1 EMX2 transcriptionally regulates *Nfib* expression in neural progenitor cells during

2 early cortical development.

3 Running title: EMX2 regulates *Nfib* during cortical development

- 5 Jonathan W. C. Lim^{1,*}, Jens Bunt^{1,*,A,†}, Caitlin R. Bridges¹, Ching Moey¹, Matisse T. Jacobs¹,
- 6 Kok-Siong Chen¹, Linda J. Richards^{1,2,#,†}
- 7 ¹ The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia.
- 8 ² The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland,
- 9 Australia.
- 10
- 11 Current addresses: ^Princess Maxima Center for Pediatric Oncology, Utrecht, the
- 12 Netherlands and #Department of Neuroscience, Washington University in St Louis Medical
- 13 School, St Louis MO, USA.
- 14 *Authors contributed equally
- 15 [†]Authors for correspondence:
- 16 Dr Jens Bunt
- 17 Email: j.bunt-7@prinsesmaximacentrum.nl
- 18 Professor Linda J. Richards
- 19 Email: richards@uq.edu.au; linda.richards@wustl.edu

20 Abstract

21	The nuclear factor one (NFI) transcription factors play key roles in regulating the onset of
22	both neuronal and glial differentiation during cortical development. Reduced NFI expression
23	results in delayed differentiation, which is associated with neurodevelopmental disorders in
24	humans that include intellectual disability, agenesis of the corpus callosum and
25	macrocephaly. Despite their importance, our understanding of how individual NFI family
26	members are regulated during cortical development remains limited. Here, we demonstrate
27	that in mice, the homeobox transcription factor EMX2 regulates Nfib expression in radial
28	glial cells during cortical development. Using a combination of bioinformatics, molecular and
29	histological approaches, we demonstrate that EMX2 is able to bind to the Nfib promoter to
30	up-regulate Nfib expression. Unexpectedly, in vivo over-expression of EMX2 in wildtype
31	animals does not further up-regulate NFIB but instead leads to its down-regulation.
32	Therefore, our findings suggest that EMX2 is capable of both activating and repressing Nfib,
33	in a context-dependent manner. This bi-directional control over Nfib expression enables fine-
34	tuning of the total level of NFI proteins expressed and could be important for cell-type
35	specific NFI functions.
36	
37	Keywords

38 cortical development, EMX2, neuronal differentiation, nuclear factor one, NFIB

40 Introduction

41	During development, the timely onset of cellular differentiation is essential to generate the
42	basic anatomic architecture that is required for a fully functional brain. Underpinning this
43	process is the regulation of gene expression, governed by transcription factors that are
44	dynamically expressed in precise spatiotemporal patterns. One such family of transcription
45	factors that are required for the timely differentiation of neural progenitors are the nuclear
46	factor one (NFI) transcription factors. Analyses in mice demonstrate that the expression of
47	these transcription factors in the developing cortex is first detected at approximately
48	embryonic day (E)11.5 (Chaudhry et al. 1997; Plachez et al. 2008), coinciding with the onset
49	of neurogenesis within this region. In humans, haploinsufficiency of the genes NFIA, NFIB
50	or NFIX result in a spectrum of syndromes that are characterised by neurodevelopmental
51	deficits that include macrocephaly, other varying brain malformations and intellectual
52	disability (Zenker et al. 2019).
53	
54	Nfi knockout mouse models recapitulate the phenotypes reported in humans. These are
55	grossly represented by an expansion of the lateral ventricles and dysgenesis of the corpus
56	callosum, both of which arise due to delayed differentiation of radial glial cells (das Neves et
57	al. 1999; Shu et al. 2003; Barry et al. 2008; Campbell et al. 2008; Piper et al. 2009;

58 Betancourt et al. 2014; Gobius et al. 2016). During embryonic development, the delay in

59	radial glial cell differentiation in the developing cortex is accompanied by the continued self-
60	renewal of these cells. Consequently, the ventricular zone (VZ) where radial glial cells reside
61	expands and the cortical plate is thinner. Analyses of mouse models at postnatal ages
62	demonstrate enlarged cerebral cortices as compared to wildtype littermates (Campbell et al.,
63	2008; Schanze et al. 2018). This enlargement is presumably due to the subsequent
64	differentiation of the expanded progenitor cell pool that eventually occurs in these mice. As
65	evident by the increased severity of the phenotype when multiple family members are
66	concurrently deleted (Harris et al. 2016; Bunt et al. 2017), tight control of NFI levels is
67	requisite for normal development. Despite their importance, little is known about how the
68	expression of the NFI transcription factors is regulated during brain development.
69	
70	The transcription factor EMX2 is expressed from approximately E8 in telencephalic
71	progenitors within the dorsal and medial VZ (Simeone et al. 1992; Gulisano et al. 1996;
72	Mallamaci et al. 1998). Analyses of knockout mouse models demonstrate that EMX2
73	expression during this early period is critical for the specification of the medial cortex. In the
74	absence of EMX2, the hippocampus and cingulate cortex are considerably smaller because of
75	precocious differentiation and depletion of the progenitor cell population (Pellegrini et al.
76	1996; Yoshida et al. 1997; Shinozaki et al. 2002; Muzio et al. 2005). The neocortical
77	phenotype of <i>Emx2</i> knockout mice is considerably milder. Nevertheless, EMX2 plays

/8	complex autonomous and non-cell autonomous roles in this region. Among its known roles
79	are regulating the maintenance of the progenitor cell population (Heins et al. 2001;
80	Brancaccio et al. 2010), the differentiation and migration of specific neuronal populations
81	(Mallamaci et al. 2000; Shinozaki et al. 2002), and cortical arealisation (Yoshida et al. 1997;
82	Mallamaci et al. 2000; Bishop et al. 2000; Bishop et al. 2002). Therefore, while EMX2
83	expression is restricted to progenitor cells occupying the VZ, its expression in these cells is
84	critical for regulating many cellular processes throughout cortical development.
85	
85 86	Here, we utilised a bioinformatics approach to identify EMX2 as a candidate transcriptional
85 86 87	Here, we utilised a bioinformatics approach to identify EMX2 as a candidate transcriptional regulator of <i>Nfib</i> . Using a combination of histological and molecular analyses, we further
85 86 87 88	Here, we utilised a bioinformatics approach to identify EMX2 as a candidate transcriptional regulator of <i>Nfib</i> . Using a combination of histological and molecular analyses, we further demonstrate that EMX2 is required to drive NFIB expression in radial glial cells during
85 86 87 88 89	Here, we utilised a bioinformatics approach to identify EMX2 as a candidate transcriptional regulator of <i>Nfib</i> . Using a combination of histological and molecular analyses, we further demonstrate that EMX2 is required to drive NFIB expression in radial glial cells during cortical development. Unexpectedly, ectopic over-expression of EMX2 in the developing
85 86 87 88 89 90	Here, we utilised a bioinformatics approach to identify EMX2 as a candidate transcriptional regulator of <i>Nfib</i> . Using a combination of histological and molecular analyses, we further demonstrate that EMX2 is required to drive NFIB expression in radial glial cells during cortical development. Unexpectedly, ectopic over-expression of EMX2 in the developing cortex does not further up-regulate NFIB but instead leads to its down-regulation. Therefore,
 85 86 87 88 89 90 91 	Here, we utilised a bioinformatics approach to identify EMX2 as a candidate transcriptional regulator of <i>Nfib</i> . Using a combination of histological and molecular analyses, we further demonstrate that EMX2 is required to drive NFIB expression in radial glial cells during cortical development. Unexpectedly, ectopic over-expression of EMX2 in the developing cortex does not further up-regulate NFIB but instead leads to its down-regulation. Therefore, our findings suggest that EMX2 could function by fine-tuning NFIB expression and is

94 Material and Methods

95 Animal breeding and tissue collection

96	All breeding and experiments were performed at the University of Queensland in accordance
97	with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes
98	and with approval from the University of Queensland Animal Ethics Committee. Nfib
99	knockout (<i>Nfib</i> ^{tm1Rmg}) (Steele-Perkins et al. 2005) and <i>Emx2</i> knockout (<i>Emx2</i> ^{tm1Pgr}) (Pellegrini
100	et al. 1996) mice were maintained on a C57Bl/6 background. To generate timed-pregnant
101	females, male and female mice were placed together overnight and checked the following
102	day for vaginal plugs. This day was designated as E0.5 if a vaginal plug was present.
103	Pregnant dams were euthanised using sodium pentobarbital (Abbott Laboratories) on the day
104	of embryo collection. E13.5 embryos were drop fixed in 4% (w/v) paraformaldehyde (PFA)
105	in phosphate-buffered saline (PBS; pH 7.4) for fluorescence immunohistochemistry or their
106	neocortex dissected in ice-cold sterile PBS and immediately snap frozen for mRNA isolation.
107	E15.5 embryos were transcardially perfused with 0.9% (w/v) saline followed by 4% PFA.
108	

109 Bioinformatics analyses

110 Candidate transcriptional regulators of *Nfib* were identified using FIMO software version

111 5.2.0 (Bailey et al. 2009; Grant et al. 2011). Briefly, the region encompassing the mouse *Nfib*

