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Abstract

The deubiquitylating enzyme Usp9x is highly expressed in the developing mouse brain, and increased Usp9x expression
enhances the self-renewal of neural progenitors in vitro. USP9X is a candidate gene for human neurodevelopmental
disorders, including lissencephaly, epilepsy and X-linked intellectual disability. To determine if Usp9x is critical to mammalian
brain development we conditionally deleted the gene from neural progenitors, and their subsequent progeny. Mating
Usp9xloxP/loxP mice with mice expressing Cre recombinase from the Nestin promoter deleted Usp9x throughout the entire
brain, and resulted in early postnatal lethality. Although the overall brain architecture was intact, loss of Usp9x disrupted the
cellular organization of the ventricular and sub-ventricular zones, and cortical plate. Usp9x absence also led to dramatic
reductions in axonal length, in vivo and in vitro, which could in part be explained by a failure in Tgf-b signaling. Deletion of
Usp9x from the dorsal telencephalon only, by mating with Emx1-cre mice, was compatible with survival to adulthood but
resulted in reduction or loss of the corpus callosum, a dramatic decrease in hippocampal size, and disorganization of the
hippocampal CA3 region. This latter phenotypic aspect resembled that observed in Doublecortin knock-out mice, which is
an Usp9x interacting protein. This study establishes that Usp9x is critical for several aspects of CNS development, and
suggests that its regulation of Tgf-b signaling extends to neurons.
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Introduction

During embryonic development of the brain, neural cells need

to respond rapidly to changing environmental cues. In the

developing axon and dendrites, these decisions are made at a

distance from the nucleus and so rely heavily on post-translational

mechanisms. The ubiquitin system regulates protein stability,

localisation and function in a rapid and quantitative manner and

has been shown to regulate multiple aspects of neural development

[1] [2] [3] [4]. Not surprisingly, given the precipitous conse-

quences of protein ubiquitylation, defects in the ubiquitin system

have been linked to a range of neurodevelopmental and

neurodegenerative diseases [5] [6] [7] [8] [9]. Specificity in the

ubiquitin system is imparted by the hundreds of E3 ubiquitin

ligases and deubiquitylating enzymes (DUBs), which add or

remove ubiquitin, respectively. DUBs function downstream in the

ubiquitin pathway, thus having the potential to act as final arbiters

of protein substrate fate and function [10] [11] [12]. Several

studies have shown that DUBs play important roles in the growth,

function and maintenance of neurons and synapses [13] [14,15].

Ubiquitin specific protease 9, located in the X chromosome

(Usp9x, also called FAM), is a substrate-specific DUB that is highly

expressed in the developing CNS in both humans and mice [16–

19]. Although Usp9x expression decreases in the mature CNS it

remains strongly expressed in the neurogenic regions including,

the sub-ventricular zone of the lateral ventricles and the sub-

granular zone cells of the dentate gyrus [17,20]. Usp9x function

has been implicated in several aspects of CNS development.

Increased expression of Usp9x in embryonic stem cell-derived

neural progenitors promotes their organisation into polarised

clusters, and increases their self-renewal and cellular potency [17].

In Drosophila, Usp9x’s homologue, fat facets (faf) regulates

photoreceptor fate as well as synaptic morphology and function

[13,21]. In humans USP9X has been implicated in lissencephaly

and epilepsy [16] and is an X-linked Intellectual Disability

candidate gene [22].

Usp9x is a large DUB (2554 amino acids) and several of its

substrates regulate aspects of neural development and/or homeo-

stasis. These include components of neurodevelopmental signal-

ling pathways such as Notch [23–25], Wnt [26] and TGF-b [27].
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In the Notch pathway Usp9x regulates the trafficking accessory

protein Epsin [28], as well as the ubiquitin ligase Mind Bomb1

[29] [30] in the signal sending cells. Usp9x also stabilises the Notch

intracellular domain E3 ligase, Itch [31], which functions in the

signal receiving cell [23,25]. Usp9x directly binds and stabilises b-
catenin, a component of cell-cell adhesion and a Wnt signalling

pathway second messenger, in a range of the mammalian cells and

tissues, including the CNS [26,32,33] where it is required for

proper development [34–36]. Usp9x deubiquitylation of Smad4 is

essential for signalling by members of the Tgf-b family [27,37].

Still other Usp9x substrates regulate neural progenitor adhesion

and proliferation. Acute lymphoblastic leukemia-1 fusion partner

from chromosome 6 (AF-6) is essential for the establishment of

adherens junctions and polarity in neural progenitor cells [38,39].

Usp9x regulates both the stability and localisation of AF-6 [40]

[41]. Another Usp9x substrate, Activator of G protein Signalling 3

(AGS3) is involved in spindle orientation and asymmetric cell

division in cortical progenitors [42] [43]. Finally, Usp9x binds the

microtubule-associated protein Doublecortin (DCX), which is

involved in neuronal migration, protein sorting and vesicle

trafficking [16] [44]. The interaction between Usp9x and DCX

is clearly important for human CNS development as patients with

point mutations in DCX that cannot bind Usp9x, develop

lissencephaly [16].

