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INTRODUCTION 
Diagrams of causal pathways have tong been used to visually summarize hypothetical relations among 

variables of interest. Modern causal diagrams, or causal graphs, were more recently devel  oped from a mcrgerof 
graphical probability theory with path diagrams. The resulting theory provides a powerful yet intuitive device for 
deducing the statistical associations implied by causal relations. Conversely, given a set of observed statistical 
relations. a researcher armed with causal graph theory  can systematically characterize all causal structures 
compatible with the observations. The theory also provides a visual representation of key concepts in the more 
general theory or longitudinal causality or Robins ( 1997); see Chapter 21 for further discussion and references on 
the tatter topic. 

The graphical rules linking causal relations to statistical associations are grounded in mathe. matics. 
Hence, one way to think of causal diagrams is that they allow nonmathematicians to draw logically sound 
conclusions about certain types of statistical relations. Learning the rules for reading statistical associations from 
causal diagrams may take a little time and practice. Once these rules  are mastered, though, they facilitate many 
tasks, such as understanding confounding and selection 
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bias, choosing covariates for adjustment and for regression analyses, understanding analyses of direct effects 
and instrumental-variable analyses, and assessing "natural experiments." In particular, diagrams help 
researchers recognize and avoid common mistakes in causal analysis. 

This chapter begins with the basic definitions and assumptions used in causal graph theory. It then 
describes constnction of causal diagrams and the graphical separation rules linking the causal assumptions 
encoded in a diagram to the statistical relations implied by the diagram. The chapter concludes by presenting 
some examples of applications. Some readers may prefer to begin with the examples and refer back to the 
definitions and rules for causal diagrams as needed. The section on Graphical Models, however, is essential 
to understanding the examples. Full technical details of causal diagrams and their relation to causal inference 
can be found in Pearl (2000) and Spines et al. (2001), while Greenland and Pearl (2008) provide a short 
technical review. Less technical articles geared toward health scientists include Greenland et al. (1999a), 
Robins (2001 ), Greenland and Brumback (2002), Hernán et al. (2002), Jewell (2004), and Glymour (2006b). 

PRELIMINARIES FOR CAUSAL GRAPHS 
Consider two variables X and Y for which we wish to represent a causal connection from X to Y, often 
phrased as "X causes Y" or "X affects Y." Causal diagrams may be constructed with almost any definition of 
cause and effect in mind. Nonetheless, as emphasized in Chapter 4, it is crucial to distinguish causation from 
mere association. For this purpose we use the potential-outcome (counterfactual) concept of causation. We 
say that X affects Y in a population of units (which may be people, families, neighborhoods, etc.) if and only 
if there is at least one unit for which changing (intervening on) X will change Y (Chapter 4). 

STATISTICAL INDEPENDENCE 

Association of X and Y corresponds to statistical dependence of Y and X, whereby the distribution of Y 
differs across population strata defined by levels of X, When the distribution of Y does not differ across strata 
of X, we say that X and Y are statistically independent, or unassociated. If X and Y are unassociated 
(independent), knowing the value of X gives us no information about the value of Y. Association refers to 
differences in Y between units with different X values. Such between-unit differences do not necessarily 
imply that changing the value of X for any single unit will result in a change in Y (which is causation), 

It is helpful to rephrase the above ideas more formally. Let Pr(Y = y) be the expected proportion of people 
in the population who have y for the value of Y; this expected proportion is more often called the probability 
that Y = y. If we examine the proportion who have Y = y within levels or strata of a second variable X. we 
say that we are examining the probability of Y given or conditional on X. We use a vertical line "l" to denote 
"given" or "conditional on." For example, Pr(Y = ylX = x) denotes the proportion with Y = y in the 
subpopulation with X = x. Independence of X and Y then corresponds to saying that for any pair of values x 
and y for X and Y, 

 Pr(Y = ylX = x) = Pr(Y = y) (12-11 
which means that the distribution of Y values does not differ across different subpopulations defined by the 
X values. In other words, the equation says that the distribution of Y given (or conditional on) a particular 
value of X always equals the total population (marginal or unconditional) distribution of Y. As stated earlier, 



 

if X and Y are independent, knowing the value of X and nothing more about a unit provides no information 
about the Y value of the unit. 