112 RefSeq transcription start site and 2000 base pairs upstream and downstream of this

113	(chr4:82503780-82507779 from mm10 assembly) was scanned for putative transcription
114	factor binding sites ($p < 0.0001$) obtained from a database of transcription factor motifs
115	(Jolma et al. 2013). Candidate transcriptional regulators were then filtered to remove
116	transcription factors with low or undetectable expression in the E11.5 forebrain based on
117	expression data from ENCODE mRNA-seq datasets (transcripts per million < 10; dataset
118	identifiers: ENCFF465SNB, ENCFF976OLT) (ENCODE Project Consortium 2012; Davis et
119	al. 2018; He et al. 2020) and the Allen Developing Mouse Brain Atlas
120	(http://developingmouse.brain-map.org) (Thompson et al. 2014). Pairwise alignment of the
121	mouse and human Nfib promoter was performed using the EMBOSS Water webtool
122	(Madeira et al. 2019). A subsequent scan for EMX2 binding sites using a less stringent
123	significance threshold ($p < 0.001$) was then performed using FIMO. mRNA expression data
124	of 6 to 16 postconceptional weeks (PCW) human cortical tissue from the BrainSpan
125	Transcriptional Atlas of the Developing Human Brain (http//brainspan.org) (Miller et al.
126	2014) and GSE25219 (Kang et al. 2011) datasets were analysed and visualised using the R2:
127	Genomics Analysis and Visualization Platform (http://r2.amc.nl) as previously described
128	(Bunt et al. 2010; Bunt et al. 2012). Single-cell mRNA-seq data of SOX2+/PAX6+ cells from
129	14 to 19 PCW human cortical samples (Thomsen et al. 2016) and E14.5 mouse cortical radial

- glial cells (Loo et al. 2019) were tested for statistical significance using Pearson's correlation
 test in Prism 7 (GraphPad Software).
- 132
- 133 Immunohistochemistry
- 134 Brains of PFA-fixed embryos were removed from the skull and sectioned coronally, sagittally
- 135 or horizontally at 50 µm on a vibratome. Fluorescence immunohistochemistry was conducted
- 136 as previously described with minor modifications (Plachez et al. 2008). The primary
- 137 antibodies that were used are: rabbit anti-NFIB (1:500; HPA003956, Atlas Antibodies),
- 138 chicken anti-β-galactosidase (1:500; ab9361, Abcam), chicken anti-GFP (1:1000; ab13970,
- Abcam) and rabbit anti-EMX2 (1:500; HPA065294, Atlas Antibodies). Validation of the
- 140 specificity of the EMX2 antibody is presented in Supplementary Fig. 1. The specificity of the
- 141 NFIB antibody was validated previously (Chen et al. 2017). Alexa Fluor 488-conjugated goat
- 142 anti-chicken (1:500; A-11039, Invitrogen) and Alexa Fluor 555-conjugated goat anti-rabbit
- 143 (1:500; A-11034, Invitrogen) secondary antibodies were used for detection.
- 144 Immunofluorescent sections were counterstained with 4',6-diamidino-2-phenylindole,
- 145 dihydrochloride (DAPI, Invitrogen) to label cell nuclei and coverslipped using ProLong Gold
- 146 anti-fade reagent (Invitrogen). To reduce technical variability when quantifying

- 147 immunofluorescence intensity, matched control sections were mounted on the same slide to148 ensure identical staining conditions.
- 149
- 150 Imaging and data analysis
- 151 High resolution fluorescence images were acquired using a Diskovery spinning disk confocal
- 152 system (Spectral Applied Research, Ontaria, Canada) built around a Nikon TiE body
- 153 equipped with two sCMOS cameras (Andor Zyla 4.2, 2048 x 2048 pixels) and captured with
- 154 Nikon NIS software (Nikon, Tokyo, Japan). For fluorescence intensity measurements across
- 155 the different cortical layers, matched neocortical regions of 100 μm width were cropped and
- analysed using ImageJ software (NIH). To generate fluorescence intensity histograms,
- 157 cropped sections were divided into 20 bins of equal size across the ventricular to pial
- 158 surfaces. Fluorescence intensity measurements for *in utero* electroporations were determined
- by measuring the mean grey value of individual nuclei within the electroporated region.
- 160 Statistical significance was determined using unpaired t-tests unless otherwise stated, with p-
- 161 values below 0.05 considered significant. All values are presented as the mean unless
- 162 otherwise stated, with error bars representing the standard error of the mean. Images in
- 163 figures are representative images that have been identically cropped, enhanced for contrast
- and brightness, and pseudo-colored to permit overlay using Adobe Photoshop software.
- 165

166 RNA isolation and quantitative PCR

167	Total RNA was extracted from E13.5 snap frozen neocortical tissue using TRIzol reagent
168	(Invitrogen) as per the manufacturer's protocol (Life Technologies, USA). RNA was reverse
169	transcribed using SuperScript III First-Strand Synthesis SuperMix (Invitrogen) and Oligo(dT)
170	primers (Invitrogen) as per the manufacturer's instructions. Real-time qPCR was performed
171	with Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) and 0.25 μ M forward and
172	reverse primers on a Rotor-Gene 3000 (Corbett Life Science) as previously described (Bunt
173	et al. 2015). Relative expression was determined using the $\Delta\Delta$ Ct method with the
174	housekeeping gene beta-2-microglobulin used as a relative standard. Statistical significance
175	was determined using Welch's t-test. Error bars represent the standard error of the mean.
176	Primers were as previously described (Messina et al. 2010): B2MM 5'-
177	agactgatacatacgcctgcag-3', B2MMC 5'-gcaggttcaaatgaatcttcag-3', mNFI-BE2 5'-
178	gtttttggcatactacgtgcagg-3' and mNFI-BE3C 5'-ctctgatacattgaagactccg-3'.
179	
180	Plasmid DNA
181	The mouse <i>Emx2</i> coding sequence was amplified from pMXIG-Emx2 (a kind gift from
182	Magdalena Götz) using the following primers containing EcoRI restriction sites: 5'-
183	ATCGGAATCATGTTTCAGCCGGCGCCCAAG-3' and 5'-
184	ATCGGAATTCTTAATCGTCTGAGGTCACATC-3'. The amplified fragment was

185	subsequently digested and cloned into the EcoRI site within pCAGIG (Addgene plasmid
186	#11159; a kind gift from Connie Cepko) (Matsuda and Cepko 2004) to generate pCAGIG-
187	Emx2. Cloning of the pNfib luciferase plasmid was previously described (Bunt et al. 2015).
188	
189	Dual-luciferase reporter assays
190	Human glioblastoma U-251 MG (Ponten and Macintyre 1968) and mouse neuroepithelial
191	NE-4C (Schlett and Madarasz 1997) cell lines were obtained from the American Type
192	Culture Collection (ATCC). Cells were cultured in DMEM (Invitrogen) supplemented with
193	10% fetal bovine serum at 37°C in a humified atmosphere containing 5% CO ₂ . Cells were
194	seeded for luciferase reporter assays into a 48-well (U-251) or 96-well (NE-4C) plate 24
195	hours prior to transfection. Either pCAGIG-Emx2 or pCAGIG were cotransfected with pNfib
196	or the control pGL4.23 luciferase reporter plasmid (Promega) using FuGENE HD (Promega).
197	A control Renilla luciferase plasmid (pRL-SV40; Promega) was co-transfected with all
198	transfections as an internal control for normalization of firefly luciferase activity. Luciferase
199	activity was assayed 48 hours after transfection using the Dual-Luciferase Reporter Assay
200	System (Promega). All experimental conditions were tested as three or four independent
201	experiments consisting of technical triplicates. Statistical significance was determined for
202	each cell line using ratio paired t-tests.

203

204 ChIP-qPCR

205 NE-4C cells were cultured in DMEM (Invitrogen) supplemented with 10% fetal bovine 206 serum at 37°C in a humified atmosphere containing 5% CO₂. 100 mm cell culture dishes 207 were seeded with cells 24 hours prior to transfection and transfected the following day with the pCAGIG-Emx2 plasmid using FuGENE 6 transfection reagent (Promega) as per the 208 209 manufacturer's recommendations. Cells were fixed 24 hours after transfection using 1% 210 (w/v) PFA in PBS for 5 minutes. Excess PFA was then quenched with 125 mm glycine. 211 Fixed cells were lysed in lysis buffer (10 mM Tris-HCl pH 8.1, 10 mM NaCl, 3 mM MgCl₂, 212 0.5% (v/v) Nonidet P40 substitute solution) supplemented with cOmplete protease inhibitor 213 cocktail (Roche) at 4°C for 20 minutes in order to isolate fixed nuclei. Isolated nuclei were 214 sonicated in sonication buffer (0.1% (w/v) SDS, 1 mM EDTA pH 8.0, 10 mM Tris-HCl pH 215 8.1) supplemented with cOmplete protease inhibitor cocktail (Roche) using the M220 216 focused-ultrasonicator (Covaris) to generate 200 to 500 base pairs chromatin fragments. 217 Chromatin immunoprecipitation (ChIP) was performed by combining chromatin fragments 218 isolated from 2.5×10^{6} cells and suspended in ChIP buffer (0.087% (w/v) SDS, 0.87 mM 219 EDTA pH 8.0, 8.7 mM Tris-HCl pH 8.1, 150 mM NaCl, 1% (v/v) Triton X-100) 220 supplemented with cOmplete protease inhibitor cocktail (Roche) with 5 µg primary antibody 221 and 50 uL Pierce Protein G magnetic beads (Thermo Scientific). The primary antibodies used

