and Ki67-positive. The identity of the latter cells 
is questionable, but could perhaps represent cells that have 

just begun differentiating. We also observed that a subset of 
GFAP-positive cells was devoid of NFIA or NFIB expres-
sion. However, we were unable to determine whether both 
NFIA and NFIB were concurrently absent in these cells, as 
our NFIA and NFIB antibodies were derived from the same 
host species.

Expression of NFIA or NFIB induces tumour cell 
differentiation

NFI expression is indicative of differentiated cells that 
express mature astrocytic markers in GBM, but whether 
these transcription factors can actually drive the differentia-
tion of proliferating cancer cells remains unclear. Overex-
pression of either NFIA or NFIB is sufficient to induce the 
expression of astrocytic markers in vitro [20, 23, 28], but this 
remains to be demonstrated for tumours in vivo. In addition, 
no study has yet to compare both NFIA and NFIB under sim-
ilar conditions. To investigate whether NFI expression can 
drive astrocytic differentiation in vivo, we introduced NFIA 
or NFIB overexpression plasmids via in vivo electroporation 
into subcutaneous xenografts. As a proof of concept, we 
electroporated xenografts of the U251 GBM cell line, which 
is responsive to NFIB induction in vitro [28], Electroporated 
xenografts were sectioned and co-labelled for GFAP, Ki67 
and green fluorescent protein (GFP), which is indicative of 
cells that were successfully electroporated (Fig. 5a). The 
overall number of GFAP-positive cells increased in NFIB-
electroporated xenografts as compared to xenografts elec-
troporated with the control plasmid (Fig. 5b; Supplementary 
Table 15). Specifically, we observed a concurrent decrease 
in GFAP-negative, Ki67-positive cells and a subsequent 
increase in GFAP-positive, Ki67-negative cells, indicat-
ing that proliferative cells transitioned into a differentiated 
state upon NFIB overexpression. A small but insignificant 
increase in the number of GFAP-positive, Ki67-positive 
cells was observed, suggesting that these could represent 
proliferative cells that are transitioning to a differentiated 
state.

To determine whether overexpression of NFIA or NFIB 
exerts the same effect, we electroporated NFIA, NFIB or 
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Fig. 4   NFI-expressing cells in GBM are predominantly associated 
with astrocytic differentiation genes. a Quantification of NFIA or 
NFIB co-staining with astrocytic and proliferation markers, demon-
strating the percentage of NFIA+ and NFIB+ cells co-stained for 
GFAP, S100B or Ki67. b The percentage of NFIA+ and NFIB+ cells 
co-stained with GFAP and Ki67, respectively. c GFAP-positive, 
Ki67-negative cells as a percentage of NFI positive or negative 
cells. Error bars represent the standard deviation of the mean. Sta-
tistical significance was determined using a paired one-way ANOVA 
with Bonferroni’s multiple comparison correction; *p < 0.05, 
***p < 0.0005.

Fig. 5   In vivo electroporation of GBM xenografts with NFI overex-
pression constructs. a, c and e Examples of GFP+ cells (arrows) as 
a marker of cells electroporated with control, NFIA or NFIB over-
expression plasmids in U251 (a), QBI-01 (c) and QBI-02 (e) xeno-
grafts. Sections were also stained for the proliferation marker Ki67 
(red) and the astrocytic differentiation marker GFAP. b, d and f 
Quantification of co-localization of the xenografts represented as a 
percentage of the GFP+ cells in U251 (b), QBI-01 (d) and QBI-02 (f) 
xenografts electroporated with control, NFIA or NFIB overexpression 
plasmids. g Quantification of co-localization of GFP+ cells in QBI-02 
with S100B and GFAP. Error bars represent the standard deviation of 
the mean. Statistical significance was determined using a Welch’s t 
test; *p < 0.05, **p < 0.005, ***p < 0.0005. Scale bars (a, c, e) 50 μm.
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control plasmids into xenografts representing two patient-
derived xenograft lines (Fig. 5c, e; Supplementary Table 15). 
These lines responded similarly to either NFIA or NFIB 
overexpression, with the number of GFAP-positive, Ki67-
negative cells increasing to approximately 80% in NFIA- or 
NFIB-electroporated xenografts (Fig. 5d, f). We observed a 
concurrent reduction in the number of cells that were GFAP-
negative, Ki67-positive, and GFAP-negative, Ki67-nega-
tive, while GFAP-positive, Ki67-positive cells increased. 
Immuno-labelling of the QBI-02 xenografts with S100B, 
another marker expressed in mature astrocytes, returned sim-
ilar findings (Fig. 5g; Supplementary Fig. 4a and b). Thus, 
we conclude that either NFIA or NFIB is sufficient to induce 
astrocytic differentiation in GBM.

