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We characterize the class of dynamic models that allow for the most
commonly used types of sustained economic growth (balanced and asymptoti-
cally balanced). We show that, under a constant returns to scale technology,
(asymptotically) constant discount rate and (asymptotically) constant elasticity
of marginal felicity are not only necessary but also sufficient conditions for the
existence of a(n) (asymptotically) balanced growth equilibrium path. We pro-
vide examples of recursive utility models that accept a(n) (asymptotically)
balanced growth equilibrium and discuss their implications on cross-country
differences in growth rates, as well as on savings behavior and wealth distribu-
tion.

1. INTRODUCTION

This paper examines the possibility of sustained optimal growth in a continuous-
time model where the representative agent has a variable elasticity of marginal
felicity and/or a variable rate of subjective discount rate. It establishes necessary
and sufficient conditions for the existence of balanced growth and asymptotically
balanced growth paths. Under a linear technology, these necessary and sufficient
conditions involve restrictions on the structure of intertemporal preferences.

Recently, there has been an increasing interest in uncovering the determinants of
the economic growth rate (e.g., Romer 1986, Lucas 1988, and Rebelo 1991). Most of
the literature, however, has been based on models with a stylized intertemporal
preference structure, taking the intertemporal elasticity of substitution in consump-
tion and the rate of time preference as constant.? Accordingly, cross-country
differences in growth rates are exclusively attributed to differences in returns to
investment.® The present study extends the endogenous growth literature by allow-
ing for a general recursive intertemporal preference structure, which can further

* Manuscript received July 1993; revised December 1994

'We are grateful to John Boyd III, Wilfred Ethier, Lionel McKenzie, Henry Wan and two
anonymous referees of this journal for helpful comments and suggestions. We have also benefited
from comments by seminar participants at Academia Sinica, Taiwan, the University of Rochester,
and the Fall 1994 Midwest Mathematical Economics Meetings, U.S.A.

% An exception is the model presented in Rebelo (1992), which attributes differences in the
growth rates to differences in the (endogenous) elasticity of intertemporal substitution in consump-
tion.

3Should the constant preference parameters differ across countries, perfect capital mobility
implies that only the least impatient country will hold capital and that the perfect foresight
steady-state equilibrium is degenerate for all other countries (see Becker 1980).
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promote our ability to explain cross-country differences in growth patterns,* as well
as savings behavior and wealth distribution.’

We utilize the preference setup introduced by Uzawa (1968) and recently ex-
tended and clarified by Epstein (1987), Becker, Boyd, and Sung (1989), and Obstfeld
(1990).5 This is the most general recursive utility functional, defined in continuous
time, that has been used in the literature to analyze issues regarding intertemporal
behavior with endogenous discounting.” Within this recursive utility framework and
under a linear technology, we first examine the possibility of balanced growth. We
show that constant (over time) elasticity of marginal felicity and discount rate are
not only necessary but also sufficient conditions for the existence of a balanced
growth equilibrium path. We then extend our analysis to the case of asymptotically
balanced growth paths, defined as solutions to an optimal growth problem such that
all variables grow at asymptotically constant growth rates. Under some regularity
conditions, which ensure well-behaved preferences and positive discounting, we
show that asymptotically constant elasticity of marginal felicity and discount rate are
necessary and sufficient for the existence of a unique, nondegenerate, asymptotically
balanced growth path.® Thus, our paper completely characterizes the class of
dynamic models which allow for the most commonly used types of sustained
economic growth (balanced and asymptotically balanced). Finally, to illustrate our
main results, we provide several examples/economies, which accept either a bal-
anced growth or an asymptotically balanced growth path, and analyze the endoge-
nously determined rate of economic growth.

The remainder of the paper is organized as follows. In Section 2, we describe the
model /economy with variable discount rate and obtain the first-order conditions for
the optimal growth problem. The model presented in that section is one of the most
general among the class of optimal growth models with one capital stock, in the
sense that it considers general felicity and discounting functions. Section 3 provides
necessary and- sufficient conditions for the existence of a balanced-growth equi-
librium, while Section 4 .establishes parallel conditions for the existence of an

* The need to understand the determinants of the (subjective) discount rate has been pointed out
in the literature (Sala-i-Martin 1990, p. 2), and the consideration of the endogenous growth process
in the case of an endogenous rate of time preference has already been suggested (Obstfeld 1990,
p. 72).

5 Within the exogenous growth framework with recursive preferences, rich implications on
savings behavior and wealth distribution can be drawn from the analyses in Epstein and Hynes
(1983) and Epstein (1987).

8 The Uzawa-Epstein framework has been widely applled in areas where the implications of a
constant rate-of-time preference are particularly unappealing (e.g., Obstfeld 1982, Epstein and
Hynes 1983, and Devereux 1991).