222	were rabbit anti-EMX2 (HPA065294, Atlas Antibodies) and normal rabbit IgG (#2729, Cell
223	Signaling Technology). Following ChIP, chromatin-bound beads were washed twice with
224	low salt wash buffer (0.1% (w/v) SDS, 1% (v/v) Triton X-100, 2mM EDTA pH 8.0, 150 mM
225	NaCl, 20 mM Tris-HCl pH 8.1), high salt wash buffer (0.1% (w/v) SDS, 1% (v/v) Triton X-
226	100, 2mM EDTA pH 8.0, 500 mM NaCl, 20 mM Tris-HCl pH 8.1), LiCl wash buffer (1%
227	(w/v) sodium deoxycholate, 0.1% (v/v) Nonidet P40 substitute solution, 2 mM EDTA pH
228	8.0, 250 mM LiCl, 10 mM Tris-HCl pH 8.1) and TE buffer (10 mM Tris-HCl pH 8.1, 1 mM
229	EDTA pH 8.0). Chromatin was eluted from beads using 0.1 M sodium bicarbonate and 1%
230	(w/v) SDS at 65°C for 20 minutes. Eluted chromatin was de-crosslinked at 65°C for 20 hours
231	and sequentially treated with 0.2 mg/mL RNase A (37°C for 1 hour) and 0.4 mg/mL
232	Proteinase K (55°C for 1 hour) before being purified using the QIAquick PCR purification kit
233	(QIAGEN). qPCR was performed on the Rotor-Gene 3000 (Corbett Life Science) using the
234	PowerUp SYBR Green Master Mix (Life Technologies) and the following thermocycler
235	conditions: 2 minutes at 50°C and 2 minutes at 95°C, followed by 40 cycles with 15 seconds
236	denaturation at 95°C and 1 minute annealing and extension at 60°C. Relative enrichment is
237	presented at percent input and statistical significance was determine using unpaired t-tests.
238	Primers used for ChIP-qPCR were: site 1 forward 5'-gagaggctggtgcaaaagg-3', site 1 reverse
239	5'-ttgaaagattcaccggttcc-3', site 2 forward 5'-tttaaccccgtcctgtcctc-3', site 2 reverse 5'-
240	aggetettggtttacagggg-3', downstream control forward 5'-actttaggeaccecaaaacg-3',

downstream control reverse 5'-gggagcgtctgtagatggac-3', upstream control forward 5'-

acccagagagcccaagattc-3' and upstream control reverse 5'-catagccaccatcagcactg-3'. Statistical
significance was determined using unpaired t-tests.

244

245 In utero *electroporation*

246 In utero electroporation was performed as previously described (Lim et al. 2015). Briefly,

247 pregnant wildtype mice on a CD1 background were anaesthetised with 80-100 mg/kg (body

248 weight) ketamine and 5-10 mg/kg xylazine. An abdominal incision was made to expose the

249 uterus, and 0.5-1.0 μl plasmid DNA (pCAGIG or pCAGIG-Emx2) diluted in sterile PBS was

250 injected through the uterine wall into the medial region of the lateral ventricle of the brain

251 with a pulled glass pipette attached to a Picospritzer III (Parker Hannifin). Electrical pulses

252 (five 35 V pulses of 50 ms applied at 1 second intervals) were then delivered to embryos by

electrodes connected to a square-wave ECM 830 electroporator (BTX Harvard Apparatus).

Embryos were returned into the abdominal cavity and the abdominal cavity was sutured.

255 Isotonic Ringer's solution was administered subcutaneously and dams were placed in a

256 heated recovery chamber until alert. Buprenorphine (0.05-0.15 mg/kg) was administered

257 orally as an analgesic through ingestion of a flavoured jelly injected with buprenorphine.

258

261 **Results**

262 *EMX2 is a candidate transcriptional regulator of* Nfib *expression*

263	<i>Nfib</i> expression in the developing cortex is first observed at approximately E11.5 (Chaudhry
264	et al. 1997; Plachez et al. 2008) when the cortex is composed primarily of radial glial cells
265	and neurogenesis is just beginning. To identify transcriptional regulators of Nfib expression,
266	we undertook a bioinformatics approach by identifying transcription factor motifs present
267	within the Nfib promoter and subsequently filtering candidate transcription factors based on
268	their expression at E11.5 in ENCODE mRNA-seq data (Thompson et al. 2014) and the Allen
269	Developing Mouse Brain Atlas (He et al. 2020). Using this approach, we identified EMX2 as
270	a potential regulator of Nfib expression. Putative EMX2 binding sites were present within the
271	promoter regions of both human and mouse Nfib (Fig. 1A). These binding sites occurred
272	within two highly conserved regions that potentially function as transcriptional regulatory
273	elements (grey boxes in Fig. 1A). Besides these, no further EMX2 binding sites were
274	observed within 2000 base pairs upstream or downstream of the Nfib transcriptional start site.
275	
276	EMX2 expression during cortical development is detected as early as E8.5, where it is

expression during conteal development is detected as early as E8.5, where it is
expressed in neuroepithelial cells and subsequently in radial glial cells in high caudal to low
rostral and high medial to low lateral gradients (Simeone et al. 1992; Gulisano et al. 1996;
Mallamaci et al. 1998). While NFIB expression is not limited to the VZ during cortical

280	development, we previously reported that NFIB expression in radial glial cells followed a
281	similar expression pattern (Bunt et al. 2015). These patterns of expression are replicated
282	within <i>in situ</i> hybridization data from the Allen Developing Brain Atlas (Fig. 1B-E). In E11.5
283	wildtype sagittal sections, the highest expression of <i>Emx2</i> and <i>Nfib</i> mRNA were observed in
284	the hippocampal primordium and the caudal region of the dorsal cortex, with lower
285	expression detected in rostral regions (Fig. 1B, C). This expression pattern was similarly
286	observed at E13.5 in cells occupying the germinal layer but not within the nascent cortical
287	plate (Fig. 1D, E). At this age, the nascent cortical plate strongly expresses Nfib, but Emx2 is
288	absent within this layer. Furthermore, Nfib expression within the cortical plate appears more
289	evenly distributed and does not conform to the graded expression pattern observed within the
290	VZ. These findings suggest that EMX2 could be a transcriptional regulator of <i>Nfib</i> within the
291	VZ but is not required to sustain <i>Nfib</i> expression in differentiated neurons.
292	
293	Given that potential EMX2 binding sites identified in the mouse Nfib promoter are conserved
294	within the human NFIB promoter, we extended our analyses using human RNA-seq data to
295	determine whether the relationship between Emx2 and Nfib expression was similarly
296	conserved in humans. To do this, we first analysed the expression of <i>EMX2</i> and <i>NFIB</i> mRNA
297	in two independent spatio-temporal transcriptome data sets of human foetal brain samples
298	collected between 6 and 16 PCW (approximately equivalent to E10 to E15.5 in mice) (Kang

299	et al. 2011; Miller et al. 2014). NFIB mRNA expression was similarly correlated with EMX2
300	expression in both these data sets (Fig. 1F, G). We also extended our analyses to single-cell
301	RNA sequencing (scRNA-seq) data that was generated from neural progenitor cells of the
302	human and mouse cortex. In a dataset consisting of 186 SOX2 ⁺ , PAX6 ⁺ cells isolated from 14
303	to 19 PCW human cortical tissues (Thomsen et al. 2016), NFIB expression was significantly
304	correlated with <i>EMX2</i> expression (Pearson's correlation: $r= 0.3086$, p<0.0001). Similarly,
305	mouse Nfib expression is correlated with Emx2 expression in cortical radial glial cells
306	isolated from the E14.5 mouse cortex (Pearson's correlation: $r= 0.3782$, p<0.0001; n = 1605
307	cells classified as radial glial cells post hoc via unsupervised cell clustering) (Loo et al.
308	2019). Hence, EMX2 could function as a transcriptional activator of NFIB expression during
309	early cortical development in both humans and mice.
310	
311	EMX2 and NFIB proteins are co-expressed within the ventricular zone during cortical
312	development
313	We further characterised the expression patterns of EMX2 and NFIB protein by
314	immunofluorescence analyses. To do this, we examined co-expression of EMX2 and the β -
315	galactosidase (\beta Gal) reporter protein in E13.5 Nfib heterozygous brains sectioned sagittally,
316	horizontally and coronally. The β Gal gene acts as a reporter of NFIB expression as it replaces
317	the second exon of the <i>Nfib</i> null allele and is driven by the <i>Nfib</i> promoter. Therefore, β Gal

318	expression recapitulates expression of endogenous NFIB protein (Steele-Perkins et al. 2005;
319	Piper et al. 2009; Betancourt et al. 2014; Bunt et al. 2015). Immunofluorescence analyses
320	demonstrate that EMX2 and β Gal were both highly expressed within the developing dorsal
321	telencephalon at E13.5 (Fig. 2). Lower expression of both proteins was detected in other
322	brain regions and in these regions were predominantly confined to the lining of the ventricles
323	(Fig. 2A). Within the dorsal telencephalon, the expression of EMX2 and β Gal was identical
324	to that observed for Emx2 and Nfib mRNA via in situ hybridization. Both proteins were co-
325	expressed within the cortical VZ in high caudal to low rostral and high medial to low lateral
326	gradients (Fig. 2B-F). Similarly, EMX2 was not expressed within the nascent cortical plate
327	and β Gal staining appeared more evenly distributed within this region.
328	
329	Deletion of Emx2 reduces NFIB expression during early development
330	To further examine the relationship between EMX2 and NFIB expression, we next
331	investigated whether NFIB expression in the developing cortex is altered upon Emx2
332	deletion. To do this, we first quantified Nfib expression in Emx2 knockout and wildtype
333	neocortical tissue by qPCR. Relative Nfib expression in Emx2 knockout embryos was
334	reduced by half as compared to wildtype littermates at E13.5 (Fig. 3A). We also quantified
335	Nfib expression in these mice at E15.5 but observed no significant differences at this age
336	(data not shown). This discrepancy between the ages could potentially be attributed to