The above evidence suggests that there are ample avenues

through which Usp9x might regulate CNS development. Howev-

er, there are two significant caveats to implying a role for Usp9x in

neural development in vivo based simply on the observed substrate

associations. These are, (i) most of the Usp9x-substrate interactions

and regulation have been determined in cultured cells; (ii) whether

or not Usp9x is the rate-limiting determinant of a substrate’s fate,

and any subsequent developmental consequences, is largely cell

context-specific. Therefore, to assess the requirement for Usp9x

during mammalian CNS development we conditionally deleted

the Usp9x gene in neural progenitors using tissue-specific Cre

recombinase gene expression. Loss of Usp9x in all neural progenitors

resulted in early post-natal lethality, and was associated with

disorganised cortical architecture and reduced corpus callosum

and hippocampal volumes. More detailed analysis of neurons

revealed neurite growth defects that can, in-part, be explained by

refractory responses to TGFb stimulation. The results demonstrate

novel roles for Usp9x in brain development.

Materials and Methods

Ethics Statement
All experiments were performed under ethical clearance from

the Griffith University, and The Women’s and Children’s Health

Network, and the South Australian Pathology Department Animal

Ethics Committees. The research was conducted in accordance

with the policy and guidelines of the National Health and Medical

Research Council of Australia. Animals were monitored for signs

of pain and distress, all euthanasia was performed using cervical

dislocation, and all efforts were made to minimize suffering.

Generation of Usp9xloxP Mice
Usp9xloxP mice were generated by Ozgene Pty Ltd, Bentley,

Australia, as described [45]. Briefly, loxP sites were incorporated

into the second and third introns flanking exon three. Initiation of

translation occurs in exon two, followed by 96bps of coding

sequence. Deletion of exon three (146 bp), which contains an

incomplete number of codons, would result in a frame shift with

the next six alternative ATG start codons out of frame. To assess if

any translation occurred from an in frame start codon downstream

of exon three, an antibody raised against the USP9X C-terminal

was used.

Deletion of Usp9x in the Developing Mouse Brain
Usp9xloxP/loxP female mice were crossed with Nestin-Cre [46] or

Emx1-Cre [47] males, to delete Usp9x from the whole brain (Nestin-

cre) or dorsal telencephalon (Emx1-cre), respectively. Using this

breeding scheme Usp9x would be deleted from males, which

inherited Cre recombinase and in this gender result in a Usp9x null

genotype. Cre-negative male littermates were used as negative

controls in all experiments, except where noted. Cre-positive

female offspring are heterozygous for Usp9x gene deletion.

For all analyses a minimum of three or more Usp9xcKO/Y mice

versus three or more littermate controls were used. Results were

assessed statistically using a Student’s t test unless otherwise

specified.

Mouse Genotyping
DNA was extracted from neural tissues (brain or spinal cords)

and PCR was performed using standard techniques. Primers were

designed to detect Cre-recombinase: for 59-TGATGAGGTTCG-

CAAGAACC, rev 59-CCATGAGTGAACGAACCTGG. Male

embryos were identified using primers for the Sry region of the Y

chromosome: for 59-GAGGCACAAGTTGGCCCAGCAG, rev

59-GGTTCCTGTCCCACTGCAGAAG. Usp9x primers: for 59-

GCTCACCATTAGGTTGTTAG, rev 59-TAGACCCATCAT-

GAACCATG. Usp9x primers detect wild type Usp9x (505 base

pairs) as well as the Usp9xloxP gene with exon three removed R
Usp9xcKO/Y (207 base pairs).

Reverse Transcription-PCR Analysis
Total RNA was extracted from brains or testes using TRIzol

reagent (Invitrogen). Total RNA was treated with DNase I

(Invitrogen) then subjected to a mRNA purification step using a

MicroPoly(A) Purist mRNA purification kit (Ambion). Reverse

Transcription was performed using SuperScript III Reverse

Transcriptase primed with oligo(dT) (Invitrogen). PCR was then

performed on cDNA using standard techniques. Usp9y primers: F

59-ATGGCAGGTTGCACATTCAC, R5’-GTCTTCAT-

TACCCTGCAAGATC. qPCR reactions on RNA isolated from

hippocampal neurons were generated using the iTaq SYBR Green

Supermix (Biorad), run on the StepOne Plus Real Time PCR

System and analysed using StepOne Sortware V2.0 (Applied

Biosystems). Primers include; Bdnf F: ACTGGCTGACACTTTT-

GAGC, R: GCGTCCTTATGGTTTTCTTCG; Hes1 F: AAT-

GACTGTGAAGCACCTCC R: GTTCATGCACTCGCT-

GAAGC; EphB2 F: GTTGTATCTCAGATGATGATGG R:

GTCAAACCTCTACAGACTGG; Runx1 F: TCTGCA-

GAACTTTCCAGTCG R: GAGATGGACGGCAGAGTAGG.

Western Blot Analysis of Brain Tissue
Protein was extracted from embryonic and adult brain tissues

and Western blots were performed as described previously [33].

Signal was detected using horseradish peroxidase-conjugated

secondary antibodies (Millipore) developed with Immobilon

Western Chemiluminescent HRP Substrate (Millipore) then

imaged on a VersaDoc 4000 MP Imaging System (BioRad).

