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Distributed Constraint Optimization Problem (DCOP) is a powerful paradigm to model multi-agent
systems through enabling multiple agents to coordinate with each other to solve a problem. These
agents are often assumed to be cooperative, that is, they communicate with other agents in order to
optimize a global objective. However, the communication times between all pairs of agents are as-
sumed to be identical in the evaluation of most DCOP algorithms. This assumption is impractical
in almost all real-world applications. In this paper, we study the impact of empirically evaluating a
DCOP algorithm under the assumption that communication times between pairs of agents can vary.
In addition, we evaluate a DCOP algorithm using ns-2, a discrete-event simulator that is widely used
in the computer networking community, to simulate the communication times, as opposed to the stan-
dard DCOP simulators that are used to evaluate DCOP algorithms in the AI community. Furthermore,
we propose heuristics that exploit the non-uniform communication times to speed up DCOP algo-
rithms that operate on pseudo-trees. Our empirical results demonstrate that the proposed heuristics
improve the runtime of those algorithms up to 20%. These heuristics are evaluated on different bench-
marks such as scale-free graphs, random graphs, and an instance of the smart grid, Customer-Driven
Microgrid (CDMG) application.

Keywords: Distributed constraint optimization problems; smart grid; customer-driven microgrid; net-
work simulators; communication times; multi-agent systems.

1. Introduction

Distributed Constraint Optimization Problems (DCOPs) are widely used in cooperative
Multi-Agent Systems (MAS), where each agent holds one or more variables and assigns
them an optimal value from a domain of possible assignments. Agents communicate to
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decide on an assignment for all variables such that the sum of resulting constraint utilities is
maximized.1,2 DCOPs have a wide range of multi-agent system applications such as mobile
sensor network and meeting scheduling problems, where subset of agents interact to solve
a problem.3–7 Considering the NP-hardness of such problems, within the past decades, an
increasing number of algorithms have been proposed to solve DCOPs. These algorithms
are often classified as complete or incomplete depending on whether they can guarantee
finding the optimal solution or a non-optimal solution for a shorter running time. Typically,
complete DCOP algorithms1,8,9 use pseudo-trees to provide some forms of ordering of the
variables in the DCOP. Similarly, some of the incomplete DCOP algorithms10,11 also utilize
pseudo-trees for ordering DCOP variables.

Although the algorithms to solve DCOPs have matured significantly since the field
emergence, the number of DCOP realistic benchmarks, which are used to evaluate the
performance of DCOP algorithms, is not significantly increasing. Due to unrealistic as-
sumptions of typical DCOP algorithms, researchers evaluate such algorithms on synthetic
random problems. One of the DCOP’s unrealistic assumptions is that the empirical evalua-
tions of most DCOP algorithms are done in simulation in which the interaction between all
pairs of agents incur identical communication costs. Unfortunately, this assumption is not
true in many multi-agent problems. For example, in a mobile sensor network, the commu-
nication between pairs of sensors depends on several factors, such as the distance between
the sensors, the environment, and communication protocols. Thus, we extend the DCOP
framework to include communication-related information; more specifically, the commu-
nication time of each constraint.

This extended framework allows us to empirically study and evaluate the impact of
variable communication times on DCOP algorithms. We conduct an investigation with
DPOP,8 one of the most popular complete DCOP algorithms which has been widely ex-
tended by DCOP community. In order to evaluate the performance of DCOP algorithms,
different efficiency metrics have been proposed such as NCCCs,12 number of messages,
and simulated runtime.13 The first metric counts the number of non-concurrent constraint
checks, the second metric counts the number of messages exchanged among agents, and
last but not least is a common metric among the DCOP community which is used as a proxy
to measure distributed runtime. In this work, we empirically verify the assumption of a high
correlation between simulated runtimes and actual runtimes by specifying the communica-
tion time for each message as the time it takes for the source node to send a message until
the sink node receives it. We define the communication time within the simulated run-
time. Accurate estimation of communication times is often difficult due to its dependency
to a combination of factors: communication protocols, communication medium, interfer-
ence model, transmission delay, propagation delay, queuing delay, and processing delay.14