Discussion

In this study, we have demonstrated that both NFIA and 
NFIB function as regulators of astrocytic differentiation in 
astrocytoma. NFI expression is higher in lower grade astro-
cytomas, and the expression of NFIA and NFIB in GBM 
is typically associated with genes representing the mature 
astrocytic state. Furthermore, both these transcription fac-
tors are co-expressed in GBM cells that also express mature 
astrocytic markers. Most importantly, in vivo overexpression 
of either NFIA or NFIB in xenografts is sufficient to drive 
proliferative cells towards astrocytic differentiation. Hence, 
NFIA and NFIB retain their developmental role as inducers 
of astrocytic differentiation in astrocytoma, and could there-
fore act as tumour suppressors within a therapeutic context.

Although strong evidence exists to suggest that NFIB acts 
as a tumour suppressor in astrocytoma [3, 23, 26, 27], the 
role of NFIA remains disputable [3, 22, 26, 27, 41, 42]. 
In vitro experiments suggest that NFIA promotes rather 
than suppresses cancer cell proliferation [42]. However, our 
findings demonstrate that both NFIA and NFIB function as 
tumour suppressors as they drive proliferating cells to dif-
ferentiate towards an astrocytic fate in vivo. Whether they 
share similar functions in other tumours requires further 
study, but this is unlikely to be the case. These transcription 
factors are widely expressed in many tissues during devel-
opment, and both oncogenic and tumour suppressive roles 
have been reported which may be tissue-specific [43]. For 
instance, NFIA plays a vital role in the development of oli-
godendrocytes [44, 45], with the expression of NFIA, but 
not NFIB, being retained in adult oligodendrocytes [18]. 
In line with this, oligodendrogliomas tend to demonstrate 
lower NFIA expression than astrocytomas, in contrast to 
NFIB [22]. This lower expression may be associated with 
the partial loss of chromosome 1p31, which is more often 
observed in oligodendrogliomas than in astrocytomas [46]. 
Interestingly, overexpression of NFIA in a mouse model of 

oligodendroglioma resulted in tumours resembling astro-
cytomas [29]. In spite of this, as this previous study did 
not investigate whether these cells remained proliferative, 
another possible interpretation of the findings is that NFIA 
overexpression caused the cells to differentiate towards the 
astrocytic lineage, similar to our observations.

NFI proteins have also been implicated as tumour sup-
pressors in other brain cancers, such as the SHH-subtype of 
medulloblastomas [47, 48]. This role was strongly corrobo-
rated using a mouse model of SHH-subtype medulloblas-
toma with heterozygous deletion of Nfia [47]. Compared to 
normal Nfia expression, loss of one allele increased tumour 
incidence and decreased tumour latency. Hence, NFI may 
broadly function as inducers of differentiation in different 
brain tumour cell types.

The identification of the Nfi loci as common insertion 
sites in insertional mutagenesis mouse models demonstrates 
that reduced Nfi expression contributes to glioma tumori-
genesis [26, 27]. However, how tumour cells suppress NFI 
expression in astrocytomas in vivo to evade differentiation 
remains unclear. As mutations of the NFI genes are rare, 
haploinsufficiency of NFIA or NFIB appears to be the 
most common pathway through which their expression is 
reduced. It is also likely that NFI expression is regulated on 
a transcriptional level in proliferating tumour cells that have 
evaded differentiation commitment. Unfortunately, little is 
known about the upstream regulators of NFI during normal 
astrogliogenesis or in astrocytoma, so this requires further 
investigation. However, due to the strong positive correlation 
between NFIA and NFIB expression, it is likely that both 
have similar upstream regulators. A recent study proposed 
that NFIA expression could be mediated by TGFβ in nor-
mal gliogenesis [21]. Whether reduced NFIA expression in 
GBM is due to ectopic TGFβ signalling remains to be eluci-
dated. Aside from this, post-transcriptional regulation may 
also contribute to NFI down-regulation. For example, the 
expression of the microRNAs miR-124 and miR-129 posi-
tively correlates with increased glioma grade, but inversely 
correlates with NFIB expression [49, 50]. Indeed in vitro 
experiments have demonstrated that microRNAs regulate 
NFI expression in astrocytoma cell lines, but their signifi-
cance in vivo remains to be determined. Greater emphasis 
on understanding how NFI is suppressed in tumour cells is 
required for effective therapeutic manipulation of the NFI-
mediated differentiation pathway.

In addition to direct manipulation of the NFI pathway as 
a potential differentiation therapy, increased expression of 
NFI may also act as a biomarker indicative of differentiation 
when testing novel therapeutic agents or for diagnostic pur-
poses. It is not known whether NFI expression was induced 
and sustained for the differentiation agents tested [6–8]. The 
abundance of NFI proteins could even indicate whether a 
tumour would be more prone to induction of differentiation 
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for differentiation therapies instead of, or in combination 
with, the current standard treatment regime. Nevertheless, 
any diagnostic or prognostic value of NFIA or NFIB to clini-
cal management will require further investigation.

In conclusion, our study demonstrates that both NFIA and 
NFIB play a direct role in inducing tumour differentiation in 
astrocytoma. Given that tumours with fewer differentiated 
cells are associated with a poorer clinical outcome, a deeper 
understanding of the NFI-mediated differentiation mecha-
nisms may reveal a potential therapeutic strategy to reduce 
the proliferative potential of GBM cells via differentiation, 
and thereby improve patient survival.
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