Equation 12—1 involves no variable other than X and Y, and is the definition of marginal independence 
of X and Y. When we examine the relations between two variables within levels of a third variable—for 
example, the relation between income and mortality within levels of education—we say that we are examining 
the conditional relation. We examine conditional relationships in many contexts in epidemiology. We may 
intentionally condition on a variable(s) through features of study design such as restriction or matching, or 
analytic decisions, such as stratification or regression modeling. Conditioning may arise inadvertently as 
well, for example due to refusal to participate or Chapter 12  Causal Diagrams 185 

loss to follow-up, These events essentially force conditioning on variables that determine participation and 
ascertainment. Informally, it is sometimes said that conditioning on a variable is "holding the variable 
constant," but this phrase is misleading because it suggests we are actively intervening on the value of the 
variable, when all we are doing is separating the data into groups based on observed values of the variable 
and estimating the effects within these groups (and then, in some cases, averaging these estimates over the 
groups, see Chapter 15). 

To say that X and Y are independent given Z means that for any values x, y, : for X, Y, and Z, 
 Pr(Y = ylX — x, z  = Pr(Y = ylZ [12-2] 
which says that, within any stratum of Z, the distribution of Y does not vary with X. In other words, within 
any stratum defined in terms of Z alone, we should see no association between X and Y. If X and Y are 
independent given Z, then once one knows the Z value of a unit, finding out the value of X provides no further 
information about the value of Y. 

CAUSATION AND ASSOCIATION 

As explained in Chapter 4, causation and association are qualitatively different concepts. Causal relations are 
directed; associations are undirected (symmetric). Sample associations are directly observable, but causation 
is not. Nonetheless, our intuition tells us that associations are the result of causal forces. Most obviously, if 
X causes Y, this will generally result in an association between X and Y. The catch, ofcourse. is that even if 

we observe X and Y without error, many other forces (such as confounding and selection) may also affect 
the distribution of Y and thus induce an association between X and Y that is not due to X causing Y. 

Furthermore, unlike causation, association is symmetric in time (nondirectional), e.g., an association of X and 
Y could reflect Y causing X rather than X causing Y. 

A study of causation must describe plausible explanations for observed associations in terms of causal 
structures, assess the logical and statistical compatibility of these suuctures with the 
observations, and (in some cases) develop probabilities for those structures. Causal graphs provide schematic 
diagrams of causal strictures, and the independencies predicted by a graph provide a means to assess the 
compatibility of each causal structure with the observations. 

More specifically, when we see an association of X and Y, we will seek sound explanations for this 
observation, For example, logically, if X always precedes Y, we know that Y cannot be causing X. Given 
that X precedes Y, obvious explanations for the association are that X causes Y, that X and Y share a common 
cause (confounding), or some combination of the two (which can also lead to no association even though X 
affects Y). Collider bias is a third type of explanation that seems much less intuitive but is easily illustrated 
with graphs. We will first discuss focus on collider bias because it arises frequently in epidemiology. 

COLLIDER BIAS 

As described in Chapter 9, a potentially large source of bias in assessing the effect of X on Y arises when 
selection into the population under study or into the study sample itself is affected by both X and Y. Such 
selection is a source of bias even if X and Y are independent before selection. This phenomenon was first 
described by Joseph Berkson in 1938 (published in Berkson [1946]). Berksonian bias is an example of the 
more general phenomenon called collider bias, in which the association of two variables X and Y changes 
upon conditioning on a third variable Z if Z is affected by both X and Y. The effects of X and Y are said to 
"collide" somewhere along the way to producing Z. 