7 Another class of recursive preferences, defined in continuous time, is the habit-formation
framework, as studied, for example, by Ryder and Heal (1973), and Becker and Murphy (1988).
Additionally, Shi and Epstein (1993) propose a utility functional that incorporates both habit
formatlon and endogenous rate-of-time preference.

8 The relationship between the elasticity of marginal felicity and the intertemporal elasticity of
substitution, as well as between the discount rate and the rate-of-time preference, is analyzed below.
At this point it should be noted that, unlike the time-additive framework, in the case of recursive
preferences these concepts are quite different.
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asymptotically balanced-growth equilibrium. Finally, Section 5 provides examples to
illustrate the main results and Section 6 concludes the paper.

2. THE MODEL

Consider an economy with constant population, zero depreciation rate and linear
technology, in which a representative agent seeks to maximize her lifetime dis-
counted utility with variable discount rate:

(P) max Q(C) = j:u(c)e““‘)dt,
subject to

(1a) k=Ak—c,

(1b) A=6(c),

(1c) k(0) =ky> 0.

Following conventional terminology, we refer to u(-) as the felicity, to 6(-) as the
(subjective) discount rate, and to A(-) as the cumulated (subjective) discount rate.
¢, A(0 <A <), and k, on the other hand, denote, respectively, per capita con-
sumption, a production-scaling factor, and a composite of per capita physical and
human capital stocks. The set of admissible consumption paths consists of paths
C ={c(t)lc(t) > 0, V¢t > 0}.° Furthermore, throughout the paper, % and i denote the
first and second time derivative of any variable x. Finally, as in any growth model,
the capital accumulation is governed by nonconsumed output (equation 1a).

The preference structure, as specified in (P), is recursive in that A(-) is allowed to
depend on the agent’s past and current consumption levels, as described by equation
(1b). The particular functional adopted here is Epstein’s generalization of the
Uzawa (1968) functional (see Epstein 1987).1° We also require:

ASSUMPTION 1.  The felicity function u: R, — R is twice continuously differentiable,
with w'(c) >0 and u"(c) <0, Vc > 0.

ASSUMPTION 2. The (subjective) discount rate 6: R, — R, . is twice continuously
differentiable and satisfies the following properties:

(i) 6'(c) >0, and 6”"(c) <0 Vc>0and (ii) A(0) =0.

Assumptions 1 and 2 are very common in the literature, although there is consider-
able disagreement over whether 6'(c) is positive or negative (for a survey, see

% In general, we can allow ¢ to be a vector and 6() to depend on a transformed consumption
variable. For illustrative convenience, however, we present our results using a single consumption
good. In Section 5 below, we provide examples that either allow for more than one argument in the
felicity function or modify the discounting function to depend on the consumption-capital ratio.

1 Uzawa’s specification can easily be recast into Epstein’s recursive utility framework under
proper conditions (see Nairay 1984, and Obstfeld 1990).
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Epstein 1987, and Obstfeld 1990). Note, however, that 6'(c) >0 is needed for
convergence and hence imposed hereafter.

Under this recursive utility specification, one needs to define marginal utility
and the rate-of-time preference with caution. Following Epstein (1987), let C
denote the tail of C at time 7, which generates a utility level of Q(;C)=
[7u(c)expl — [46(c) ds]dt. The Volterra derivative of Q with respect to c(t), Q,(C),
which measures the increment in lifetime utility caused by a small increase in
consumption along path C and at times near T, can be used to define a generalized
notion of the marginal utility of consumption at time T:!!

Q;(C) = [w(e(T)) - 0’(C(T))Q(TC)]exp[—f0T0(c) ds].

We next compute the rate of time preference, p, defined as the rate at which the
marginal utility of consumption falls along a locally constant path:

W (c) —[u(c)/8(c)]0'(c)
w(c)-0'(c)Q(;C)

d
p(c,Q(;C)) = - a1 log Q7(C)|iy-0 = 0(c)

One can easily check that in the case of a time-additive preference structure,
6'(c) =0 and thus p= 6. In the general recursive utility framework, however, the
rate of time preference at any point in time depends on both the consumption level
at time T, ¢(T), and the utility of the tail of the consumption path, Q(;C).

AssuMPTION 3. (i) u/'(c(T)) — 0'(c(TNQ(;C) >0 VT =>0. Gi) uw'(c)>
[uc)/0(c)6'(c) Ye > 0. (i) u'(c) < [u'(c)/0'(c)]6"(c), Yc > 0.

Assumptions (3i{) and (3ii) ensure that the marginal utility and the rate-of-time
preference are positive, while Assumption (3ii) implies that the Hamiltonian
(specified below) is jointly strictly concave in ¢ and k. These conditions are the
familiar ones for monotonicity and concavity in Epstein (1987).