337	differences in the cellular composition of <i>Emx2</i> knockout tissue samples collected at different
338	ages (Pellegrini et al. 1996; Shinozaki et al. 2002). Furthermore, while the expression of
339	EMX2 is confined to radial glial cells that reside within the cortical VZ (Gulisano et al. 1996;
340	Mallamaci et al. 1998), NFIB is expressed not only in radial glial cells but also in postmitotic
341	neurons (Plachez et al. 2008; Piper et al. 2009; Betancourt et al. 2014; Bunt et al. 2015).
342	Hence, if EMX2 regulates Nfib in a cell autonomous manner, the reduction in Nfib expression
343	is likely to be restricted to radial glial cells that co-express both EMX2 and NFIB.
344	
345	To further test this hypothesis, we fluorescently stained matched sections of E13.5 Emx2
346	knockout and wildtype littermates. The overall staining pattern of NFIB is not altered
347	between wildtype and knockout sections, with high expression observed in the VZ and
348	cortical plate, but not within the intermediate zone (Fig. 3B). We quantified NFIB expression
349	within the cingulate cortex and neocortex by measuring fluorescence intensity at these
350	regions. To normalise for variation in cortical thickness, each section was divided into 20
351	equal-sized bins spanning the ventricular to marginal zones (Fig 3C, D). The mean
352	fluorescence intensity was then determined for each bin and compared between Emx2
353	knockout and wildtype sections. Fluorescence intensity was significantly reduced in the VZ
354	of <i>Emx2</i> knockout sections, but not within the intermediate zone or cortical plate. This was
355	true for both the cingulate cortex and neocortex, where fluorescence intensity within the VZ

- 356 was reduced by as much as 50% as compared to wildtype sections. Therefore, EMX2 is
- 357 required for NFIB expression in radial glia.
- 358
- 359 EMX2 transcriptionally regulates the Nfib promoter
- 360 We previously cloned the *Nfib* promoter region that encompasses the identified EMX2
- 361 binding sites into a luciferase reporter plasmid (Fig. 4A) (Bunt et al. 2015). To further
- 362 investigate how EMX2 regulates *Nfib* expression, we tested whether luciferase activity driven
- 363 via this promoter is increased in response to EMX2 over-expression. To do this, we co-
- 364 transfected mouse NE-4C neuroepithelial cells or human U-251 MG glioblastoma cells with
- 365 the Nfib promoter-driven luciferase plasmid (pNfib) and either an EMX2 over-expression or
- 366 GFP control plasmid. Co-transfection of the pNfib plasmid with EMX2 increased luciferase
- 367 activity by a minimum of 3-fold and 5.5-fold as compared to co-transfection with GFP in
- 368 NE-4C and U-251 cells, respectively (Fig. 4B). We similarly assessed whether EMX2 over-
- 369 expression had any effect on an empty luciferase reporter plasmid but did not observe any
- 370 changes in luciferase activity under these conditions (control + EMX2 in Fig. 4C). These
- 371 findings demonstrate that EMX2 over-expression can activate the *Nfib* promoter.

375	binding at both these regions (Sites 1 and 2 in Fig. 4A). As a control, we also designed primer
376	pairs for regions located upstream and downstream that were void of potential EMX2 binding
377	sites (downstream control and upstream control in Fig. 4A). We surveyed the enrichment of
378	EMX2 binding at each of these sites following chromatin immunoprecipitation using an
379	antibody specific for EMX2. EMX2 binding was significantly enriched at the upstream
380	binding region within the Nfib promoter (Site 2 in Fig. 4A, D) as compared to all other sites
381	surveyed (Fig. 4D). Hence, our findings demonstrate that EMX2 is capable of directly
382	binding to the Nfib promoter to transcriptionally regulate its expression.
383	
384	EMX2 over-expression in the developing cortex down-regulates NFIB expression
385	As further proof-of-principle, we sought to determine the effect of ectopic EMX2 over-
386	expression on NFIB expression in neural progenitor cells in vivo. To do this, we
387	electroporated wildtype embryos at E14.5, an age at which endogenous EMX2 expression is
388	decreasing, and collected embryos for analyses after 24 hours. We electroporated these
389	embryos with a plasmid that encoded for the expression of both <i>Emx2</i> and GFP, or a control
390	plasmid encoding GFP only. Coronal sections from both conditions were then stained with
391	antibodies against NFIB and GFP. We compared NFIB expression between electroporated
392	cells within the VZ of both conditions, normalised to adjacent GFP-negative cells within the
393	same sections (Fig. 4E-G). Unexpectedly, over-expression of EMX2 resulted in a reduction

- in NFIB expression within the VZ where both transcription factors are co-expressed (Fig. 4G,
- H). Therefore, this finding suggests that besides its role in activating *Nfib* expression, EMX2
- 396 may also be capable of repressing *Nfib* in a manner dependent on its cellular context.

398 Discussion

399	In this study, we present evidence demonstrating that EMX2 transcriptionally regulates Nfib
400	during early cortical development. Using a computational approach, we identified EMX2 as a
401	candidate transcriptional regulator of <i>Nfib</i> with conserved binding sites in human and mouse
402	(Fig. 1A-E). This inference is supported by the positive correlation between their expression
403	levels in published RNA-seq and scRNA-seq datasets (Fig. 1F, G). In line with their known
404	expression patterns, immunofluorescence analyses demonstrate that both proteins are co-
405	expressed within the VZ in similar gradients across the developing cortex (Fig. 2).
406	Furthermore, <i>Emx2</i> deletion results in a reduction of NFIB expression within the VZ where
407	both proteins are co-expressed but not the nascent cortical plate (Fig. 3). In vitro assays in
408	NE-4C and U-251 MG cells suggest that the regulation of <i>Nfib</i> occurs through direct binding
409	of EMX2 at the proximal promoter (Fig. 4A-D). Interestingly, ectopic over-expression of
410	EMX2 via in utero electroporation does not up-regulate NFIB but leads to its repression in
411	cells occupying the proliferative zone (Fig. 4E-H). Therefore, our findings suggest that
412	EMX2 may function to fine-tune NFIB expression during cortical development and in this
413	manner contribute to the timely onset of neurogenesis within this system.
414	
415	We previously described a cohort of 18 individuals with NFIB haploinsufficiency (Schanze et

416 al. 2018). While these individuals demonstrated variable phenotypes, the most common

417	neurodevelopmental phenotypes observed were mild intellectual disability and macrocephaly.
418	Analyses of <i>Nfib</i> knockout mouse models suggest that deficiencies in neuronal and glial
419	differentiation underlie these defects (Barry et al. 2008; Piper et al. 2009; Betancourt et al.
420	2014; Gobius et al. 2016; Bunt et al. 2017). During cortical development, neuronal
421	differentiation requires neural progenitor cells to switch their mode of cell division from
422	symmetric self-renewing divisions to asymmetric neurogenic divisions. Defects in this switch
423	could result in an expanded progenitor cell population, particularly if progenitor cells
424	continue dividing symmetrically unhindered. Our analyses of Nfia; Nfib double homozygous
425	knockout embryos demonstrate that the delay in neuronal differentiation observed upon loss
426	of <i>Nfib</i> is indeed accompanied by the expansion of the neural progenitor cell pool within the
427	proliferative VZ (Bunt et al. 2017). Transcriptome analyses performed on Nfib knockout
428	embryos have also identified mis-regulated genes that may contribute to this phenotype
429	(Betancourt et al. 2014; Bunt et al. 2017). However, our understanding of the underlying
430	molecular pathways encompassing NFIB remains limited. Uncovering these pathways could
431	identify additional genes involved in this process and provide novel insights into congenital
432	disorders of cortical development.
433	
434	EMX2 was previously reported as a potential rare cause of schizencephaly in humans but

435 whether this is indeed true requires further investigation (Brunelli et al. 1996; Faiella et al.

436	1997; Tietjen et al. 2007; Merello et al. 2008; Hehr et al. 2010). Analyses of mouse models
437	demonstrate that EMX2 regulates many processes throughout cortical development.
438	Contradicting NFIB function, EMX2 expression during the initial stages of cortical
439	development is crucial for promoting symmetric cell divisions and maintaining the progenitor
440	cell population (Heins et al. 2001; Brancaccio et al. 2010). Loss of EMX2 during this early
441	period results in precocious cell differentiation (Pellegrini et al. 1996; Yoshida et al. 1997;
442	Shinozaki et al. 2002). Consequently, the progenitor cell population is rapidly depleted and
443	less neurons are generated. Defects in neuronal differentiation are also reported to affect
444	neuronal populations that arise from outside the cortex that do not express EMX2 (Mallamaci
445	et al. 2000; Shinozaki et al. 2002), indicative of a non-autonomous role in the regulation of
446	differentiation of these cell populations. Besides this, contrary to its role during early
447	development, EMX2 expression in progenitor cells at later ages is reported to drive
448	asymmetric divisions (Gangemi et al. 2001; Galli et al. 2002; Gangemi et al. 2006). These
449	findings demonstrate that EMX2 functions in complex roles that require careful examination.
450	
451	EMX2's ability to regulate both symmetric and asymmetric divisions is intriguing. A
452	potential explanation for this is that EMX2's interaction with other transcription factors or
453	epigenetic factors that are present in different spatiotemporal patterns alters its ability to bind

454 to different genomic regions and regulate different target genes. Additionally, EMX2's