As an example, suppose that X and Y are marginally independent and Z = Y — X, so Z is completely 
determined by X and Y. Then X and Y will exhibit perfect dependence given Z: If Z = z, then Y = X + z. As 
a more concrete example, body mass index (BMI) is defined as (weight in kg)/(height in meters)2 and so is 
strongly affected by both height and weight. Height and weight are associated in any natural population, but 
not perfectly: We could not exactly tell a person's weight from his or her height. Suppose, however, we learn 
that the person has BMI = 25 kg/m2 ; 
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then, upon being told (say) that the person is 2 m tall, we can compute his weight exactly. as 
BMI(height2 j 25(4) = 100 kg, 

Collider bias occurs even when the causal dependency of the collider Z on X and Y is not perfect, 
and when there are several intermediates between X and the collider or between Y and the collider. It 
can also be induced when X and Z (or Y and Z) are associated due to a common cause rather than 
because X influences Z. 

Collider bias can result from sample selection, stratification, or covariate adjustment if X and Y affect 
selection or the stratifying covariates, It can be just as severe as confounding, as shown in the classic 
example in which X, Y, and Z were exogenous estrogen use, endometrial cancer, and uterine bleeding 
(Chapter 9). As discussed later, it can also can induce confounding. 

SUMMARY 
Four distinct causal structures can contribute to an association between X and Y: (a) X may cause Y; (b) 
Y may cause X; (c) X and Y may share a common cause that wc have failed to condition on (confounding); 
or (d) we have conditioned or selected on a variable affected by X and Y, factors influenced by such a 
variable, or a variable that shares causes with X and Y (collider bias). Of course, the obsened association 
may also have been affected by purely random events. As described in Part Ill of this book, conventional 
statistics focus on accounting for the resulting random variation. The remainder of this chapter focuses 
on the representation of causal structures via graphical models, and on the insights that these 
representations provide. Throughout, we focus on the causal structures underlying our observations, 
ignoring random influences. 

GRAPHICAL MODELS 
TERMINOLOGY 
Causal diagrams visually encode an investigator's assumptions about causal relations among the 
exposure. outcomes, and covariates. We say that a variable X affects a variable Y directly (relative to 
the other variables in the diagram) if there is an arrow from X to Y. We say that X affects Y indirectly if 
there is a head-to-tail sequence of arrows (or "one-way street") from X to Y; such a sequence is called 
a directed path or causal path. Any variable along a causal path from X to Y is called an intermediate 
variable between X and Y. X may affect Y both directly and indirectly. In Figure 12—1, X affects Y directly 
and Z indirectly. The absence of a directed path between two variables represents the assumption that 
neither affects the other; in Figure 12—1, U and X do not affect each other. 

Children of a variable X are variables that are affected directly by X (have an arrow pointing to them 
from X): conversely. parents of X are variables that directly affect X (have an arrow pointing from them 
to X). More generally, the desccndants of a variable X are variables affected. either directly or indirectly. 
by X; conversely, the ancestors of X are all the variables that affect X directly or indirectly. In Figure 
12—1, Y has parents U and X, and a child Z; X has one child (Y) and two descendants (Y and Z); and Z 
has a parent Y and three ancestors, Y, U. and X. 

It is not necessary to include all causes of variables in the diagram. If two or more variables in a 
graph share a cause, however, then this cause must also be shown in the graph as an ancestor of those 
variables, or else the graph is not considered a causal graph. A variable with no parents in a causal 
graph is said to be erogenous in the graph: otherwise it is endogenous, Thus, all 

 FIGURE 12-1 A Causal d;agram With no confounding 
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exogenous variables in the graph are assumed to share no cause with other variables in the graph, If 
unknown common causes of two variables may exist, a casual graph must show them: they may be 
represented as unspecified variables Wilh arrows to the variables they are thought to influence. In a 
slight modification of these rules, some authors (e.g., Pearl, 2000) use a two-headed arrow between two 
variables as a shorthand to indicate that there is at least one unknown exogenous common cause of the 
two variables (e.g., X Z means that there is at least one unknown exogenous variable U such that X U 
—+ Z). We assume in the remainder of this chapter that unknown common causes are represented 
explicitly in causal diagrams, so there is no need for two-headed arrows. 