As documented in Becker, Boyd and Sung (1989, Section 4.2), in the case where
the discount rate is positive [8(c) > 0], nonincreasing returns-to-scale technology is
required for the existence of an optimal path. Furthermore, if 6’ >0, then it is
straightforward to show that nondecreasing returns-to-scale technology is required
for the existence of perpetual growth (see Romer 1986, and Jones and Manuelli
1990 for the case of an economy with time-additive preference structure). We,
therefore, consider the linear technology (Ak) introduced by Gale and Sutherland
(1968) and also considered in Rebelo (1991). Two points concerning this linear
technology are noteworthy. First, the marginal product of capital (MPK) is constant
with respect to k. As suggested by Jones and Manuelli (1990), however, it suffices to
assume that the marginal product of capital is bounded away from zero. An example
of such a production function is the generalized Gale—Sutherland function, 4k +
Bk®, where 1>b>0 and ©>A4, B> 0. Although using this production function

11'See Wan (1970), Ryder and Heal (1973) and Epstein (1987) for further details.
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instead of the “A4k” will not change qualitatively the asymptotic behavior of the
system, it will complicate the analysis significantly. Second, the MPK is constant
over time. This attribute is present in most of the endogenous growth models in
which a balanced growth path exists (e.g., Lucas 1988, Barro 1990, and Rebelo
1991), and is one of the stylized facts of growth as described by Kaldor (1961).

We further impose the following assumption:

ASSUMPTION 4. u(c)/6(c) < QePrIVc >0, where 0 < Q < and B< 1.

Assumption 4 ensures that the lifetime utility () in (P) is bounded and hence the
optimization problem is well-defined. To see this, we note that

e 2 dA < mee‘(l'ﬂ)A dA = L.
0

Q(C) = [ u(e)e 0 - [ =

0 0(c)

To perform the maximization suggested above (see program (P)) consider the
following Hamiltonian:

H(c,k,A, X, i) =u(c)e™® + A[ Ak —c] + i6(c),

‘where A and i denote the costate variables associated with (1a) and (1b), respec-
tively. Applying the Pontryagin maximum principle, we get the following first-order
necessary conditions:

(1d) W(c)e ™ + nb'(c) =4,
(1e) = —AAX,
(1f) p=u(c)e®

together with (1a),(1b) and the transversality condition?

(1g) lim H(t) = 0.

t—00

Next we reduce the system consisting of equations (1a)—(1g) into a more tractable
one that involves only one state variable, k(z). First define A(¢)= A)ed®, and
u(t) = u(t)e ™. Next recall that, along the optimal trajectory, dH /dt = dH /dt (see
Intriligator 1971, p. 350). Since the specific problem considered here is autonomous,
dH/dt =0, and thus the Hamiltonian is independent of time along the optimal
trajectory. This and the transversality condition (1g) imply that the Hamiltonian

12 On the transversality condition in infinite horizon, continuous-time optimization problems, see
Michel (1982).
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takes the value zero along the optimal trajectory. Thus,'?

R
TS

[u(c) + M(Ak —¢)].

Substituting this relationship, (1a), and the definitions of A and u in (1d) and (1e)
yields

0'(c .
(2a) 6—((65)-{ (c) + Ak} —u'(c) +A1=0,

A
(2b) x=9(6‘) —A.

In the following sections, we analyze the dynamic system consisting of (1a), (1c),
(2a), and (2b) and derive conditions for the existence of balanced and asymptotically
balanced growth.'

3. BALANCED GROWTH

We first define the concept of balanced growth.'

DEFINITION 1. Let a path {k(2), c(¢), A(¥)}, t > 0, be a solution to (P). We call it
a balanced growth (equilibrium) path if the growth rates of all these variables,
m=k/k, n,=¢/c and n, = A/A, are constant over time. A balanced growth path is
said to be nondegenerate if m; and 7, are strictly positive.

A degenerate balanced growth path corresponds to a (nongrowing) stationary state
in the usual sense. Since we are interested in economies that exhibit perpetual
growth, we often refer to a nondegenerate balanced growth path simply as a
balanced growth path without special notification. Furthermore, we assume:

ASSUMPTION 5. The subjective discount rate is less than the marginal product of
capital, that is, 0(c) <A, V¢ > 0.

This is also a very common assumption in the literature of endogenous growth; it
ensures a positive growth rate of consumption (for example, Lucas 1988, Barro 1990,
Jones and Manuelli 1990, and Rebelo 1991).

13 Alternatively, one can use the Hamilton-Jacobi equation for this problem: 0= —(3J/dt) =
max u(c)e™ + AL Ak — c] + 26(c), where J denotes the value function of the problem and it is
assumed to be differentiable.

¥ We do so following an indirect approach, based on Pontryagin’s necessary conditions for
optimality, rather than a direct method as in Becker and Boyd (1992).