455	interaction with other transcription factors may be altered depending on the expression level
456	of EMX2 itself. In this manner, EMX2 could potentially repress and activate NFIB
457	expression in neural progenitor cells at different stages of development. Another potential
458	scenario to consider is that the direct binding of EMX2 to the Nfib promoter elicits one
459	response (either activation or repression of the promoter), while the opposite effect is brought
460	about through an unknown mechanism that may be independent of EMX2 binding to the Nfib
461	locus. Identifying where EMX2 binds in the genome and its target genes will be key to
462	understanding how the function of EMX2 changes throughout development and how it is able
463	to activate and repress NFIB in different contexts. Recent advances in the field of single-cell
464	multiomics will be crucial for this.
464 465	multiomics will be crucial for this.
464 465 466	multiomics will be crucial for this. To the best of our knowledge, only a few downstream targets of EMX2 have been identified
464 465 466 467	multiomics will be crucial for this. To the best of our knowledge, only a few downstream targets of EMX2 have been identified in the central nervous system. These include <i>Wnt1</i> (Ligon et al. 2003), <i>Tenm1</i> (Beckmann et
464 465 466 467 468	multiomics will be crucial for this. To the best of our knowledge, only a few downstream targets of EMX2 have been identified in the central nervous system. These include <i>Wnt1</i> (Ligon et al. 2003), <i>Tenm1</i> (Beckmann et al. 2011) and <i>Sox2</i> (Mariani et al. 2012). Besides these, <i>Reln</i> expression is also reduced in
 464 465 466 467 468 469 	multiomics will be crucial for this. To the best of our knowledge, only a few downstream targets of EMX2 have been identified in the central nervous system. These include <i>Wnt1</i> (Ligon et al. 2003), <i>Tenm1</i> (Beckmann et al. 2011) and <i>Sox2</i> (Mariani et al. 2012). Besides these, <i>Reln</i> expression is also reduced in <i>Emx2</i> knockout mice and is thought to underlie the disorganisation of radial glial fibres
 464 465 466 467 468 469 470 	multiomics will be crucial for this. To the best of our knowledge, only a few downstream targets of EMX2 have been identified in the central nervous system. These include <i>Wnt1</i> (Ligon et al. 2003), <i>Tenm1</i> (Beckmann et al. 2011) and <i>Sox2</i> (Mariani et al. 2012). Besides these, <i>Reln</i> expression is also reduced in <i>Emx2</i> knockout mice and is thought to underlie the disorganisation of radial glial fibres observed in these mice (Mallamaci et al. 2000). We previously reported a similar phenotype
 464 465 466 467 468 469 470 471 	multiomics will be crucial for this. To the best of our knowledge, only a few downstream targets of EMX2 have been identified in the central nervous system. These include <i>Wnt1</i> (Ligon et al. 2003), <i>Tenm1</i> (Beckmann et al. 2011) and <i>Sox2</i> (Mariani et al. 2012). Besides these, <i>Reln</i> expression is also reduced in <i>Emx2</i> knockout mice and is thought to underlie the disorganisation of radial glial fibres observed in these mice (Mallamaci et al. 2000). We previously reported a similar phenotype affecting radial glial cells in the hippocampus of <i>Nfib</i> knockout mice (Barry et al. 2008).

473 could be a contributing factor to the phenotype of radial glial cells in *Emx2* knockout mice.

475	Besides Nfib, the phenotypes of Nfia and Nfix knockout mice demonstrate that these genes
476	are similarly important for cortical development (das Neves et al. 1999; Shu et al. 2003;
477	Campbell et al. 2008; Gobius et al. 2016). Deletion of multiple Nfi genes results in a more
478	severe phenotype as compared to the deletion of single Nfi genes, demonstrating that these
479	transcription factors have overlapping but non-redundant functions in regulating these
480	processes (Harris et al. 2016; Bunt et al. 2017). We postulate that the overlapping function of
481	these transcription factors in regulating cell differentiation enables tighter control over the
482	onset of this process during cortical development, as each gene could be individually
483	regulated to fine-tune the total level of NFI expression. In this scenario, the precise
484	expression of each Nfi gene will be important for normal development, potentially to ensure
485	that the appropriate proportion of all major cell types are produced. Consequently,
486	understanding how each Nfi gene is regulated could reveal important information regarding
487	the regulation of cell differentiation in the developing central nervous system.
488	
489	In the context of Nfib, EMX2 could fine-tune NFIB expression by first repressing its
490	expression earlier in development and then activating Nfib expression as neurogenesis begins.
491	This sequence of events explains why EMX2 does not activate Nfib prior to E11.5, but both
492	transcription factors are expressed in similar gradients upon NFIB expression. Nevertheless,

493	NFIB could also be repressed prior to E11.5 by other means, such as post-transcriptional
494	regulation or the binding of other transcription factors to the Nfib promoter. The 3'
495	untranslated region (3'UTR) of <i>Nfib</i> is remarkably long at approximately 6500 nucleotides in
496	length. The microRNA miR-153 (Tsai et al. 2014; Tsuyama et al. 2015) as well as DROSHA
497	(Rolando et al. 2016) are capable of down-regulating Nfib mRNA and protein expression
498	through binding at this region. miR-153 is particularly interesting given that its expression in
499	the cortical VZ is detected at E9.5 but its expression in the VZ significantly decreases by
500	E14.5 (Tsuyama et al. 2015). Besides miR-153, the miRNAs miR291-3p, miR183 and miR92
501	are similarly down-regulated by at least 4-fold in rat cortical progenitors when compared
502	between E11 and E13, coinciding with the increase in Nfib expression in these cells (Nielsen
503	et al. 2009). Predicted binding sites for each of these miRNAs are present within the Nfib
504	3'UTR. Hence, these miRNAs together with miR-153 could play an important role in
505	regulating the onset of Nfib expression in neural progenitor cells.
506	
507	While other regulators of Nfib, such as BRN2 (Fane et al. 2017), ASCL1 (Borromeo et al.
508	2016) and MYC (Mollaoglu et al. 2017) have been reported outside the central nervous
509	system, none of these are likely to play a role in the onset of Nfib expression in the central
510	nervous system given their differences in temporal and spatial expression. Nevertheless, since
511	EMX2 expression is limited to radial glial cells throughout corticogenesis, other transcription

512	factors are likely to play key roles in regulating Nfib expression, particularly in cell types that
513	do not express EMX2 (Gulisano et al. 1996; Mallamaci et al. 1998) and in the adult brain
514	where NFIB but not EMX2 is widely expressed (Gangemi et al. 2001; Chen et al. 2017).
515	EMX1 is a fitting candidate given its expression in both progenitor cells and postmitotic
516	neurons during cortical development (Gulisano et al. 1996). In vitro experiments demonstrate
517	that EMX1 and EMX2 share identical consensus binding motifs (Jolma et al. 2013).
518	Therefore, EMX1 could potentially bind to the EMX2 binding sites that we identified within
519	the Nfib promoter to similarly regulate Nfib expression in progenitor cells and postmitotic
520	neurons.
521	
522	Another scenario that should be considered is the prospect of the NFI transcription factors,
523	including NFIB itself, potentially regulating Nfib expression. A super enhancer was recently
524	discovered within the intragenic region adjacent to the Nfib locus that is active in neural stem
525	cells. This super enhancer was identified through the enrichment of the Mediator complex
526	within this region, and is also bound by the transcription factor TCF4 in neural stem cells
527	(Moen et al. 2017; Quevedo et al. 2019). Chromatin immunoprecipitation performed with a
528	pan-NFI antibody (recognising all four NFI transcription factors) similarly demonstrates NFI
529	binding at this region (Mateo et al. 2015). Since NFIB is capable of directly interacting with
530	TCF4 as well as MED15 (a subunit of the Mediator complex) (Moen et al. 2017; Quevedo et

531	al. 2019), the onset of <i>Nfib</i> expression followed by its potential binding at this region could
532	result in a feed-forward loop that sustains NFIB expression in the central nervous system.
533	Hence, besides EMX2, NFIB itself could be a potential regulator of Nfib expression during
534	cortical development.
535	
536	In conclusion, this study demonstrates that EMX2 regulates Nfib expression in cortical
537	progenitor cells that occupy the dorsal VZ of the developing telencephalon. Given its earlier
538	onset and similar expression patterns when compared to NFIB, EMX2 could be important for
539	driving the initiation of Nfib expression during cortical development but may also function to
540	repress Nfib expression depending on context. In this way, EMX2 could fine-tune NFIB
541	expression to regulate the onset of cell differentiation during development.
542	

543 **References**

544	Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS
545	(2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37
546	(Web Server issue):W202-208. doi:10.1093/nar/gkp335
547	Barry G, Piper M, Lindwall C, Moldrich R, Mason S, Little E, Sarkar A, Tole S, Gronostajski
548	RM, Richards LJ (2008) Specific glial populations regulate hippocampal
549	morphogenesis. The Journal of neuroscience : the official journal of the Society for
550	Neuroscience 28 (47):12328-12340. doi:10.1523/JNEUROSCI.4000-08.2008
551	Beckmann J, Vitobello A, Ferralli J, Kenzelmann Broz D, Rijli FM, Chiquet-Ehrismann R
552	(2011) Human teneurin-1 is a direct target of the homeobox transcription factor
553	EMX2 at a novel alternate promoter. BMC Dev Biol 11:35. doi:10.1186/1471-213X-
554	11-35
555	Betancourt J, Katzman S, Chen B (2014) Nuclear factor one B regulates neural stem cell
556	differentiation and axonal projection of corticofugal neurons. The Journal of
557	comparative neurology 522 (1):30. doi:10.1002/cne.23490
558	Bishop KM, Goudreau G, O'Leary DD (2000) Regulation of area identity in the mammalian
559	neocortex by Emx2 and Pax6. Science 288 (5464):344-349.
560	doi:10.1126/science.288.5464.344