Histology and Immuno-fluorescence on Brain Sections
For analysis of embryonic brains, samples were drop fixed in

4% paraformaldehyde. For adult brains animals were anesthe-

tized, perfused trans-cardially with 4% PFA then heads were drop-

fixed in 4% PFA. Following fixation brains were processed for

Usp9x Regulates Brain Development
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paraffin or cryo-sectioning using standard techniques and

sectioned at 10 mm. Histological analyses were performed using

standard cresyl violet (Nissl) staining. Hippocampal area was

calculated using SPOT software (Diagnostic Instruments Inc). The

hippocampal area of the first control was designated 100. The

hippocampal areas of all other controls and Usp9xcKO/Y mice were

converted to ratios compared to the first control. For immuno-

fluorescence brain sections were blocked with normal donkey

serum (Invitrogen), incubated overnight at 4uC with primary

antibodies, then incubated for 3 h at room temperature with

secondary antibodies and mounted with Vectashield mounting

medium with DAPI (Vector Laboratories). Images were obtained

on a AxioImager Z1 microscope (Carl Zeiss) or Olympus FV1000

confocal microscope. For coronal analysis, sections from a

comparable position along the rostral-caudal axis were used

[48]. Sections were matched by counting the number of coronal

sections starting at the rostral-most edge of the brain and

confirmed by closely matching any unchanged anatomical land

marks [49].

Neuronal Cell Assays
For hippocampal-derived neuronal cultures, embryos were

harvested at E18.5 and hippocampal neurons isolated and

cultured as previously described [50]. For morphometric analysis,

isolated cells were transfected with pMAX-EGFP using the mouse

neuron nuclefector kit according to the manufactures instruction

(Lonza). Cells were fixed with 4% PFA and immuno-fluorescence

was performed as previously described [50]. Images were

generated on an Axioplan2 microscope (Carl Zeiss). Axons and

dendrites were identified using Tau1 and MAP2 immuno-

reactivity respectively, and measured using ImageJ software

(National Institute of Health). Only neurites10 mm in length or

longer were included. For neurite growth kinetic analysis

Usp9xcKO/Y cultures from five different embryos were compared

with littermate control cultures from four different embryos. At

least twenty neurons were analysed per culture. For neurite growth

in response to TGFb signalling, day 3 cultures were supplemented

with 1 ng/ml TGFb (eBioscience) and cultured for 48 hours

before fixation and analysis. Cultures were derived from 3

different Usp9xcKO/Y embryos and 3 different littermate control

embryos. At least 20 neurons were scored in each culture. For

transcriptional response to TGFb signalling, day 3 pooled cultures

derived from 3 Usp9xcKO/Y embryos and 3 littermate embryos were

treated with 1 ng/ml TGFb for 48 hours and RNA analysed by

qRT-PCR as described above. Technical triplicate reverse

transcriptase reactions were analysed. For TGFb luciferase

reporter assays, isolated neurons were co-transfected with 5 ug

of the SMAD3/4 reporter construct pGL3-CAGA-Luc [51]; Kind

gift of Dr Hong-Jian Zhu, University of Melbourne) and 50 ng

pGL4.74-Renilla (Promega) using nucleofection as previously

described. This experiment was conducted on cultures isolated

from 5 Usp9xcKO/Y embryos and 5 control littermates grown in

duplicate. Following 2 days of culture, 0–10 ng/ml TGFb was

added to the media for 24 hours. Each culture was lysed and

analysed in technical triplicate using the Dual Luciferase Reporter

Assay System as per manufactures instructions (Promega). Control

experiments were conducted using un-transfected cells, and cells

transfected with Renilla or Luciferase only. All graphs display mean

average of replicate experiments, error bars represent standard

deviations, and statistically analysed using students unpaired 2-

tailed t-test, a p-value of less than or equal to 0.05 was considered

significant.

Primary Antibodies
Rabbit (Rb) anti-USP9X (Bethyl Laboratories A301-351A), Rb

anti-GapDH (R&D Systems 2275-PC-100), Rb anti-NF160

(Abcam ab9034), Chicken (Ck) anti-MAP2 (Millipore AB15452),

Mouse (Ms) anti-Tau1 (Millipore AB1512), Ms anti-MAP2

(Sigma-Aldrich M 1406), Rb anti-GFAP (DakoCytomation

Z0334), Ck anti-MAP2 (Chemicon), Ms anti-04 (Millipore

MAB345), Rb anti-Cleaved caspase-3 (Cell Signaling Technology

9661), Rb anti-DCX (Abcam ab18723), Rabbit anti-BLBP

(Millipore ABN14).

Secondary Antibodies
Dk anti-rabbit Alexa-Fluor 594 (Invitrogen), Dk anti-mouse

Alexa-Fluor 647 (Invitrogen), Dk anti-chicken Cy3 (Jackson

Laboratories), Dk anti-mouse Alexa-Fluor 488 (Invitrogen), Gt

anti-rabbit HRP (Millipore).

Results

Deletion of Usp9x from the Developing CNS Results in
Perinatal Lethality
As Usp9x is required for pre-implantation mouse embryo

development [41], in order to study Usp9x’s role in brain

development we generated Usp9xloxP/loxP females and bred them

with heterozygous males expressing Cre recombinase from the

Nestin promoter-enhancer, which is active in all CNS neural

progenitors from E10.5 [52]. Using this strategy, males that

inherited the Nestin-Cre transgene, would be potentially Usp9x null

(hereafter referred to as Nes-Usp9x2/Y mice). In preliminary studies

using mouse ES cells in vitro, we had established that activation of

Cre resulted in the loss of Usp9x exon3 and the Usp9x protein (data

not shown). The efficiency of Usp9x exon3 and protein deletion in

the brain in vivo was initially evaluated in E18.5 Usp9x2/Y embryos

(Figure S1A,B) by PCR and immunoblot using a C-terminally

targeted Usp9x antibody (Figure S1B). Immunoblots using an

antibody against the N-terminal 20 amino acids of Usp9x showed

a similar reduction in full-length (290kDa) Usp9x levels (data not

shown). We observed some residual full-length Usp9x protein, but

this was likely due to blood vessels and brain meninges that were

present in the samples [53] [54] [52]. Immunofluorescence

analyses detected very low, residual levels of Usp9x protein in

neural cells in E12.5 embryos (n = 4) and confirmed complete loss

of Usp9x protein in Nes-Usp9x2/Y embryos by E14.5 (n = 4

embryos) (Figure S.1 C–F).

