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The power network is the largest operat-
ing machine on earth, generating more than
US$400bn a year1 keeping the lights on for
our homes, offices, and factories. A signifi-
cant concern in power networks is for the en-
ergy providers to be able to generate enough
power to supply the demands at any point in
time. Short terms demand peaks are how-
ever hard to predict and, thus, in the modern
smart electricity grid, the energy providers can
exploit the demand-side flexibility of the con-
sumers to reduce the peaks in load demand.

This control mechanism is called Demand-
side management (DSM). DSM can be ob-
tained by scheduling shiftable loads (i.e., a
portion of power consumption that can be
moved from a time slot to another) from peak
to off-peak hours (Fioretto, Yeoh, & Pontelli,
2017; Logenthiran, Srinivasan, & Shun, 2012;
Voice, Vytelingum, Ramchurn, Rogers, & Jen-
nings, 2011). In a simplified version of this
problem, the energy provider has a desired
maximal amount of power that it can gener-
ate and, thus, use to serve its customers.
When the predicted amount of customer loads
exceed such amount, the provider has to
reschedule some of these loads in different
time slots to satisfy the constraint on the max-
imum power capacity.

Such an approach, however, requires the
provider to control a portion of the consumer’s
electrical appliances, affecting privacy and
users’ autonomy. On the other hand, res-
idential and commercial buildings are pro-
gressively being partially automated, through
the introduction of smart devices (e.g., smart
thermostats, circulator heating, washing ma-
chines). Household penetration is at 5.8% in
2016 and is expected to hit 18.6% in 2020.2

Copyright c© 2018 by the author(s).
1U.S. Energy Information Administration
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Device scheduling can be executed by the
users, without the control of a centralized au-
thority, and a coordinated device scheduling
within a neighborhood of buildings can be
used as a DSM strategy, preserving user data
privacy. Figure 1 illustrates such scenario.

One possible way to solve this problem is
through the use of Distributed Constraint Op-
timization Problems (DCOPs) (Fioretto, Pon-
telli, & Yeoh, 2016; Modi, Shen, Tambe, &
Yokoo, 2005; Petcu & Faltings, 2005a). DCOP
algorithms are a class of distributed cooper-
ative multi-agent algorithms in which several
autonomous agents coordinate their decisions
to achieve a shared goal while accounting for
personal preferences. The agents can be
thought of as software programs whose exe-
cution does not depend on the execution of
other agents. Their actions are expressed us-
ing the concept of variables, i.e., abstract en-
tities that can take one out of several values
(describing the possible set of actions for the
agent). Each agent needs to decide which
value to assign to its variables. The outcome
of an action is expressed in terms of a cost (or
reward) and typically depends on the joint ac-
tion of multiple agents. The goal of a DCOP is
expressed in the form of an objective function
to be minimized (or maximized). To coordinate
their actions, agents employ a message pass-
ing mechanism realized through a networked
communication.

Mathematically, a DCOP is composed by the
following entities:

• A = {a1, . . . , ap}: The set of autonomous
agents participating in the problem.
• X = {x1, . . . , xn}: The set of variables in

the problem. Each variable is controlled by
exactly one agent.
• D = {D1, . . . , Dn}: The domains for the

variables in X , where Di represents the set
of possible values that the variable xi may
be assigned.
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Figure 1: An illustration of a smart neighborhood with each home controlling a set of smart devices.

• C = {c1, . . . , ce}: The set of problem con-
straints. Each constraint ci is a function that
involves (multiple) variable(s) from X and
associates a cost for each combination of
their value assignments.
• α : X → A: A mapping that associates

variables to agents, expressing which agent
controls which variables.

The goal of the problem is to find an assign-
ment for the agent variables that minimizes the
sum of all costs over all constraints. Since the
agents are physically distributed across a net-
work, all communication take the form of mes-
sages. Thus, agents coordinate the value as-
signment for their variables following a given
distributed protocol. In addition, agents knowl-
edge is limited to their resources: each agent
knows exclusively the outcomes of the vari-
ables it controls and the constraints it shares
with some other agents. This scheme is ef-
fective to design algorithms that preserve data
privacy.
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Figure 2: An illustration of a smart neighbor with
each home controlling a set of smart devices.