561	Bishop KM, Rubenstein JLR, O'Leary DDM (2002) Distinct actions of Emx1, Emx2, and
562	Pax6 in regulating the specification of areas in the developing neocortex. Journal of
563	Neuroscience 22 (17):7627-7638
564	Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, Girard L, Minna
565	JD, Gazdar AF, Cobb MH, Johnson JE (2016) ASCL1 and NEUROD1 Reveal
566	Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic
567	Programs. Cell Rep 16 (5):1259-1272. doi:10.1016/j.celrep.2016.06.081
568	Brancaccio M, Pivetta C, Granzotto M, Filippis C, Mallamaci A (2010) Emx2 and Foxg1
569	inhibit gliogenesis and promote neuronogenesis. Stem Cells 28 (7):1206-1218.
570	doi:10.1002/stem.443
571	Brunelli S, Faiella A, Capra V, Nigro V, Simeone A, Cama A, Boncinelli E (1996) Germline
572	mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat
573	Genet 12 (1):94-96. doi:10.1038/ng0196-94
574	Bunt J, de Haas TG, Hasselt NE, Zwijnenburg DA, Koster J, Versteeg R, Kool M (2010)
575	Regulation of cell cycle genes and induction of senescence by overexpression of
576	OTX2 in medulloblastoma cell lines. Molecular cancer research : MCR 8 (10):1344-
577	1357. doi:10.1158/1541-7786.MCR-09-0546

578	Bunt J, Hasselt NE, Zwijnenburg DA, Hamdi M, Koster J, Versteeg R, Kool M (2012) OTX2
579	directly activates cell cycle genes and inhibits differentiation in medulloblastoma
580	cells. International journal of cancer 131 (2):E21-32. doi:10.1002/ijc.26474
581	Bunt J, Lim JW, Zhao L, Mason S, Richards LJ (2015) PAX6 does not regulate Nfia and
582	Nfib expression during neocortical development. Scientific Reports 5:10668.
583	doi:10.1038/srep10668
584	Bunt J, Osinski JM, Lim JW, Vidovic D, Ye Y, Zalucki O, O'Connor TR, Harris L,
585	Gronostajski RM, Richards LJ, Piper M (2017) Combined allelic dosage of Nfia and
586	Nfib regulates cortical development. Brain Neurosci Adv 1:2398212817739433.
587	doi:10.1177/2398212817739433
588	Campbell CE, Piper M, Plachez C, Yeh YT, Baizer JS, Osinski JM, Litwack ED, Richards
589	LJ, Gronostajski RM (2008) The transcription factor Nfix is essential for normal brain
590	development. BMC developmental biology 8:52. doi:10.1186/1471-213X-8-52
591	Chaudhry AZ, Lyons GE, Gronostajski RM (1997) Expression patterns of the four nuclear
592	factor I genes during mouse embryogenesis indicate a potential role in development.
593	Developmental dynamics : an official publication of the American Association of
594	Anatomists 208 (3):313-325. doi:10.1002/(SICI)1097-0177(199703)208:3<313::AID-
595	AJA3>3.0.CO;2-L

596	Chen KS, Harris L, Lim JW, Harvey TJ, Piper M, Gronostajski RM, Richards LJ, Bunt J
597	(2017) Differential neuronal and glial expression of nuclear factor I proteins in the
598	cerebral cortex of adult mice. J Comp Neurol. doi:10.1002/cne.24206
599	das Neves L, Duchala CS, Tolentino-Silva F, Haxhiu MA, Colmenares C, Macklin WB,
600	Campbell CE, Butz KG, Gronostajski RM (1999) Disruption of the murine nuclear
601	factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the
602	corpus callosum. Proceedings of the National Academy of Sciences of the United
603	States of America 96 (21):11946-11951
604	Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, Jain K,
605	Baymuradov UK, Narayanan AK, Onate KC, Graham K, Miyasato SR, Dreszer TR,
606	Strattan JS, Jolanki O, Tanaka FY, Cherry JM (2018) The Encyclopedia of DNA
607	elements (ENCODE): data portal update. Nucleic Acids Res 46 (D1):D794-D801.
608	doi:10.1093/nar/gkx1081
609	ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the
610	human genome. Nature 489 (7414):57-74. doi:10.1038/nature11247
611	Faiella A, Brunelli S, Granata T, D'Incerti L, Cardini R, Lenti C, Battaglia G, Boncinelli E
612	(1997) A number of schizencephaly patients including 2 brothers are heterozygous for
613	germline mutations in the homeobox gene EMX2. Eur J Hum Genet 5 (4):186-190

614	Fane M, Harris L, Smith AG, Piper M (2017) Nuclear factor one transcription factors as
615	epigenetic regulators in cancer. Int J Cancer. doi:10.1002/ijc.30603
616	Galli R, Fiocco R, De Filippis L, Muzio L, Gritti A, Mercurio S, Broccoli V, Pellegrini M,
617	Mallamaci A, Vescovi AL (2002) Emx2 regulates the proliferation of stem cells of
618	the adult mammalian central nervous system. Development 129 (7):1633-1644
619	Gangemi RM, Daga A, Marubbi D, Rosatto N, Capra MC, Corte G (2001) Emx2 in adult
620	neural precursor cells. Mech Dev 109 (2):323-329. doi:10.1016/s0925-
621	4773(01)00546-9
622	Gangemi RM, Daga A, Muzio L, Marubbi D, Cocozza S, Perera M, Verardo S, Bordo D,
623	Griffero F, Capra MC, Mallamaci A, Corte G (2006) Effects of Emx2 inactivation on
624	the gene expression profile of neural precursors. Eur J Neurosci 23 (2):325-334.
625	doi:10.1111/j.1460-9568.2005.04559.x
626	Gobius I, Morcom L, Suarez R, Bunt J, Bukshpun P, Reardon W, Dobyns WB, Rubenstein
627	JL, Barkovich AJ, Sherr EH, Richards LJ (2016) Astroglial-mediated remodeling of
628	the interhemispheric midline is required for the formation of the corpus callosum. Cell
629	Rep 17 (3):735-747. doi:10.1016/j.celrep.2016.09.033
630	Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif.
631	Bioinformatics 27 (7):1017-1018. doi:10.1093/bioinformatics/btr064

632	Gulisano M, Broccoli V, Pardini C, Boncinelli E (1996) Emx1 and Emx2 show different
633	patterns of expression during proliferation and differentiation of the developing
634	cerebral cortex in the mouse. Eur J Neurosci 8 (5):1037-1050. doi:10.1111/j.1460-
635	9568.1996.tb01590.x
636	Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey TJ, Essebier A, Vidovic D,
637	Gladwyn-Ng I, Burne TH, Heng JI, Richards LJ, Gronostajski RM, Piper M (2016)
638	Transcriptional regulation of intermediate progenitor cell generation during
639	hippocampal development. Development 143 (24):4620-4630.
640	doi:10.1242/dev.140681
641	He P, Williams BA, Trout D, Marinov GK, Amrhein H, Berghella L, Goh ST, Plajzer-Frick I,
642	Afzal V, Pennacchio LA, Dickel DE, Visel A, Ren B, Hardison RC, Zhang Y, Wold
643	BJ (2020) The changing mouse embryo transcriptome at whole tissue and single-cell
644	resolution. Nature 583 (7818):760-767. doi:10.1038/s41586-020-2536-x
645	Hehr U, Pineda-Alvarez DE, Uyanik G, Hu P, Zhou N, Hehr A, Schell-Apacik C, Altus C,
646	Daumer-Haas C, Meiner A, Steuernagel P, Roessler E, Winkler J, Muenke M (2010)
647	Heterozygous mutations in SIX3 and SHH are associated with schizencephaly and
648	further expand the clinical spectrum of holoprosencephaly. Hum Genet 127 (5):555-
649	561. doi:10.1007/s00439-010-0797-4

650	Heins N, Cremisi F, Malatesta P, Gangemi RM, Corte G, Price J, Goudreau G, Gruss P, Gotz
651	M (2001) Emx2 promotes symmetric cell divisions and a multipotential fate in
652	precursors from the cerebral cortex. Mol Cell Neurosci 18 (5):485-502.
653	doi:10.1006/mcne.2001.1046
654	Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Gotz M (2007) Loss- and
655	gain-of-function analyses reveal targets of Pax6 in the developing mouse
656	telencephalon. Molecular and cellular neurosciences 34 (1):99-119.
657	doi:10.1016/j.mcn.2006.10.008
658	Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M,
659	Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes
660	TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J (2013) DNA-binding specificities of
661	human transcription factors. Cell 152 (1-2):327-339. doi:10.1016/j.cell.2012.12.009
662	Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, Pletikos M, Meyer KA,
663	Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S,
664	Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A,
665	Reimers M, Kleinman JE, Sestan N (2011) Spatio-temporal transcriptome of the
666	human brain. Nature 478 (7370):483-489. doi:10.1038/nature10523
667	Ligon KL, Echelard Y, Assimacopoulos S, Danielian PS, Kaing S, Grove EA, McMahon AP,
668	Rowitch DH (2003) Loss of Emx2 function leads to ectopic expression of Wnt1 in the