All the graphs we will consider are acyclic, which means that they contain no feedback loops; this 
means that no variable is an ancestor or descendant of itself, so if X causes Y, Y cannot also cause X at the 
same moment, If a prior value of Y affects X, and then X affects a subsequent value  of Y, these must each be 
shown as separate variables (e.g., Yo Xl —+ h) (for discussions of extensions to causal structures including 
feedback, see Spines [19951, Pearl and Dechter 11996), and Lauritzen and Richardson 120021). In most causal 
graphs the only connectors between variables are one-headed arrows (—+), although some graphs use an 



 

  

undirected dashed line ( to indicate associations induced by collider bias. Connectors, whether arrows or dashed 
lines, are also known as edges, and variables are often called nodes or vertices of the graph, Two variables 
joined by a connector are said to be adjacent or neighbors. If the only connectors in the graph are one-headed 
arrows, the graph is called directed. A directed acyclic graph or DAG is thus a graph with onty arrows between 
variables and with no feedback loops. The remainder of our discussion applies to DAGs and graphs that result 
from conditioning on variables in DAGs. 

A path between X and Y is any noncrossing and nonrepeating sequence traced out along connec 
tors (also called edges) starting with X and ending with Y, regardless ofthc direction ofarrowhcads. A variable 
along the path from X to Y is said to intercept the path. Directed paths are the special  case in which all thc 
connectors in the path flow head to tail. Any other path is an undirected path. In Figure 12—1 , U -+ Y 4-- X 
is an undirected path from U to X, and Y intcrccpts the patlb 

When tracing out a path, a variable on the path where two arrowheads meet is called a collider on that path. 
In Figure 12—1, Y is a collider on the path U —Y Y +- X from U to X. Thus, a collider on a path is a 
direct effect (child) of both the variable just before it and the variable just after it on the path. A directed 
path cannot contain a collider. If a variable on a path has neighbors on both sides but is not a collider, 
then the variable must be either an intermediate (X —+ Y —¥ Z or X Y +- Z) or a cause (X 4— Y -+ Z) 
of its immediate neighbors on the path. 

Being a collider is specific to a path. In the same DAG, a variable may be a collidcr on one path but 
an intermcdiale on another path; e.g., in Figure 12-1, Y is an intermediate rather than a collider on the 
path X -+ Y -+ Z. Nonetheless, a variable with two or more parents (direct causes) is called a collider in 
the graph, to indicate that it is a collider on at least one path. As we will see, paths Wilh colliders can turn 

out to be sources of confounding and selection bias. 

RULES LINKING ABSENCE OF OPEN PATHS TO 
STATISTICAL INDEPENDENCIES 

Given a causal diagram, we can apply the d-separation criteria (or directed-graph separation rules) to 
deduce indepcndencies implied by the diagram. We first focus on tiles for determining whether two 
variables are d-separated unconditionally, and then examine how conditioning on variables may 
d.separatc or d•connect other variables in the graph. Wc emphasize that the deduced relations apply 
only "in expectation," meaning that they apply to the expected data distribution if the causal structure 
represented by the graph is correct. They do not describe the associations that may arise as a result of 
purely random events, such as those produced by randomization or random sampling. 

Unconditional d-Separation 
A path is said to be open or unblocked or active unconditionally if there is no collider on thc path. 

Otherwise, if there is a collidcr on the path, it is said to be closed or blocked or inactive, and we say that the 
coltider blocks the path. By definition a directed path has no collider, so every directed path is open, although 
not every open path is directed. Two variables X and Y are said to be d.separatcd if there is no open path 

between them; otherwise they are d-connected. In Figure 12—2, the only  path from X to Y is open at Zl 
and but closed at W, and hence it is closed overall; thus X and Y 
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FIGURE 12—2 • ADAG under which traditional confounder-identification rules fail (an e M diagram"), 

are d-separated. When using these terms we will usually drop the "d." prefix and just say that they are 
separated or connected as appropriate. 