In the DSM smart device scheduling exam-

ple in Figure 2, we illustrate a smart neigh-
borhood composed of 4 homes, each repre-
sented by one agent: a1, . . . , a4. In this simpli-
fied scenario, each agent controls one single
variable x1, . . . , x4, which represents a simpli-
fied electrical appliance that can be switched
off (consuming 0 kWh) or on (consuming 2
kWh). Assume the energy provider imposes
a total consumption limit of 4 kWh. We repre-
sent the domains of each variable with the set
{0, 2}, indicating the consumption associated
with the device’s actions. The only constraint
of the problem is expressed with the formula
x1 + x2 + x3 + x4 ≤ 4, meaning that the ag-
gregated energy consumption cannot exceed
4 kWh. A possible solution to the problem is
thus having agents a1, and a2 switching their
appliances on, and thus consuming a total
of x1 = 2 + x2 = 2 = 4 kWh, and agents
a3 and a4 switching their appliance off, thus
consuming 0 kWh. A more detailed descrip-
tion of the DSM scheduling application and its
corresponding DCOP model can be found in
(Fioretto et al., 2017; Tabakhi, Le, Fioretto, &
Yeoh, 2017).

The DCOP framework is general and offers a
flexible tool to model a wide variety of prob-
lems. Examples of use of DCOPs to solve
distributed problems include service-oriented
computing, that relies on sharing resources
over a network, focusing on maximizing the
effectiveness of the shared resources which
are used by multiple applications (Choudhury,
Dey, Dutta, & Choudhury, 2014; Jin, Cao, &
Li, 2011; Li, Wang, Ding, & Li, 2014), sen-
sor network problems, which consist of coor-
dinating a large number of inexpensive and
autonomous sensor nodes, constrained by
a limited communication range and battery
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life (Hosseini Semnani & Basir, 2013; Ota,
Matsui, & Matsuo, 2009; Stranders, Farinelli,
Rogers, & Jennings, 2009; Zhang, Wang,
Xing, & Wittenberg, 2005), and many oth-
ers (Brys, Pham, & Taylor, 2014; Gaudreault,
Frayret, & Pesant, 2009; Junges & Bazzan,
2008; Kumar, Faltings, & Petcu, 2009; Miller,
Ramchurn, & Rogers, 2012; Rust, Picard, &
Ramparany, 2016; Yeoh & Yokoo, 2012; Zi-
van, Yedidsion, Okamoto, Glinton, & Sycara,
2015). More examples can be found in a re-
cent survey (Fioretto, Pontelli, & Yeoh, 2016).

It turns out that it is difficult (NP-hard) to
optimally solve this kind of problems, and
that there is a close relationship between
the amount of information that needs to
be encoded in a message (message size)
vs. the number of messages exchanged by
the agents (network load). Thus, an exten-
sive piece of the DCOP literature focuses on
the study of algorithms that trade off solution
quality for faster runtime and reduced use of
network resources (Farinelli, Rogers, Petcu,
& Jennings, 2008; Fioretto, Yeoh, & Pontelli,
2016; Maheswaran, Pearce, & Tambe, 2004;
Nguyen, Yeoh, & Lau, 2013; Ottens, Dimi-
trakakis, & Faltings, 2017; Pearce & Tambe,
2007; Petcu & Faltings, 2007a; Yeoh, Sun, &
Koenig, 2009; Zhang et al., 2005).

As one of the motivations for the use of
DCOPs is the preservation of privacy, there
is also a large body of work on privacy-
preserving algorithms (Grinshpoun & Tassa,
2016; Léauté & Faltings, 2011a, 2013; Tassa,
Grinshpoun, & Zivan, 2017; Tassa, Zivan, &
Grinshpoun, 2016).

Additionally, the DCOP model has also been
extended to handle problems where agents
have multiple objectives (Delle Fave, Stran-
ders, Rogers, & Jennings, 2011; Matsui,
Silaghi, Hirayama, Yokoo, & Matsuo, 2012),
problems of a dynamic nature (i.e., where the
problem changes over time) (Hoang et al.,
2016, 2017; Nguyen, Yeoh, Lau, Zilberstein, &
Zhang, 2014; Petcu & Faltings, 2005b, 2007b;
Yeoh, Varakantham, Sun, & Koenig, 2015),
and problems with uncertainty (i.e., where
constraint costs depend from uncertain fac-
tors, such as weather) (Atlas & Decker, 2010;
Le, Fioretto, Yeoh, Son, & Pontelli, 2016;
Léauté & Faltings, 2011b; Nguyen, Yeoh, &
Lau, 2012; Stranders, Delle Fave, Rogers, &

Jennings, 2011).

A forum for discussion on DCOP algorithms
and applications has been held at the Op-
timization in Multi-Agent Systems (OptMAS)
workshop since 2010 at the International Con-
ference on Autonomous Agents and Multia-
gent Systems (AAMAS). Recent dissertations
within the past 5 years include (Billiau, 2015;
Delle Fave, 2012; Fioretto, 2016; Grubshtein,
2012; Guttierez, 2012; Hanada, 2017; Hatano,
2013; Kim, 2015; Miller, 2014; Netzer, 2015;
Okimoto, 2012; Ottens, 2012; Ueda, 2014;
Yedidsion, 2015).
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