5 The term balanced growth was originally used by von Neumann to describe an economy with a
common growth rate. The more general concept, followed here, has been used in the dynamic
Leontief model of Dorfman, Samuelson and Solow (1958), and in several recent endogenous growth
papers, e.g., Lucas (1988), and Rebelo (1991).
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We next present the necessary conditions for the existence of a balanced growth
path. The following proposition indicates that in order for an economy to exhibit
balanced growth it is required that both the discount rate, 8(c), and the elasticity of
marginal felicity, a(c) = —u"(c)c/u'(c), be constant.®

PROPOSITION 1. Under Assumptions 1-5, if an economy accepts a balanced growth
equilibrium path, then along such a path the functionals 6(c) and o(c) are constant
over time.

PROOF. Equation (2b) implies
m=A/A=0(c) —A.

Hence, along the balanced growth path, 6(c) =m, +A4 is constant. In this case,
equation (2a) reduces to the usual condition

A=u'(c).

Thus,

u'(c)é u'(c)c

™= u’(c) =N u'(c) ’

implying,

u"(c)c

a(c)= - ,( ) S = constant. Q.ED.
u'(c) N,

Next, we show that the converse of Proposition 1 is also true.

PROPOSITION 2. Under Assumptions 1-5, if there exists a path along which the
discount rate and the elasticity of marginal felicity are constant over time, then it is a
balanced growth path.

PROOF. Under Assumptions 1-5, constant discount rate and constant intertem-
poral elasticity of substitution, it is easily verified that the system, (1a), (2a), and
(2b), is equivalent to

h
—=-0,
Ne
m=0-4,
4 c
nk_ k’

% Under a time-additive preference structure the inverse of o is equal to- the elasticity of
intertemporal substitution in consumption. In the framework used here, however, this is not the
case because the discount rate depends also on c. One can, instead, define the intertemporal
elasticity of substitution in terms of psychological time, A, using the “transformed” felicity function
V(c)=u(c)/6(c), as —V'(c)/V"(c)c.
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or

A-0

nc=nk= ; 71)\=6—A,
ag

which constitutes a balanced growth path. Q.E.D.

In summary, when the discount rate is bounded from above by the marginal
product of capital, constant (over time), along a particular path, discount rate and
elasticity of marginal felicity are both necessary and sufficient conditions for the
existence of a balanced growth equilibrium path. For a complete characterization of
such a path in the “A4k” model, the reader is referred to Rebelo (1991).

4. ASYMPTOTICALLY BALANCED GROWTH

This section establishes necessary and sufficient conditions for the existence of an
asymptotically balanced growth equilibrium path. We begin with the following
definition.

DEFINITION 2. Let a path {k(¢), c(¢), A(#)}, t = 0, be a solution to (P). It is said
to be an asymptotically balanced growth (equilibrium) path if m, =lim,_ (k/k),
n, =lim,_, (¢ /c), and =, =lim,_ (A/A) exist and are finite. Furthermore, we say
that an asymptotically balanced growth path is nondegenerate if m, and 7, are
strictly positive a.e.

Unless otherwise specified, we again restrict our attention to nondegenerate,
asymptotically balanced growth equilibrium paths and we often refer to them simply
as asymptotically balanced growth paths. For technical convenience, we make one
additional assumption.

ASSUMPTION 6.
6"(c)c
0'(c)

This assumption requires the elasticity of marginal discounting, 6’(c), not to be
infinitely sensitive with respect to changes in consumption.

<M forsome M ER,.

4.1. Necessity. The following lemmas, which hold under Assumptions 1-6, are
used to derive necessary conditions for the existence of an asymptotically balanced
growth path.

LEMMA 1. Iflim,_,0(c) = 0 is finite, then lim,_, ,0'(c)c = 0.

PROOF. Since 6'(c)c is positive, it is sufficient to show that lim, _, ,,sup 6'(c)c =
0. Suppose not. Then there exists > 0 and a sequence {c,}1 % such that

3 0'(c,)c, = 8.
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Without loss of generality, we can pick {c,} in such a way that
(4) ¢, >2¢c,_1,n=12,....
Combining (3) and (4), we have

Cn-1

n

9’(c,,)(c,,—c,,_1)26[1— ] > 8/2.

By the Mean Value Theorem, we know there exists ¢, € (c,_;,c,) such that

0(c,) = 0(c,-1) = 0'(&)(cp —€um1)-
Since 6" <0, we have 6'(¢,) > 0'(c,) and thus
0(c,) = 0(c,-1) = 0'(&)(cp = 1) > 8/2,
or by summing up both sides for n =1,2,...,
lim 6(c,) ==,
n—oo

which contradicts the assumption that lim, _, ,6(c) = « is finite. Q.ED.

LEMMA 2. If lim, _, ,0(c) = 8 is finite, then lim,_, ,0"(c)c*=0.