669	developing telencephalon and cortical dysplasia. Development 130 (10):2275-2287.
670	doi:10.1242/dev.00421
671	Lim JW, Donahoo AL, Bunt J, Edwards TJ, Fenlon LR, Liu Y, Zhou J, Moldrich RX, Piper
672	M, Gobius I, Bailey TL, Wray NR, Kessaris N, Poo MM, Rubenstein JL, Richards LJ
673	(2015) EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate
674	cortex. Development 142 (21):3746-3757. doi:10.1242/dev.119909
675	Loo L, Simon JM, Xing L, McCoy ES, Niehaus JK, Guo J, Anton ES, Zylka MJ (2019)
676	Single-cell transcriptomic analysis of mouse neocortical development. Nat Commun
677	10 (1):134. doi:10.1038/s41467-018-08079-9
678	Lopez-Bendito G, Chan CH, Mallamaci A, Parnavelas J, Molnar Z (2002) Role of Emx2 in
679	the development of the reciprocal connectivity between cortex and thalamus. J Comp
680	Neurol 451 (2):153-169. doi:10.1002/cne.10345
681	Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN,
682	Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis
683	tools APIs in 2019. Nucleic Acids Res 47 (W1):W636-W641.
684	doi:10.1093/nar/gkz268
685	Mallamaci A, Iannone R, Briata P, Pintonello L, Mercurio S, Boncinelli E, Corte G (1998)
686	EMX2 protein in the developing mouse brain and olfactory area. Mech Dev 77
687	(2):165-172

688	Mallamaci A, Muzio L, Chan CH, Parnavelas J, Boncinelli E (2000) Area identity shifts in
689	the early cerebral cortex of Emx2-/- mutant mice. Nat Neurosci 3 (7):679-686.
690	doi:10.1038/76630
691	Mariani J, Favaro R, Lancini C, Vaccari G, Ferri AL, Bertolini J, Tonoli D, Latorre E, Caccia
692	R, Ronchi A, Ottolenghi S, Miyagi S, Okuda A, Zappavigna V, Nicolis SK (2012)
693	Emx2 is a dose-dependent negative regulator of Sox2 telencephalic enhancers.
694	Nucleic Acids Res 40 (14):6461-6476. doi:10.1093/nar/gks295
695	Mateo JL, van den Berg DL, Haeussler M, Drechsel D, Gaber ZB, Castro DS, Robson P, Lu
696	QR, Crawford GE, Flicek P, Ettwiller L, Wittbrodt J, Guillemot F, Martynoga B
697	(2015) Characterization of the neural stem cell gene regulatory network identifies
698	OLIG2 as a multifunctional regulator of self-renewal. Genome Res 25 (1):41-56.
699	doi:10.1101/gr.173435.114
700	Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in
701	vivo and in vitro. Proc Natl Acad Sci U S A 101 (1):16-22.
702	doi:10.1073/pnas.2235688100
703	Merello E, Swanson E, De Marco P, Akhter M, Striano P, Rossi A, Cama A, Leventer RJ,
704	Guerrini R, Capra V, Dobyns WB (2008) No major role for the EMX2 gene in
705	schizencephaly. Am J Med Genet A 146A (9):1142-1150. doi:10.1002/ajmg.a.32264

706	Messina G, Biressi S, Monteverde S, Magli A, Cassano M, Perani L, Roncaglia E, Tagliafico
707	E, Starnes L, Campbell CE, Grossi M, Goldhamer DJ, Gronostajski RM, Cossu G
708	(2010) Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell
709	140 (4):554-566. doi:10.1016/j.cell.2010.01.027
710	Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Ebbert A, Riley ZL, Royall JJ,
711	Aiona K, Arnold JM, Bennet C, Bertagnolli D, Brouner K, Butler S, Caldejon S,
712	Carey A, Cuhaciyan C, Dalley RA, Dee N, Dolbeare TA, Facer BA, Feng D, Fliss TP
713	Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Howard RE, Jochim JM, Kuan CL,
714	Lau C, Lee CK, Lee F, Lemon TA, Lesnar P, McMurray B, Mastan N, Mosqueda N,
715	Naluai-Cecchini T, Ngo NK, Nyhus J, Oldre A, Olson E, Parente J, Parker PD, Parry
716	SE, Stevens A, Pletikos M, Reding M, Roll K, Sandman D, Sarreal M, Shapouri S,
717	Shapovalova NV, Shen EH, Sjoquist N, Slaughterbeck CR, Smith M, Sodt AJ,
718	Williams D, Zollei L, Fischl B, Gerstein MB, Geschwind DH, Glass IA, Hawrylycz
719	MJ, Hevner RF, Huang H, Jones AR, Knowles JA, Levitt P, Phillips JW, Sestan N,
720	Wohnoutka P, Dang C, Bernard A, Hohmann JG, Lein ES (2014) Transcriptional
721	landscape of the prenatal human brain. Nature 508 (7495):199-206.
722	doi:10.1038/nature13185
723	Moen MJ, Adams HH, Brandsma JH, Dekkers DH, Akinci U, Karkampouna S, Quevedo M,
724	Kockx CE, Ozgur Z, van IWF, Demmers J, Poot RA (2017) An interaction network

725	of mental disorder proteins in neural stem cells. Transl Psychiatry 7 (4):e1082.
726	doi:10.1038/tp.2017.52
727	Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I, Ballieu PM, Marx A, George J,
728	Heinen C, Chalishazar MD, Cheng H, Ireland AS, Denning KE, Mukhopadhyay A,
729	Vahrenkamp JM, Berrett KC, Mosbruger TL, Wang J, Kohan JL, Salama ME, Witt
730	BL, Peifer M, Thomas RK, Gertz J, Johnson JE, Gazdar AF, Wechsler-Reya RJ, Sos
731	ML, Oliver TG (2017) MYC Drives Progression of Small Cell Lung Cancer to a
732	Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition.
733	Cancer Cell 31 (2):270-285. doi:10.1016/j.ccell.2016.12.005
734	Muzio L, Soria JM, Pannese M, Piccolo S, Mallamaci A (2005) A mutually stimulating loop
735	involving emx2 and canonical wnt signalling specifically promotes expansion of
736	occipital cortex and hippocampus. Cereb Cortex 15 (12):2021-2028.
737	doi:10.1093/cercor/bhi077
738	Nielsen JA, Lau P, Maric D, Barker JL, Hudson LD (2009) Integrating microRNA and
739	mRNA expression profiles of neuronal progenitors to identify regulatory networks
740	underlying the onset of cortical neurogenesis. BMC Neurosci 10:98.
741	doi:10.1186/1471-2202-10-98
742	Pellegrini M, Mansouri A, Simeone A, Boncinelli E, Gruss P (1996) Dentate gyrus formation
743	requires Emx2. Development 122 (12):3893-3898

744	Piper M, Moldrich RX, Lindwall C, Little E, Barry G, Mason S, Sunn N, Kurniawan ND,
745	Gronostajski RM, Richards LJ (2009) Multiple non-cell-autonomous defects underlie
746	neocortical callosal dysgenesis in Nfib-deficient mice. Neural development 4:43.
747	doi:10.1186/1749-8104-4-43
748	Plachez C, Lindwall C, Sunn N, Piper M, Moldrich RX, Campbell CE, Osinski JM,
749	Gronostajski RM, Richards LJ (2008) Nuclear factor I gene expression in the
750	developing forebrain. The Journal of comparative neurology 508 (3):385-401.
751	doi:10.1002/cne.21645
752	Ponten J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta
753	pathologica et microbiologica Scandinavica 74 (4):465-486
754	Quevedo M, Meert L, Dekker MR, Dekkers DHW, Brandsma JH, van den Berg DLC, Ozgur
755	Z, van IWFJ, Demmers J, Fornerod M, Poot RA (2019) Mediator complex interaction
756	partners organize the transcriptional network that defines neural stem cells. Nat
757	Commun 10 (1):2669. doi:10.1038/s41467-019-10502-8
758	Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale PJ, Milo M, Wegleiter T,
759	Jessberger S, Taylor V (2016) Multipotency of adult hippocampal NSCs in vivo is
760	restricted by Drosha/NFIB. Cell Stem Cell 19 (5):653-662.
761	doi:10.1016/j.stem.2016.07.003

762	Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attie-Bitach T,
763	Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D,
764	Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gerard M,
765	Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P,
766	Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT,
767	Puechberty J, Reinstein E, Riviere JB, Santani AB, Schneider A, Sherr EH, Smith-
768	Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ
769	(2018) NFIB Haploinsufficiency Is Associated with Intellectual Disability and
770	Macrocephaly. Am J Hum Genet 103 (5):752-768. doi:10.1016/j.ajhg.2018.10.006
771	Schlett K, Madarasz E (1997) Retinoic acid induced neural differentiation in a
772	neuroectodermal cell line immortalized by p53 deficiency. Journal of neuroscience
773	research 47 (4):405-415
774	Shinozaki K, Miyagi T, Yoshida M, Miyata T, Ogawa M, Aizawa S, Suda Y (2002) Absence
775	of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell
776	migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex.
777	Development 129 (14):3479-3492
778	Shu T, Butz KG, Plachez C, Gronostajski RM, Richards LJ (2003) Abnormal development of
779	forebrain midline glia and commissural projections in Nfia knock-out mice. The
780	Journal of neuroscience 23 (1):203-212

781	Simeone A, Gulisano M, Acampora D, Stornaiuolo A, Rambaldi M, Boncinelli E (1992) Two
782	vertebrate homeobox genes related to the Drosophila empty spiracles gene are
783	expressed in the embryonic cerebral cortex. EMBO J 11 (7):2541-2550
784	Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, Litwack ED,
785	Richards LJ, Gronostajski RM (2005) The transcription factor gene Nfib is essential
786	for both lung maturation and brain development. Molecular and cellular biology 25
787	(2):685-698. doi:10.1128/MCB.25.2.685-698.2005
788	Thompson CL, Ng L, Menon V, Martinez S, Lee CK, Glattfelder K, Sunkin SM, Henry A,
789	Lau C, Dang C, Garcia-Lopez R, Martinez-Ferre A, Pombero A, Rubenstein JLR,
790	Wakeman WB, Hohmann J, Dee N, Sodt AJ, Young R, Smith K, Nguyen TN, Kidney
791	J, Kuan L, Jeromin A, Kaykas A, Miller J, Page D, Orta G, Bernard A, Riley Z, Smith
792	S, Wohnoutka P, Hawrylycz MJ, Puelles L, Jones AR (2014) A high-resolution
793	spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83
794	(2):309-323. doi:10.1016/j.neuron.2014.05.033
795	Thomsen ER, Mich JK, Yao Z, Hodge RD, Doyle AM, Jang S, Shehata SI, Nelson AM,
796	Shapovalova NV, Levi BP, Ramanathan S (2016) Fixed single-cell transcriptomic
797	characterization of human radial glial diversity. Nat Methods 13 (1):87-93.
798	doi:10.1038/nmeth.3629