Nestin-Cre mediated loss of Usp9x throughout the brain resulted

in early postnatal lethality. Of 154 pups analyzed, from 18 litters,

all Nes-Usp9x2/Y male mice died within 24 hours of birth.

Although Nes-Usp9x2/Y males could move at birth, were pink

and appeared to breathe normally, they failed to suckle, as

evidenced by lack of milk in their stomachs at the time of death.

Female offspring, heterozygous for the knockout of Nes-Usp9x

(Usp9x2/X), appeared normal at birth and survived to adulthood at

rates similar to wild-type females.

Usp9x has a homologue on the Y chromosome, Usp9y. Although

Usp9y is reported to only be expressed during spermatogenesis in

the mouse [55], we performed RT-PCR on P0 mouse brains to see

if its expression is induced following the deletion of Usp9x. We

failed to detect Usp9y expression in these brains indicating that it is

not induced and potentially compensating for some Usp9x

functions (Figure S2).

Loss of Usp9x Results in Reduced Neuronal Processes
Analysis of E16.5 to E18.5 brains failed to detect a significant

decrease in the size of Nes-Usp9x2/Y brains and low power

Usp9x Regulates Brain Development

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68287



histological analysis revealed that all major CNS regions were

present in the absence of Usp9x (not shown). However Nissl

staining revealed a general disorganization of the brain architec-

ture. The most obvious was the loss of a clear demarcation

between the neural progenitors in the ventricular and subven-

tricular zones and the neuroblasts of the intermediate zone in

E16.5 embryos (Fig. 1A–D) and E17.5 (not shown). These

observations were confirmed in E18.5 embryos where the neural

progenitor and radial glial markers Nestin and Brain Lipid

Binding Protein (BLBP) were more diffusely localized and

disorganized in Usp9x2/Y embryos (Fig. 1E,H). The neurons of

the cortical plate were also less densely packed in the absence of

Usp9x (Fig. 1I,J).

We next sought to determine the affect of Usp96 loss on

neurons and glia by staining for NF160 and GFAP, respectively. In

the absence of Usp9x we detected a dramatic reduction in the

number and length of NF160-positive neuronal processes. This

was most evident in those projecting from the entorhinal cortex

towards the hippocampus (Fig. 2A,B). GFAP staining was reduced

in size in the hippocampus and did not extend as far medially in

the cerebral cortex in E18.5 embryos (Fig. 2C,D). Within the

dentate gyrus of the hippocampus GFAP stained projections were

not as extensive in the absence of Usp9x (Fig. 2C–F).

As Nes-Usp9x2/Y mice die at P0, to study the effects of Usp9x

depletion on post-natal stages of brain development we mated

Usp9xloxP/loxP females to heterozygous Emx1-Cre males, where Cre

expression is restricted to the neural progenitors of the dorsal

telencephalon from E9.5 onwards [56]. Loss of almost all the

dorsal telencephalon is compatible with survival [57] and indeed

Emx1-Cre mediated Usp9x knockout mice (referred to as Emx1-

Usp9x2/Y hereafter) survived into adulthood. In an attempt to

generate Emx1-Usp9x2/2 females we paired four adult Emx1-

Usp9x2/Y males with eight Usp9xloxP/loxP females over a period

spanning four months, however, no litters were produced.

Therefore, Emx1- Usp9x2/Y mice fail to produce viable offspring.

In Emx1-Usp9x2/Y mice, Emx1-Cre activity resulted in loss of

Usp9x protein from the telencephalon (Figure S5). As observed in

Nes-Usp9x2/Y embryos, the neocortex of Emx1-Usp9x2/Y mice had

reduced neuronal processes projecting through the entorhinal

cortex towards the hippocampus (not shown). In adult (7–8 wk

old) Emx1-Usp9x2/Y mice NF160 immunoreactivity detected

aberrant neuronal processes (Fig. 3 A,B). In the absence of Usp9x,

NF160-immunoreactive processes were much thicker and pre-

dominantly projected toward the pial surface (top of image), rather

than ventricle (Fig. 3A,B). Aberrant processes were found in all

cortical layers. The localisation of the dendritic marker MAP2 was

similar in the presence or absence of Usp9x. However while the

MAP2 and NF160 stains did not overlap in control littermates

they partially co-localised in the thick pial-orientated projections in

Emx1-Usp9x2/Y brains (Fig. 3C–F).

The corpus callosum is the major axonal tract connecting the

two cerebral hemispheres. Analysis of the corpus callosum, from its

most rostral to caudal aspects, revealed a reduction in the dorso-

ventral thickness in Emx1-Usp9x2/Y mice (Fig. 4A–F). These data

suggest that Usp9x is required for the growth of axon tracts in the

brain.

Usp9x binds Doublecortin (Dcx) protein which is important for

neuronal migration in the human cortex [58]. Loss of Usp9x

however, in both Nes-Usp9x2/Y (E12.5– E18.5) and Emx1-Usp9x2/

Y (P7) mice did not affect the overall localization or level of Dcx in

the developing cerebral cortex (Figure S3).