PrROOF. From Assumption 6, we have
lim |6”(c)c?| = lim |6”(c)clc < lim M'(c)c,
C—® c—® c—o®
which is zero from Lemma 1. Q.ED.

LEMMA 3. If the economy moves along a nondegenerate, asymptotically balanced
growth path then c /k is asymptotically constant.

PROOF. From equation (1a) we know that

=A-

x| =
x| o

Thus, ¢ /k converges asymptotically to A — 7, which is constant. Q.ED.

Utilizing Lemmas 1-3, we are now prepared to prove the following proposition,
which establishes necessary conditions for the existence of an asymptotically bal-
anced growth path. It shows that for such a path to exist, agents must have an

asymptotically constant discount rate as well as asymptotically constant elasticity of
marginal felicity.



214 PALIVOS ET AL.
PROPOSITION 3. Under Assumptions 1-6, if an economy allows for a nondegener-

ate, asymptotically balanced growth path, then both lim, _, .,6(c) and lim, _, .o (c) exist
and are finite.

PROOF. Since A/A — 7, from equation (2b), we have
= lim 8[c(z)] - 4.
t—o00

From Definition 2, an asymptotically balanced growth path implies that c(¢) — « as
t - o, Hence, it follows that

lim 0(c) =, +4,
c— o

which is finite.
We next use equation (2a) to solve for A,

| 0(w(e) ~ 0 ()u(c)

(5) T 0(c) +0'(c)(Ak—c)
Therefore,

A dlo(o)u'(c) - 0"(c)u(e)]
(6) X 80w (o) - 0 ()u(c)

¢[0'(c) + 6"(c)(Ak —c)] + 6" (c)( Ak —¢)
- 0(c) + 60'(c)(Ak —c) '

As t —> o, the left-hand side of (6) approaches m,. To show that the agent has
asymptotically constant elasticity of marginal felicity, we need to verify that the
right-hand side of (6) converges to a constant multiplied by the limit of o (c) =
—u"(c)c/u'(c). First, notice that the first term on the right-hand side of (6) is
equivalent to

u'(c)e  0"(c)c? u(c)
¢ u'(c) B 6(c) u'(c)c
c B 0'(c)c u(c) ’

6(c) u'(c)c

which, by Lemmas 1 and 2, converges to

-, lim o (¢).
c—o®
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Second, from Lemma 3, the last term on the right-hand side of (6) is equivalent to

(¢/)[0'(c)e + 07(c)c?(Ak/c — 1)] + 6'(c)e| A(k/k)(k/c) — (¢/¢)]
0(c) +0'(c)c[A(k/c) —1)] ’

which converges to zero by Lemmas 1, 2, and 3. Hence, the entire right-hand side of
(6) converges to — 7 lim, _, 0 (c) and thus

(7 lim o(c) = — 2,

it Ne

which is finite. Q.E.D.

4.2. Sufficiency. The following lemma examines the asymptotic properties of
the investment—consumption ratio, which are used below to establish sufficient
conditions for a unique, asymptotically balanced growth path.

LEMMA 4. If the asymptotic value of k /c is finite, that is, lim, _, .k /c <, then the
asymptotic values of k/c and k/c are also finite, that is, lim,_ k/c <= and
lim, , ,k/c <.

PrOOF. The resource constraint, (1a), immediately implies

-1.

Also, differentiating (1a) and then dividing both sides by ¢, we have

k k¢
c

c 4

From the last two equations, it follows that lim,_, .k/c <« implies lim, Lok/c <o
and lim, _, .k /c <o, Q.E.D.

We are now ready to establish the main result of the paper by showing that the
converse of Proposition 3 is also true; namely, if the agents’ discount rate and
elasticity of marginal felicity are asymptotically constant then the economy follows
an asymptotically balanced growth path.

PROPOSITION 4. Main Result. Under Assumptions 1-6, if lim, _, ,o(c)= o<
and lim, _,,0(c) = 0<A, then there exists a unique, nondegenerate, asymptotically
balanced growth path.
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PROOF. By eliminating A from the system (la), (2b) and (5), we obtain the
following dynamic system:

[o(c)u’(c) = 6"(c)u(c)]
6(c)u'(c) —6'(c)u(c)

¢[0'(c) + 0" (c)(Ak —c)] + 0'(c)( Ak —¢)
- 0(c) +0'(c)(Ak—c) ’

®) 0(c) —A=

and (1a) (k = Ak — ¢).

To show that a unique, asymptotically balanced growth equilibrium path exists, it
is sufficient to show that the system has a unique solution {(k(¢), c(¢))}, ¢ > 0, along
which both consumption and capital stock grow at an asymptotically constant,
positive rate. We undertake this task in two steps. First, we show the system to have
a unique path such that both c(¢#) and k(¢#) approach infinity as ¢ — « while
lim, , {c(¢)/k(¢)} exists and is finite. Second, we prove that along this path the
growth rates of ¢(¢) and k(¢) converge to a positive constant as ¢ — .