If X and Y are separated in a causal graph, then the causal assumptions encoded by the graph imply 
that X and Y will be unassociated. Thus, if every path from X to Y is closed, the graph predicts that X and 
Y will be marginally independent; i.e., for any values x and y of X and Y, Pr(Y = ylX = x) = Pr(Y = y). More 
generally and informally we can say this: In a causal graph, the only sources of marginal association 
between variables are the open paths between them. Consider Table 12—1, which lists the causal 
assumptions represented by the diagram of Figure 12—1 , and the associations implied by those causal 
assumptions. For example, the causal diagram implies that U and X are marginally independent because 
the only path between them passes through a collider, Y. This idea is formalized later when we define 
compatibility. 

Conditional d-Separation 
We also need the concept of graphical conditioning. Consider first conditioning on a noncollider Z on a 
path. Because it is a noncollider, Z must either be an intermediate between its neighbors on the path 
(X  Z -+ Y or X +- Z 4— Y) or a cause of its neighbors (X  Z -+ Y). In these cases the path is 
open at Z, but conditioning on Z closes the path and removes Z as a source of association between X 
and Y. These phenomena reflect the first criterion for blocking paths by conditioning on covariates: 

• Conditioning on a noncollider Z on a path blocks the path at Z. 

In contrast, conditioning on a collider requires reverse reasoning. If two variables X and Y are marginally 
independent, we expect them to become associated upon conditioning (stratifying) on a shared effect W. In 
particular, suppose we are tracing a path from X to Y and reach a segment on the path with a collider, X -+ W Y. 
The path is blocked at W, so no association between X and Y passes through W. Nonetheless, conditioning on W 
or any descendant of W opens the path at W. In other words, we expect conditioning on W or any descendant 
to create an X—Y association via W. We thus come to the second criterion for blocking paths by conditioning on 
covariates: 

• Conditioning on a collider W on a path, or any descendant of W, or any combination of W or its descendants, 
opens the path at W. 

Combining these criteria, we see that conditioning on a variable reverses its status on a 
path: Conditioning closes noncolliders (which are open unconditionally) but opens colliders 
(which are closed unconditionally). 

We say that a set of variables S blocks a path from X to Y if, after conditioning on S, the path is closed 
(regardless of whether it was closed or open to begin with). Conversely, we say that a set of variables S 
unblocks a path if, after conditioning on S, the path is open (regardless of whether it was closed or open to begin 
with), The criteria for a set of variables to block or unblock a path are summarized in Table 12—2. 
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Assumptions Represented in the Directed Acyclic Graph in Figure 12-1, and 
Statistical Implications of These Assumptions 

 
 Marginal Associations Conditional 

Associations 



 

 Expected under Expected under 

Causal Assumptions  Independencies Figure 12-1 Figure 12-1 
Represented in  Implied by (Assuming (Assuming 

Figure 12-1  Figure 12-1 Faithfulness) Faithfulness) 

 
• X and U are each • X and l.] are • X and Y are • X andU are associated 

direct causes of Y independent (the only associated  conditonal on Y 
(direct With respect to path between them • U and Y are {conduntng on a 
other variables In the es blocked by the associated. coilider unblocks the 
diagram). collider Y}.  Y and Z are path). 

• Y isa directcauseofZ.  • X and Z are  • X and V are associated 

 X is not a direct cause independent • X and Z are conditional on Z (Z IS a 
of Z but X is an conditiona\ on Y assoctated, descendant of the 
indirect cause of Z (conditmng on Y • U and Z are co!llder Y). 
Via Y. blocks the path assoctated.  

• X is not a cause between X and Z h   

of U and U is not a • U and Z are   

cause of X  independent   

• U is not a direct cause 
of Z, butU is an 
indirect cause of Z 

condit onal on Y    

Via Y. 
• No two vartables in the 

diagram (X, U, Y, or Z ) share 
a prior cause not shown jn 
the diagram, e g t no variable 
causes both X and Y. or both 
X and U 

 

If S blocks every path from X to Y, we say that X and Y are d.separatcd by S, or that S separates X and Y. 
This definition of d.separation includes situations in which there was no open path before conditioning on 
S. For example, a set S may bc sufficient to separate X and Y even if S includes no variables: if there is no 
open path between X and Y to begin with, the empty set separates them. 

d•Separation and Statistical Independence 
We have now specified the d-separation criteria and explained how to apply them to determine hether 
two variables in a graph are d-separated or d-connected, either marginally or conditionally. These concepts 
provide a link between the causal structure depicted in a DAG and the statistical associations we expect in 
data generated from that causal structure, The following two rules specify Jhe relation between 
d.separation and statistical independence; these rules underlie the applications we wili present. 