Deletion of Usp9x Results in Reduced Hippocampal Size
Loss of Usp9x in the forebrain also dramatically affected the size

of the hippocampus. Analysis of hippocampal area from matched

sections detected a 74% reduction in hippocampal area in adult

Emx1-Usp9x2/Y mice (Fig. 5A–C). A similar degree of reduction in

the absence of Usp9x was evident from the most rostral to caudal

aspects of the hippocampus. We also analysed the hippocampi of

adult Emx1-Usp9x2/X heterozygous females and detected a

reduction of hippocampal area, though to a lesser extent (data

not shown).

Despite the reduction in size, most regions of the adult

hippocampus retained their relative organisation and cytoarchi-

tecture. However the cytoarchitecture of the CA3 region of the

stratum pyramidale was particularly affected (Fig. 5 D–F). There

was a significant thinning of the CA3 region in Emx1-Usp9x2/Y

mice (48.51+/20.21 mm SEM (Usp9x+/Y, n = 6); 21.95+/
26.43 mm SEM (Emx1-Usp9x2/Y, n = 5, p = 0.011)). There were

no significant alterations in the thickness of CA1 or CA2 areas, or

within the granular cell layers of the dentate gyrus in Emx1-

Usp9x2/Y mice (data not shown). A less severe reduction in

hippocampal size was already apparent in E17.5 and E18.5

embryos (data not shown).

A reduction in cell number may result from decreased

proliferation, increased apoptosis or a reduction in the migration

of neurons or glia within the hippocampus during development.

Analysis of apoptosis by staining for cleaved caspase-3 [48] (Figure

S4.) revealed that loss of Usp9x increased apoptosis in the

hippocampus and medial neocortex at E18.5 and P0 (Usp9x+/

Y=1.1+/21.1 cells (n = 9) versus Usp9x2/Y 5.9+/25.1 cells,

n = 10; p= 0.013).

Deletion of Usp9x Results in Reduced Axonal Elongation
and Tgf-b Response in vitro
To determine if reduced axon length was due to cell

autonomous effects of Usp9x, we cultured hippocampal neurons

in vitro and measured both neurite length and branching. [59].

Cultured Nes-Usp9x2/Y hippocampal-derived neurons displayed

both reductions in primary axonal length and in the number of

axonal and dendritic termini, which reflects their degree of

arborisation (Fig. 6). At day 3 of culture, Usp9x2/Y axons were

30% shorter than control axons, whilst by day 7 of culture this

difference had reached 44% (Fig. 6B). Likewise, the total number

of neurite termini was reduced by 28–36% across all days of

culture, and whilst the reduction in axonal termini number was the

predominant contributor to this result (with reductions ranging

between 43–53%), reductions in dendritic termini were also

observed (Fig. 6C). Given the low cell density in these experiments

the data strongly suggest that Usp9x function is required cell

autonomously for the initiation and/or elongation of neurites,

which supports our in vivo observation.

Usp9x is a major regulator of the Tgf-b family signalling

pathway due to its deubiquitylation and hence activation of, the

common Smad protein, Smad4 [27,37]. Recently, Tgf-br2 has

been shown to be important for axon initiation and elongation

[60], whilst it is well established that supplementing cultured

neurons with TGFb increases axonal growth [61]. Therefore we

sought to determine if loss of Usp9x affected Tgf-b signalling in

neurons (Fig. 7). To test the status of Tgf-b signalling in the

absence of Usp9x we transfected hippocampal neurons with a Tgf-

b-luciferase reporter construct [51]. We detected 2.6-fold higher

basal levels of luciferase activity, normalised against renilla

expression in the absence of Usp9x (Fig. 7A). However, while

wild-type neurons could respond to increasing concentrations of

Tgf-b with higher luciferase activity, there was no change in the

Usp9x Regulates Brain Development
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Figure 1. Loss of Usp9x disrupts the architecture of the embryonic neocortex. The Nestin-cre mediated deletion of Usp9x (B,D) results in
loss of demarcation between the cells of the ventricular and sub-ventricular zones (VZ/SVZ), the more disperse cellular density of the intermediate
zone (IZ) and the neurons of the cortical plate (CP) seen in control littermates (A,C). C and D are higher magnification images of A and B, respectively.
Nestin (E,F) and BLBP (G,H) staining in E18.5 embryos indicated that neural progenitors were more loosely organized in the VZ/SVZ. Neurons of the

Usp9x Regulates Brain Development
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absence of Usp9x (Fig. 7B). This difference was greatest in the

presence of 10 ng/ml TGFb, resulting in a 3.3 fold elevation of

luciferase activity relative to basal levels in control neurons,

compared to only a 1.3 fold elevation in Usp9x2/Y neurons. This

suggested that Usp9x is required in neurons to respond to Tgf-b.
We next measured the mRNA levels of putative Tgf-b target genes

in response to 1 ng/ml Tgf-b in the presence and absence of

Usp9x. The TGF-b target gene Bdnf [62] showed no response to

Tgf-b in the absence of Usp9x. Bdnf acts as a self-amplifying

autocrine factor to promote axon formation and growth in

hippocampal neurons [63]. Paradoxically, Runx1 showed a higher

response to Tgf-b in the absence of Usp9x. However as Runx1

responds to TGF-b in a Smad4-independent manner [64] it might

not be affected by the absence of Usp9x which deubiquitytes

Smad4. The other putative target genes assayed, b-catenin, Ephb2
and Hes1 did not respond to Tgf-b. Finally we measured the