Step 1. The Existence of a Unique, Unbounded, Optimal Growth Path. Con-
sider first the loci ¢ =0 and k=0, given by equations (8) and (1a), respectively.
They can be written as

(9a) A=06(c)+6'(c)[4k —c],
(9b) | ¢ =Ak.

It can readily be shown that both curves are upward-sloping [recall that 6”(c) < 0l.
Moreover, ¢ is positive (negative) above (below) the curve ¢ =0, and k is positive
(negative) below (above) the curve & = 0. To verify the former, one can show that
¢>0as k=0and ¢ - . To verify the latter, notice that k> 0 if k>0 and ¢ = 0. It
can also be easily verified that both ¢ and k must go to infinity along the two paths
given by ¢ =0 and k = 0. Furthermore, notice that the ¢ = 0 locus must lie below
k=0, since 6(c) <A and 6'(c)> 0. The two loci are depicted in Figure 1. Next we
label various points and curves in Figure 1. First, let ¢ = {(k) denote the locus
¢ = 0. Second, pick any point (k;,c;) on ¢ = {(k), such that the slope of the tangent,
¢ = w(k), at that point is less than A, i.e., ¢ = w(k) solves ¢ =c¢; + {"(k )k — k,),
where 0 < ¢'(k;) <A. In Figure 1, (ky,c,) is denoted as B;. Third, define

Se={klk>ky, {(k) = w(k)} and k, = sup &,
keS,

that is, k, is the last point of intersection of {(k) and w(k). Notice that S, and k,
are well-defined since lim, ., {'(k) = 0. We also denote the point (k,, c,), where
¢, = {(k,), as B,. Finally, consider the function

c=¢(k) =L (k) +(1-T)w(k),
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FIGURE 1

ASYMPTOTICALLY BALANCED GROWTH EQUILIBRIUM PATH

where

{ 1 if k<k,

T, = ) ,

0 if kx=k,

is an indicator function. Put simply, ¢(k) coincides with ¢(k) between points B
and B, and with w(k) beyond B,. Since ¢(k) lies below k = 0 and coincides or lies
above ¢ = 0, between k =0 and $(k) we have k> 0 and ¢ > 0. Next pick any point
B, on k =0 and consider solutions of (9) with initial condition on B, Bs. If the initial
condition is close to B; (B;) then the path will cross ¢ = ¢(k) (k =0). Thus, by
continuity, there must be a path starting from B, B, that crosses neither ¢ = ¢(k)
nor k = 0 (indicated as BGP in Figure 1). Since this path has a positive slope and is
bounded by ¢ = ¢(k) and k = 0, it follows that both c(¢) and k(¢) grow unboundedly
but c(¢)/k(¢) is bounded,

< <
tglojc n k(t) t-l-fl;lo sup k(t)

=4 <o,

along this path. It follows from the Poincaré—Bendixson theorem (see Boyce
and DiPrima 1977, Theorem 9.9, p. 446) that as ¢ - », c¢(¢)/k(¢) either fluctuates
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within a closed interval (limit cycle) or converges to a constant value. Suppose
that as ¢t — o, c(t)/k(t) fluctuates within a closed interval. Then loglc(s)/k(2)]
and d log[c(¢)/k(#)]/dc(¢) must also fluctuate as ¢ — . Simple differentiation, how-
ever, in conjunction with (la), yields d loglc(¢)/k()]/dc(t) = [1/c(¢)] -
[dk(t) /dc()]/k(t) =1/c()1 —[A — () /k(®)] /() /c(1))}. As t — », unbounded
nondegenerate growth implies that ¢(¢)/c(#) is bounded below from zero while
1/c(t) approaches to zero. As a consequence, lim,_, {d loglc(¢)/k(£)]/dc(#)} =0,
which is a contradiction. Therefore, c(¢)/k(¢) converges to a constant value and
hence lim, _, [c(#) /k(2)] exists.

It remains to be shown that such an unbounded optimal growth path is unique.
Suppose that there exist two optimal paths, which start from two distinct points on
B,B,, and both lead to unbounded growth. Note, also, that the configuration of the
map must be such that these two paths cannot cross each other. Hence, the path
that starts closer to B; must have a higher consumption level than the other V¢ > 0.
But then, by strong monotonicity of preferences (see Assumption 3), the former
must be strictly preferred to the latter, which contradicts the fact that both paths are
optimal. This proves the uniqueness of the optimal path.