Rule 1 (compatibility). Suppose that two variables X and Y in a causal graph are separated by a set of 
variables S, Then if the graph is correct, X and Y will be unassociated given S. In other 
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Criteria for Determining Whether a Path is Blocked or Unblocked 
Conditional on a Set of Variables S 

 
The Path from X to Y is Blocked The Path from X to Y is Unblocked Conditional on S if Either: 

Conditional on S if Both: 
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A noncollider Z on the path is in S (because the 
path Will be blocked by S at Z) 

OR 
There is a collider W on the path that is not 
in S and has no descendant in S (because W 
still blocks the path after condition;ng on S). 

S contains no nonco'lider on the path (so 
condition:ng on S blocks no noncolllder) 

AND 
Every collider on the path is either in S or 
has a descendant In S (because conditioning 
on S opens every collider). 

 

words, if S separates X from Y, we will have Pr(Y VIX x. S = S) = Pr(Y VIS S) for every possible value 
x, y. S of X, Y, S. 

Rule 2 (weak faithfulness). Suppose that S does not separate X and Y, Then, if the graph is correct, X and Y 
may be associated given S. In other words, if X and Y are connected given S, then without further 
information we should not assume that X and Y are independent given S. 

As an illustration, consider again Figure 12—1. U and X are unassociated. Because Y is a collider, 

however, we expect U and X to become associated after conditioning on Y or Z or both (that is, S unblocks 
the path whether S = {Y S = {Z). or S = {Y, Z}). In contrast, X and Z are marginally associated, but become 
independent after conditioning on Y or S = {U. Y  

ASSUMPTIONS AND INTUITIONS UNDERLYING THE RULES 
Although informal diagrams of causal paths go back at least to the 1920s, the mathematical theory of graphs 
(including DAGs) developed separately and did not at first involve causal inference. By the 1980s, however, 
graphs were being used to represent the structure ofjoint probability distributions. with d-separation being 
used to encode "stable" conditional independence relations (Pearl, 1988). One feature of this use of graphs is 
that a given distribution will have more than one graph that encodes these relations. In other words. graphical 
representations of probability distributions are not unique. For example, in probabilistic (associational) terms. 
A —+ B and B -+ A have the same implication, that A and B are dependent. By the 1990s, however. several 
research groups had adapted these probability graphs to causal inference by letting the arrows represent cause-
effect relation.% as they had in path diagrams. Many graphical representations that are probabilistically 
equivalent are not causally equivalent. For example, if A precedes B temporally, then B A can be ruled out 
as a representation for the relation of A and B. 

The compatibility and faithfulness rules define what wc mean when we say that a causal model for a set 
of variables is consistent with a probability model for the distribution of those variables. In practice, the rules 
are used to identify causal graphs consistent with the observed probability distributions of the graphed 
variables. and, conversely, to identify distributions that are consistent with a given causal graph. When the 
arrows in probability graphs represent causal processes, the compatibility rule above (rule I) is equivalent to 
the causal Markov assumption (CMA), which formalizes the idea that (apart from chance) all unconditional 
associations arise from ancestral causal relations. Causal explanations of an association between two variables 
invoke some combination of shared common causes, collider bias, and one of the variables affecting the other. 
These relations fortn the basis for Rule l. 

Specifically, the CMA states that for any variable X, conditional upon its direct causes (parents). X is 
independent of all other variables that it docs not affect (its nondescendants). This condition asserts that if we 
can hold constant the direct causes of X, then X will be independent of any other variable that is not itself 
affected by X. Thus, assuming X precedes Y temporally. in a DAG without Chapter 12 • Causal Diagrams
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conditioning there are only two sources of association between X and Y: Effects of X on Y (directed paths 
from X to Y ), or common causes (shared ancestors) of X and Y, which introduce confounding. We will make 
use of this fact when we discuss control of bias. 