response of axon growth and neurite arborisation to 1 ng/ml Tgf-

b exposure following 5 days of culture. Consistent with previous

reports [61] we detected an 49% increase in axonal length in wild

type neurons in response to Tgf-b. In comparison, only a

negligible increase (14%) in axonal length was detected in

Usp9x-null neurons (Fig. 7D). Likewise, whilst the number of

neurite termini was increased by 40% in response to Tgf-b in

control neurons, again predominately because of increases in

axonal branching, no such response was observed in cells lacking

Usp9x (Fig. 7C). These data establish that axon growth in

cortical plate were disorganized in the absence of Usp9x (J) compared with littermates (I). Nissl stain of Usp9x+/Y (A,C,G) and Usp9x2/Y (B,D,H) in E16.5
embryos (A–D, G–H). V = ventricle. Scale bar = 100 mm (A), 50 mm (C), 40 mm (E), 100 mm (G), 40 mm (I).
doi:10.1371/journal.pone.0068287.g001

Figure 2. Usp9x loss affects neuronal and astrocytic projections. NF160 antibodies decorate axonal projection from the neocortex (Nc) to the
hippocampus (Hp) in E18.5 Nes-Usp9x+/Y mice (A). These projections were absent in Nes-Usp9x2/Y mice (B). GFAP staining is reduced in both the
hippocampus and neocortex of E18.5 Usp9x 2/Y embryos (D) compared with littermate controls (C). In the hippocampus GFAP-labeled projections
extended toward the CA3 region in control embryos (arrowhead in E) but not in the absence of Usp9x (F). Scale bar = 20 mm (A,B), 1606mm (C,D),
806mm (E,F).
doi:10.1371/journal.pone.0068287.g002
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hippocampal neurons requires Usp9x in order to respond to Tgf-

b. Loss of Usp9x did not affect the viability of the cultured

hippocampal neurons (Figure S6).

Discussion

Usp9x is highly expressed throughout the embryonic brain and

in specific regions of the adult brain including the neurogenic

zones [16,17]. To investigate whether Usp9x is required for neural

development and maintenance we deleted Usp9x in neural

progenitors of the developing brain using both a Nestin-Cre and

Emx1-Cre deletion strategy. Here, we report that loss of Usp9x in

the entire brain results in death within 24 hours of birth, possibly

due to a failure to suckle. Although the overall architecture of the

brain developed normally in the absence of Usp9x, its loss resulted

in reduction of the corpus callosum and hippocampal size. At

higher resolution, we revealed loss of Usp9x led to disorganisation

of the developing neocortex architecture, observed early within the

neural progenitor populations, and in the axonal projections of the

neurons of the cortical plate.

Our data show that during neuronal development Usp9x is

required for the correct development of CNS axons. The severe

reduction of the corpus callosum in Emx1-Usp9x2/Y mice is

consistent with this observation. To examine the molecular

mechanisms underlying the axonal defect we assessed Tgf-b
signalling capacity in cultured hippocampal neurons. The

rationale for this was based on two observations. First, Usp9x

regulation of Tgf-b signalling has been demonstrated in other

developmental systems, as diverse as Drosophila wing development

and dorsal-ventral patterning, the gastrulating Xenopus embryo,

and wound healing in human cells [27,37]. Usp9x regulation of

these systems is due to its deubiquitylation of the common Smad

protein, Smad4, which partners with receptor Smads to activate

Figure 3. Absence of Usp9x alters neuronal projections in the neocortex. NF160 staining of adult cerebral cortex (7–8 wk) Emx1-Usp9x+/Y

(A,C,E) and Emx1-Usp9x2/Y (B,D,F). NF160 stains thick, pial-oriented projections in Emx1-Usp9x2/Y mice (B). NF160 (red) colocalises with the dendritic
marker MAP2 (green) in the thick projections detected in Emx1-Usp9x2/Y cortical neurons (arrowheads in D,F). There is little overlap in control
littermates (C,E). Orientation is such that the pial surface (P) is to the top, and ventricle (V) to the bottom of each image. Scale bar = 30 mm (A), 406mm
(C,E).
doi:10.1371/journal.pone.0068287.g003
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Tgf-b family member target genes [65]. Cyclic ubiquitylation and

deubiquitylation of Smad4 by the E3 ligase Ectodermin and

Usp9x, respectively, regulates the nuclear/cytoplasmic shuttling of

Smad4 which is required for continued Tgf-b signalling in the

presence of ligand [27]. The second observation is that the Tgf-

brII receptor is required for axonogenesis in the mouse brain [60].

The axonal phenotype observed in these mice is similar to those in

our Usp9x null mice. Our data show that axons from hippocampal

neurons did not increase in length in response to exogenous Tgf-b
in the absence of Usp9x. In addition, a Tgf-b reporter construct

and the endogenous target gene Bdnf, did not respond to

increasing TGF-b concentration in the absence of Usp9x (Fig. 7).

These data strongly suggest there is little Tgf-b signalling in

neurons in the absence of Usp9x explaining, at least in part, the

failure or delay in axon growth in Usp9x deleted brains. However,

Usp9x facilitation of Tgf-b signalling does not entirely explain our

observed phenotype. Deletion of Smad4 in the brain results in a

much milder phenotype than in the Usp9x2/Y mice [66]. In

addition, although Tgf-brII is required for axon development it

had no effect on dendrites, but dendritic development was also

impaired in the absence of Usp9x, at least in vitro (Fig. 4) suggesting

Usp9x regulates other critical substrates during CNS development.