Step 2. The Path Found in Step 1 is Nondegenerate and Asymptotically Balanced.
Equation (8) can be written as

8"(c)c? u(c)

6(c) u'(c)c
- 6'(c)c u(e)
6(c) u'(c)c

) ¢ o(c)+
9(6) —A= —;

_ (c'/c)[@’(c)c + 0”(c)c2(k/c)] +0'(c)c(k/c)
0(c) +0'(c)c(k/c) '

Let ¢t — o, hence ¢ — «. Using Lemmas 1, 2, and 4, the equation above is reduced to
. ¢
6—A4=Ilim—-(-0),
t—o C

and hence

¢ A-90
(10) lim — = .

t—ow C o

Next we characterize the asymptotic growth rate of k(z). Applying L’Hopital’s rule,
we obtain

OO
i
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Using this relationship and Lemma 4, we get

ko )\, o) k)
SR (A i m) TR TR
Recall also that,
k(1) c(1)
FONSEOR

or, by differentiating,
(A_do)kU)_Mﬂ OO0
k(t) J\ k() k(1) k(t)\c(t) k()|

Since along the optimal growth path c¢(#)/k(¢) cannot converge to zero, equations
(10), (11), and (12) imply

(12)

k() . ér) A=
Ty R ey R

> 0. Q.E.D.

5. EXAMPLES

This section presents four examples /economies that illustrate the main results of
the paper. Of course, the simplest balanced-growth-consistent intertemporal prefer-
ence structure is one that is time-additive with constant elasticity of marginal
felicity. Nevertheless, for the purpose of this paper, such a case is not interesting
because intertemporal preferences play no role in explaining cross-country differ-
ences in growth rates and there are no well-defined transitional dynamics. Instead,
our first two examples allow the rate of time preference to be endogenous;
furthermore, they accept a balanced growth equilibrium solution and can be viewed
as generalizations of the model analyzed above. Our last two examples, on the other
hand, allow either for asymptotically constant elasticity of marginal felicity or for
asymptotically constant discount rate and accept an asymptotically balanced growth
equilibrium solution.

1. The first example draws on the work of Barro and Becker (1989), and Becker,
Murphy, and Tamura (1990), who relate a parent’s discount rate to the endogenous
fertility rate. Consider the following optimization program:

NGO
axQ=/(;{ }

1—-0o

[N()]' e at,

subject to k(1) = Ak(t) —c(t) — n(t)k(t),
N(t) =n(1)N(1),
k(0) = ko> 0, N(0) =N, > 0.
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For the new variables, » is the growth rate of population, p> 0 is the constant
rate-of-time preference, N is the level of population, a (0 < a <1) is a parameter
that captures changes in preferences towards consumption and away from children,
o is a parameter associated with the elasticity of marginal felicity,'” and £ 0 < e<1)
is a parameter that captures preferences towards future family size and is associated
with the form of the welfare function (); for example, if £ is equal to zero (one)
then Q) becomes the Benthamite (Millian) social welfare function. Since N(¢) =
Nyexp[— [¢n(s)ds], in essence, the model allows for an endogenous subjective
discount rate. More specifically, the cumulated subjective discount rate is given by
A(t) = [{{ p— n(s)} ds. Nevertheless, as one can easily verify, the model accepts a
balanced growth equilibrium path. This is because along the balanced growth path
the fertility rate and hence the discount rate is constant over time. Indeed, the
growth rates along the balanced growth path are!®

) c—1)(1-a)|la(c—1)A4

A-p e(c—D(1-a)[a(ac—1)4 +p]

¢(t)/c(t) =k(t)/k(t) B 14+ a(oc—1) B [1+a(c—D]o[l+a(ac—1)—¢]

A-p
> ——=>0.
1+a(o—1)

These equilibrium growth rates indicate that the degree of impatience may account
partially for the negative correlation between economic growth and population
growth. For instance, an increase in p leads to a higher » but a lower rate of capital
and thus lower output growth.

2. Next we provide an example where the discount rate depends on the consump-
tion—average capital ratio, ¢ /k.!° The representative agent seeks to maximize

1-0

©C
max Q =f e A0 gy,
0o 1—0o

subject to k = Ak —c,
A=0(c/k),
k(0) =k,>0.

As the resource constraint implies, along the balanced growth path, ¢ and k grow at
the same rate and hence 6(c/k) is constant over time. Note that, although each

71t can be shown that o> 1is a necessary condition for the existence of a maximum.

8 For further details, see Palivos and Yip (1993).

1 This form of the discount rate conforms with the relative-income hypothesis. We thank an
anonymous referee for suggesting this example.
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agent takes k as given, in equilibrium k = k. To find the common rate of ¢ and &,
write equations (2a) and (2b) as

011 cl—o‘ +i€ _C—o' )
k| A1-0) a7

Combining then these two equations with the resource constraint yields

. A-96
() /e(0) =k(0) /(1) = —,

where o> 1 is assumed to ensure a bounded lifetime utility. It is noteworthy that, in
this example, differences in the initial consumption to capital ratio result in
different growth rates, k(¢)/k(t), savings ratios, k(¢t)/Ak(t), and wealth distribu-
tions.