The d-separation rule (Rule 1) and equivalent conditions such as the CMA codify common intuitions about 
how probabilistic relations (associations) arise from causal relations. We rely implicitly on these conditions 
in drawing causal inferences and predicting everyday events—ranging from assessments of whether a drug 
in a randomized trial was effective to predictions about whether flipping a switch on the wall will suffuse a 
room with light. In any sequence of events, holding constant both intermediate events and confounding events 
(common causes) witl interrupt the causal cascades that produce associations. In both our intuition and in 
causal graph theory, this act of "holding constant" renders the downstream events independent of the upstream 
events. Conditioning on a set that d-separates upstream from downstream events corresponds to this act. This 
correspondence is the rationale for deducing the conditional independencies (features of a probability 
distribution) implied by a given causal graph from the d-separation rule. 

The intuition behind Rule 2 is this: If, after conditioning on S, there is an open path between two variables, 
then there must bc some causal relation linking the variables, and so they ought to be associated given S, apart 



 

from certain exceptions or special cases. An example of an exception occurs when associations transmitted 
along different open paths perfectly cancel each other, resulting in no association overall. Other exceptions 
can also occur. Rule 2 says only that we should not count on such special cases to occur, so that, in general, 
when we see an open path between two variables, we expect them to be associated, or at least we are not 
surprised if they are associated. 

 Some authors go beyond Rule 2 and assume that an open path between two variables means that they must be 
associated. This stronger assumption is catledfaithfulncss or stability and says that if S does not d-separate X and 
Y, then X and Y will be associated given S. Faithfulness is thus the logical converse of compatibility (Rule l). 
Compatibility says that if two variables are d.separatcd, then they must be independent; faithfulness says that if two 
variables are independent, then thcy must be d-separated. When both compatibility and faithfulness hold, we have 
perfect compatibility, which says that X and Y are independent given S if and only if S d-separatcs X and Y; 
faithfulness adds the "only if" part. For any given pattern of associations, the assumption of perfect compatibility 
rules out a number of possible causal structures (Spines et al., 2001 Therefore, when it is credible,  perfect 
compatibility can help identify causal structures underlying observed data. 

Nonetheless, because there are real examples of near-cancellation (e.g., when confounding obscures a real effect 
in a study) and other exceptions, faithfulness is controversial as a routine  assumption, as are algorithms for 
inferring causal structure from observational data; see Robins (1997, section I l), Korb and Wallace (1997), 
Freedman and Humphreys (1999), Glymour et al. (1999), Robins and Wasserman (1999), and Robins et al. (2003). 
Because of this controversy, we  discuss only uses of graphical models that do not rely on the assumption of 
faithfulness. Instead,  we use Rule 2, which weakens the faithfulness condition by saying that the presence of open 
paths alerts us to the possibility of association, and so we should allow for that possibility. 

The rules and assumptions just discussed should be clearly distinguished from the content.  specific causal 
assumptions encoded in a diagram, which relate to the substantive question at hand.  These rules serve only to 
link the assumed causal structure (which is ideally based on sound and complete contextual information) to the 
associations that we observe. In this fashion. they allow testing of those assumptions and estimation of the effects 
implied by the graph. 

GRAPHICAL REPRESENTATION OF BIAS AND ITS CONTROL 
A major use ofcausal graphs is to identify sources of bias in studies and proposed analyses, including biases 

resulting from confounding, selection, or over-adjustment. Given a causal graph, we can use  the definitions and 
rules we have provided to determine whether a set of measured variables S is sufficient to allow us to identify 

(validly estimate) the causal effect of X on Y. 
 Suppose that X precedes Y temporally and that the objective of a study is to estimate a measure  Of the effect 
of X on Y. We wilt call an undirected open path between X and Y a biasing path for the effect because such 

paths do not represent effects of X on Y, yet can contribute to the association Of X and Y. The association 
of X and Y is unconditionally unbiased or marginally unbiased for the  effect of X on Y if the only open paths 
from X to Y are the directed paths. 
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