In addition to its requirement during axonal development, loss

of Usp9x also affected the localisation of the axonal protein NF160

in the forebrain of adult Emx1-Usp9x2/Y mice. In a number of

neurons NF160 co-localised with the dendritic marker MAP2 in

thick processes projecting toward the pial surface (Fig. 4). This

may reflect inappropriate trafficking of NF160 to dendrites, and

Usp9x has been implicated in the trafficking of proteins in a

polarised manner [33,67]. Alternatively, the mis-localisation of

NF160 may reflect a more general loss of polarity in Usp9x null

neurons. The earliest consequence of Usp9x loss was disorgani-

Figure 4. Loss of Usp9x results in reduction of the corpus callosum. Nissl staining of matched sections showing thinning of the corpus
callosum In Emx1-Usp9x2/Y adults males (C,D) compared with Emx1-Usp9x+/Y littermates (A,B). NF160 staining revealing reduction of the corpus
callosum is evident in Emx1-Usp9x2/Y P8 mice (E,F). (n = 4 for both Emx1-Usp9x2/Y and Emx1-Usp9x+/Y littermates). Scale bar = 160 mm (A), 200 mm (E).
doi:10.1371/journal.pone.0068287.g004
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sation of neural progenitors in the VZ/SVZ of the neocortex

observed in Nissl-stained sections and the tangled organisation of

nestin and BLBP (Fig. 1). Usp9x regulates a number of cell

adhesion and polarity proteins in polarised epithelial cells and

increased expression of Usp9x enhances the polarised organisation

of neural progenitors in vitro [17]. We have identified a number of

Figure 5. Usp9x is required for hippocampal development. The hippocampi of adult Emx1-Usp9x2/Y mice (B) were reduced in area compared
with Usp9x+/Y littermates (A). Nissl stain of 7–8week old mice. (C) Quantification of hippocampal area of Usp9x+/Y adult males (Control, n = 4)
compared with Usp9x2/Y (cKO, n = 4) (** p,0.01). (D–F) Higher magnification identifying disruption and reduction of the CA3 region in Usp9x 2/Y

males. (D - Usp9x+/Y; E,F independent Usp9x2/Y males) Scale bar = 100 mm (A,B), 150 mm (D–F).
doi:10.1371/journal.pone.0068287.g005

Figure 6. Loss of Usp9x reduces neuronal outgrowth. Embryonic hippocampal neurons were isolated, transfected with a plasmid encoding
Enhanced Green Fluorescent Protein, and grown in-vitro for 3, 5 or 7 days. (a) Example immunofluorescent images of wildtype (Nes-Usp9x+/Y) and null
(Nes-Usp9x2/Y) neurons resolved using GFP expression (Green) and co-stained with the axonal and dendritic specific antibodies, TAU1 (cyan) and
MAP2 (red) respectively. (b–c) Morphometric analysis was employed to record mean primary axonal length (b) and number of neurite termini (c).
*p,0.05 by student 2-tailed t-test.
doi:10.1371/journal.pone.0068287.g006
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cell adhesion and polarity complex proteins mis-localised or mis-

expressed in Usp9x null neural progenitors (SP, SAW in

preparation). These early effects may have ramifications for later

developmental events such as axon elongation.

Loss of Usp9x also reduced the size of the hippocampus by 75%

(Fig. 5). Hippocampal reduction was observed at late embryonic

stages though not as severe as in the adult. An increase in apoptosis

was observed in E18.5 and P0 Emx1-Usp9x2/Y in the hippocampal

region and may, in part, contribute to the reduction. A potential

candidate mediating this effect is the anti-apoptopic protein Mcl1,

which can be stabilised by Usp9x, at least in lymphoma and

cultured cell lines [68]. However, deletion of Mcl1 results in a

more severe loss of neural cells throughout the entire CNS.

Therefore Usp9x may only be a rate-limiting factor of Mcl1 levels

in the hippocampus. The hippocampal phenotype, in particular

the reduction in size, disorganisation of the CA3 region, together

with the absence or reduction of the corpus callosum, is similar to

that observed in Doublecortin (Dcx) and Doubelcortin-like (Dckl)

double knock-out mice [69]. Dcx is an Usp9x interacting protein,

though not a substrate, as it is not ubiquitylated [16]. Instead it is

proposed that Dcx traffics Usp9x along axonal microtubules. A

mutation in Dcx, which is unable to bind specifically to Usp9x,

was detected in a patient with lissencephaly, suggesting this

interaction is important in human cortical development [16].

Given the similarity in phenotype in the mouse knockout models,

it may be that Usp9x is also required for the migration of

hippocampal neurons, especially those destined for the CA3

region. The disorganisation of nascent neurons in the cortical plate

in embryonic cerebral cortex (Fig. 1) also supports a role for Usp9x

in neuronal migration. However, this may be independent of Dcx

as its expression was not altered in the cerebral cortex in the

absence of Usp9x (Figure S3).

The Bmp and Wnt signalling pathways at the cortical hem in

the medial neocortex are essential for the development of the

hippocampus [70,71]. As a member of the Tgf-b family of

signalling proteins, Smad4 is required in the signal-receiving cell to

facilitate Bmp signalling. As noted above Usp9x neurons did not

respond to Tgf-b raising the possibility that defective Bmp

signalling may contribute to the reduction in hippocampal growth

as has been suggested [72]. Usp9x can also stabilise b-catenin,
which is a second messenger for the canonical Wnt signalling

pathway. Therefore Wnt signalling may also be defective in the

hippocampal anlage. A more detailed analysis of Usp9x regulation

of hippocampal development is required.