3. The Stone-Geary felicity is an example of preferences with variable elasticity of
marginal felicity.?! More specifically, consider: u[c(£)] = [c(t) — c iy "7 /(1 — o),
o> 0, where c_;, is the consumption subsistence level. The elasticity of marginal
felicity, is {1 — [cp;,/c()]} ', which converges, however, to o and thus is asymp-
totically constant. This is the reason why an asymptotically balanced growth path
exists. For example, under linear technology, it is easy to show that the growth rate
of consumption is

C(t) 1 Criin |4 — 0

c(t) [ c(t)y] o’
which, is asymptotically constant, provided 6 is constant over time, and converges to
(A - 0)/0 from below. Thus, even with a linear technology, the economy displays
well-defined transitional dynamics. Notice that if the economy starts close to ¢,
then it is going to experience a very long period of slow growth. This can then
explain cross-country differences in growth rates without relying on differences in
technology or capital immobility. In addition, differences in the desired minimum
level of consumption or in initial consumption may account for different savings
behavior.

4. Finally, the following example /economy allows for a variable but asymptoti-
cally constant discount rate and thus accepts an asymptotically balanced growth
equilibrium. Let u(c) =c*~7/(1 - o), 6(c) = p— exp{l/(a + c)}, where p>0 and
a = 1/log( p). Furthermore, assume that o > max{2,(4a®+ 4a + 1)/4a)} and

0 Zhang (1994) utilizes a similar framework to analyze endogenous R&D decisions.
! This example draws on Rebelo (1992).
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m <A—[o/(a—DI"?(ky)~!. One can then show that Assumptions 1-6 are
satisfied.?? Furthermore, equation (8) becomes

p—exp{l/(a+c)} -4

c? 1/(a 1
; o(a—1)[p—exp{l/(a+c)}]+ oll/te 2o [2+ (a+c)]

_ ¢ (a+c)3
(o= D) - expl1/(a +0))] + S2RLLE )
(a+c)
c?exp{1/(a +c)} [ 1 ] k/k
. 3 2+ ;
+_c_ (a+¢) (a+c) | A—k/k

cexp{l1/(a+c¢)} k/k
(a+c¢)>  A-k/k

¢ p—exp{l/(a+c)}+

cexp{1/(a+c)} A(k/k)
(a+c)>  A-k/k
cexp{l/(a+c)} k/k
(a+c)2 A—k/k

p—exp{l/(a+c)}+

Applying L’Hopital’s rule one can show that lim,_, ((¢/c) =0 and lim,_, (¢/c) =
[A —(p—1]/0o. Thus, similarly to the previous example, if the initial capital stock
and hence consumption are low, there will be a very long period of slow growth.
Once again, cross-country differences in growth rates can be explained without
relying exclusively on differences in technology or capital immobility. Similarly to
example 2, differences in the initial capital ratio will result in different growth rates
as well as savings ratios and wealth distribution. In contrast to example 2, however,
this model exhibits a period of transition during which there is a dynamic interaction
between consumption and the degree of impatience.?

6. CONCLUDING REMARKS

This paper has established necessary and sufficient conditions for the existence of
balanced growth and asymptotically balanced growth in an economy with variable
discount rate and variable elasticity of marginal felicity, in which per capita con-
sumption and output grow without bound. For the growth rate of the economy to be
constant and hence for a balanced growth path to exist, it is necessary and sufficient

2 Note that, under the restrictions specified above, the functional forms of u(-) and 6(-) satisfy
the sufficient conditions given in Lemma 1 in Epstein (1987).

B Furthermore, one can show that in a framework which combines the money-in-the-utility-func-
tion approach with variable discount rate, changes in the rate of monetary expansion will affect not
only the long-run level of capital, as in Epstein and Hynes (1983), but also its growth rate.
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that both the discount rate and the elasticity of marginal felicity are constant. On
the other hand, for the asymptotic growth rate to be constant, these two preference
parameters must be asymptotically constant. As it can be easily seen, our results
hold in any perpetual growth framework, endogenous or exogenous. Nevertheless,
they were obtained within an endogenous growth framework because we want to
emphasize the importance of preference parameters in explaining either cross-coun-
try differences in growth rates or a single country’s transition through different
stages of development, as well as savings behavior and wealth distribution.

Finally, we would like to mention that, in a related study, Dolmas (1996) provides
conditions that guarantee the existence of a discrete-time recursive utility model
consistent with balanced growth. A crucial condition for such a balanced-growth-
consistent recursive functional is the homogeneity of the aggregator function.
Nevertheless, due to the fundamental differences between continuous- and
discrete-time models, we are unable to contrast our necessary and sufficient condi-
tions for the existence of a balanced growth equilibrium with the conditions found in
Dolmas (1996).%*
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