799	Tietjen I, Bodell A, Apse K, Mendonza AM, Chang BS, Shaw GM, Barkovich AJ, Lammer
800	EJ, Walsh CA (2007) Comprehensive EMX2 genotyping of a large schizencephaly
801	case series. Am J Med Genet A 143A (12):1313-1316. doi:10.1002/ajmg.a.31767
802	Tsai PC, Bake S, Balaraman S, Rawlings J, Holgate RR, Dubois D, Miranda RC (2014) MiR-
803	153 targets the nuclear factor-1 family and protects against teratogenic effects of
804	ethanol exposure in fetal neural stem cells. Biology open 3 (8):741-758.
805	doi:10.1242/bio.20147765
806	Tsuyama J, Bunt J, Richards LJ, Iwanari H, Mochizuki Y, Hamakubo T, Shimazaki T, Okano
807	H (2015) MicroRNA-153 Regulates the Acquisition of Gliogenic Competence by
808	Neural Stem Cells. Stem Cell Reports 5 (3):9. doi:10.1016/j.stemcr.2015.06.006
809	Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing
810	CNS. Development 113 (4):1435-1449
811	Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, Aizawa S (1997) Emx1
812	and Emx2 functions in development of dorsal telencephalon. Development 124
813	(1):101-111
814	Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM,
815	Richards LJ, Vogt J, Wessels MW, Hennekam RC (2019) Variants in nuclear factor I
816	genes influence growth and development. Am J Med Genet C Semin Med Genet 181
817	(4):611-626. doi:10.1002/ajmg.c.31747

822 Acknowledgements

823	We thank the staff of the University of Queensland Biological Resources (UQBR) animal
824	facility and the QBI Advanced Microimaging and Analysis Facility for their expertise and
825	support in this project. We thank Peter Gruss (Max Planck Society, Munich, Germany) for
826	providing the <i>Emx2</i> knockout mouse line and Magdalena Götz for providing the pMXIG-Emx2
827	plasmid. We are also grateful to Yunan Ye and Elizabeth Vanderkop for their assistance with
828	experiments.
829	
830	Funding
831	This work was supported by the National Health and Medical Research Council (GNT1100443
832	and GNT1120615) and the Australian Research Council (DP150104748 and DP200102363).
833	Students were supported by the University of Queensland (UQ Centennial Scholarship to
834	JWCL and International Postgraduate Student Scholarship to K-SC) and the Australian
835	Government (Research Training Program Scholarship to JWCL).
836	
837	Author contributions
838	Conceptualization: JWCL, JB, LJR; Formal analysis and investigation: JWCL, JB, CRB,
839	CM, MTJ, K-SC; Writing - original draft preparation: JWCL, JB, LJR; Writing - review and

840	editing: JWCL, JB, CRB, CM, MTJ, K-SC, LJR; Resources: RMG; Supervision: JWCL, JB,
841	LJR
842	
843	Compliance with Ethical Standards
844	
845	Conflicts of interest
846	All authors declare that they have no conflicts of interest.
847	
848	Ethical Approval
849	All applicable international, national, and/or institutional guidelines for the care and use of
850	animals were followed. This article does not contain any studies with human participants
851	performed by any of the authors.
852	
853	

854 Figure Legends

855

856 Fig. 1

857	EMX2 is a	a candidate	transcriptional	regulator	of NFIB.	(A)	Schematic	of the	proximal
				0		< /			

858 promoter region of *Nfib* in mouse and human. Solid blue bars represent the 5' untranslated

- region and exon 1 of Nfib. Red boxes denote potential EMX2 binding sites as identified using
- the motif finding tool FIMO (Grant et al. 2011), with the grey boxes demonstrating sequence
- 861 conservation within these regions (mouse mm10 and human hg38). Scale bar represents 1000

862 base pairs. (B-E) In situ hybridization images of E11.5 and E13.5 sagittal sections probed for

- 863 Emx2 and Nfib expression were obtained from the Allen Developing Mouse Brain Atlas
- 864 (Thompson et al. 2014), demonstrating similar expression gradients. Scale bar represents 400
- 865 µm. Image credit: Allen Developing Mouse Brain Atlas (http://developingmouse.brain-
- 866 map.org). Image identifiers: image 7 of 18 from experiment 100047257 (E11.5 *Emx2*), image
- 867 11 of 16 from experiment 100041799 (E13.5 *Emx2*), image 7 of 16 from experiment
- 868 100054279 (E11.5 Nfib), and image 14 of 18 from experiment 100054417 (E13.5 Nfib). (F,
- 869 G) Correlation of EMX2 (x-axis) and NFIB (y-axis) mRNA expression in human fetal brain
- samples from 6 to 16 postconceptional weeks (PCW) from Brainspan (Miller et al. 2014) and
- 871 GSE25219 (Kang et al. 2011), respectively. Each colour represents a different PCW.
- 872

873 Fig. 2

874	Similar expression patterns of EMX2 and NFIB in the developing brain. (A) Representative
875	immunofluorescent images of sagittal, horizontal and coronal sections of E13.5 Nfib
876	heterozygous brains stained for EMX2 (red) and a β -galactoside (β Gal) reporter driven
877	through the Nfib locus (green). Scale bar represents 500 μ m. (B, C) High-powered
878	monochrome images of the dorsal telencephalon stained for EMX2 and β Gal, respectively.
879	Scale bar represents 100 μ m. (<i>D</i> - <i>F</i>) High-powered immunofluorescent images of different
880	brain regions represented by insets in (B).
881	
882	Fig. 3
883	<i>Nfib</i> mRNA and protein expression is reduced in the E13.5 $Emx2$ knockout cortex. (A)
884	Relative Nfib mRNA levels in the E13.5 neocortex of wildtype (n=4) and Emx2 knockout
885	(n=3) littermates as determined by qPCR. Statistical significance was determined using
886	Welch's t-test ($p = 0.0007$). (B) Representative high-powered immunofluorescent images of
887	the cingulate and neocortices of E13.5 wildtype and Emx2 knockout coronal sections stained
888	for NFIB (red) and DAPI nuclear stain (blue). Scale bar represents 50 μ m. (C, D) Mean
889	fluorescence intensity of NFIB protein expression in the cingulate cortex (C) and neocortex
890	(D) of wildtype (blue) and $Emx2$ knockout (red) sections. Fluorescence intensity was
891	measured for each section using 20 equally spaced bins that extended from the ventricular to

pial surfaces (n = 6-7 per genotype). Statistical significance was determined using unpaired ttests.

894

895 Fig. 4

896	EMX2 regulates the <i>Nfib</i> promoter and fine-tunes NFIB expression. (A) Schematic of the
897	proximal promoter region of Nfib adapted from Fig. 1. Solid blue bars represent the 5'
898	untranslated region and exon 1 of Nfib. Red boxes enclosed by grey boxes denote potential
899	EMX2 binding sites within potential regulatory elements shared between human and mouse.
900	The dashed line in magenta depicts the region cloned into the pNfib luciferase plasmid.
901	Primers pairs for ChIP-qPCR are depicted by adjoining black boxes. Scale bar represents
902	1000 base pairs. (B) Relative fold change in luciferase activity measured in NE-4C and U-
903	251 MG cells. Each data point represents an individual biological replicate, in which relative
904	luciferase activity of the Nfib promoter co-transfected with EMX2 was determined upon
905	normalisation to GFP control. Relative luciferase activity increased significantly upon EMX2
906	over-expression ($p = 0.0466$ (NE-4C) and $p = 0.0068$ (U-251) in ratio paired t-tests). (C)
907	Representative luciferase assay performed in NE-4C cells, corresponding to the biological
908	replicate outlined in red in (B) . Data points represent individual technical replicates
909	normalised to luciferase activity obtained from the respective luciferase plasmids co-
910	transfected with GFP. (D) EMX2 binding (represented as % input) as assayed by ChIP-

911	qPCR. Statistical significance was determined using unpaired t-tests. EMX2 binding was
912	statistically significant at site 2 as compared to all other tested regions ($p = 0.0219, 0.0340$
913	and 0.0176 when compared to downstream control, site 1 and upstream control, respectively).
914	Open and closed circles represent individual biological replicates from separate experiments
915	(n = 2). (E) Representative immunofluorescent images of E15.5 wildtype coronal sections
916	electroporated at E14.5 with control or <i>Emx2</i> plasmids. Sections were stained for NFIB
917	(magenta) and GFP (green). Scale bar represents 50 μ m. (F, G) High-powered images
918	represented by insets in (E) . Yellow arrowheads denote electroporated GFP-positive cells.
919	Cyan arrows denote cells without GFP expression. (H) Violin plots representing relative
920	NFIB expression in the VZ normalised to mean expression of adjacent GFP-negative cells
921	within the same sections. Statistical significance was determined using a Mann-Whitney test.
922	Dotted lines within individual plots denote the lower quartile, median and upper quartile
923	(n = 7-9 per condition with 5 electroporated and 5 GFP-negative cells analysed per animal).
924	