USP9X has already been linked to a number of human

neurodevelopmental and neurodegenerative disorders. USP9X is

linked to lissencephaly, via its interaction with DCX [16], and

USP9X is a candidate gene in X-linked intellectual disability and

Figure 7. Loss of Usp9x disrupts TGF-b signalling in hippocampal neurons. (a–b) TGF-b luciferase reporter assays conducted in either
wildtype (Nes-Usp9x+/Y) or null (Nes-Usp9x2/Y) embryonic hippocampal neuronal cultures. Hippocampal neurons were isolated and transfected with
both renilla control and pGL3-TGF-b luciferase reporter plasmids. (a) Cells were grown for 3 days before analysis using dual-luciferase reporter assays
and data normalised relative to wildtype readings. (b) Luciferase reporter activity in response to increasing concentrations of TGF-b. Data normalised
to controls in the absence of TGF-b. All luciferase data from 6 biological replicates (i.e. cultures isolated from 6 Usp9x+/y and 6 Usp9x2/Y embryos). (c)
Response of established TGFb target genes in presence or absence of Usp9x, analysed by RT-qPCR. Isolated hippocampal neurons grown for 2 days
prior to the addition of 1 ng/ml TGF-b. (d–e). Morphological analysis of hippocampal neurons exposed to 1 ng/ml TGF-b in the presence or absence
of Usp9x. (d) Comparison of mean primary axonal length. (e). Comparison of number of neurite termini.
doi:10.1371/journal.pone.0068287.g007
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epilepsy [22]. Usp9x also deubiquitylates mono-ubiquitylated

alpha-synuclein raising the possibility it may play a role in the

progression of neurodegenerative diseases such as Parkinson’s

disease [73]. This study indicates that Usp9x regulation of brain

development likely involves multiple pathways and elucidation of

these mechanisms may shed light on a number of human

conditions involving aberrant neural development and/or func-

tion.

Supporting Information

Figure S1 Deletion of Usp9x exon 3 and protein in Nes-
Usp9x2/Y embryos. (A) PCR detected removal of exon 3 in

genomic DNA isolated from Nes-Usp9x2/Y E18.5 embryos. (B)

Immunoblot analysis of whole brain lysate revealing decreased

levels of Usp9x protein in E18.5 Nes-Usp9x2/Y embryos identified

by PCR. Residual levels of full length Usp9x probably reflect the

presence of non-neural cells in brain lystates. (C–F) Usp9x

antibody staining of neocortex of E12.5 (C,D) and E14.5 (E,F)

wild-type (Nes-Usp9x+/Y; C,E) and knockout (Nes-Usp9x2/Y; D,F)

embryos. Residual amounts of Usp9x was detected in E12.5 Nes-

Usp9x2/Y neural tissue (D), but Usp9x was unable to be detected

by E14.5 (F). Representative images from n= 4 for each genotype

at each embryonic stage.

(TIF)

Figure S2 Usp9y expression is not induced in the
absence of Usp9x. RT-PCR failed to detect Usp9y transcripts

in P0 brains in Usp9x+/Y (WT), Nes-Usp9x2/Y (cKO) of female (F)

pups. Usp9y was detected in RNA isolated from adult mouse testis

(T). Beta-actin transcripts were detected in all samples.

(TIF)

Figure S3 Loss of Usp9x does not affect Doublecortin in
the developing cerebral cortex. Immunofluorescence staining

of Doublecortin (Dcx) in the presence (A,C,E,G,I) or absence

(B,D,F,H,J) of Usp9x. At each stage three Usp9x+/Y and three

Usp9x2/Y littermates were compared. Representative images are

shown. Embryos from Nes-Usp9x matings (A–H) and pups

(postnatal day 7, P7) from Emx1-Usp9x matings were analyzed.

LV= lateral ventricle. Scale bar = 100 mm.

(TIF)

Figure S4 Loss of Usp9x increases neural apoptosis.
10 mm coronal cryosections of medial neocortex from E18.5 Nes-

Usp9x embryos stained with antibodies to cleaved caspase 3 (red) to

identify cells undergoing apoptosis. Nuclei are stained with DAPI

(blue).

(TIF)

Figure S5 Emx1-cre deletion of Usp9x. 10 mm coronal

cryosections of 7 week Emx1-Usp9x+/y (A,C) and Emx1-Usp9x2/y

(B,D) brains stained with Usp9x antibody (red) and DAPI (blue) to

detect nuclei. Usp9x is absent form the cerebral cortex (B) but

present at the same level in the striatum as control littermates

(C,D).

(TIF)

Figure S6 Loss of Usp9x does not affect the apoptosis of
cultured hippocampal neurons.Wildtype (Usp9x+/Y; n = 3) or

knockout (Usp9x2/Y; n =23) hippocampal neuronal cultures were

grown in-vitro for 8 days. A. Representative immunofluorescent

images showing cells stained for the apoptotic marker activated

caspase 3 (green), the neuronal marker bIII-tubulin (red) and cell

nuclei counterstained with DAPI (Blue). B. The percentage of

caspase3 positive (+ve) cells in wildtype and Usp9x null cultures. At

least 1000 cells were scored per experiment. p = 0.39 by Students

2-tailed unpaired t-test.

(TIF)
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