Thus, we use Network Simulator 2 (ns-2),15 a discrete-event simulator used by the com-
puter networking community,16–18 to simulate transmission of messages and measure the
communication time of those transmissions. Using these communication times and actual
computation times, we compute “actual” runtimes and experimentally verify the implicit
assumption made by DCOP researchers. To the best of our knowledge, such an experiment
has not been done with realistic networking simulators before.
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In this work, we develop heuristics that can be used to exploit the non-uniform
communication times in a DCOP to speed up the runtime of algorithms that operate on
pseudo-trees. We study the impact of communication times on the performance of the
DPOP algorithm that is a complete and inference DCOP algorithm. Complete and cor-
rect DCOP algorithms1,8,9 typically require some forms of ordering for the variables in the
DCOP. The majority of these algorithms use pseudo-trees to achieve the required ordering.
Similarly, some approximate DCOP algorithms10,11 also use pseudo-trees for ordering of
the DCOP variables. As such, our heuristics can improve a large class of existing DCOP
algorithms. We evaluate our heuristics in random graphs, scale-free graphs, and power
network topologies with communication times that depend on physical distances, which
are sampled from two — uniform and Gaussian — distributions. Our experimental results
show that (i) the runtime of DPOP is positively correlated with the depth of its pseudo-tree
and (ii) our heuristics find pseudo-trees with smaller depths than the existing max-degree
heuristic by up to 20%.

2. Related Work

A Distributed Constraint Optimization Problem (DCOP) is a fundamental problem that
can formalize popular cooperative multi-agent applications including meeting scheduling3

to scheduling smart devices in smart homes.19,20 Even though the development of various
sophisticated algorithms for solving DCOPs has matured the DCOP field over the past
decades, there is still a very limited contribution on the effect of communication times in
the context of DCOPs.

Cruz et al.21 investigated the importance of message communication times in evalua-
tion of DCOP algorithms by conducting experiments in which agents are physically located
apart in different machines connected by a LAN. They observed that communication times
are orders of magnitude larger than what is typically assumed in the DCOP community,
thereby issuing a call of action for better investigation of this area. Our research, in a large
part, is in response to this call. However, there are differences between their work and
ours; in their experiments they limited the number of agents to six and the constraint den-
sity p1 to 0.5. In the communication protocol between agents, a master machine broadcast
messages to client computers in the network. Then the master machine detects the active
computers in the network and sends direct messages to clients. The master computer is
responsible for assigning problem variables to the clients and itself. Once agents have been
assigned with the variables, each agent runs the BnB-ADOPT algorithm to solve the dis-
tributed problem. The elapsed time is measured from the time that the DCOP resolution
starts until the latest agent terminates. To assess the elapsed time, the authors measured
the communication times between agents. Their experimental results showed the impor-
tance of communication effort that is not fairly reflected in evaluation metrics such as
NCCCs and simulated runtime. In contrast, our experiments includes a larger number of
agents over a larger and more realistic combination of configurations (e.g., different com-
munication times, constraint densities, communication protocols, and graph topologies).
Furthermore, we use wireless communication medium instead of wired communication,
which is more common in applications such as our motivating CDMG application. We
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also precisely measure the communication times through the network simulator ns-2 that
captures several factors, such as network congestion, packet drops, and possible delays that
affect the communication effort in real-world environments.

In the context of distributed constraint satisfaction problems (DCSPs), Fernandez
et al.22 have also studied the effect of communication network data load on DCSP al-
gorithms and found that including random delays in message delivery times can in fact
improve the performance and robustness of AWC. Wahbi et al.23 studied the effect of dif-
ferent communication costs on the performance of DCSP algorithms. They first decoupled
the communication graph from the underlying constraint graph of the problem that models
different communication layers and showed that different communication layers signifi-
cantly affect the message costs and changing communication graph topologies affect the
performance of the ABT and AFC-ng algorithms. In their work, the authors measured
the communication load by the number of transmitted messages during the algorithm ex-
ecution (#transmission) and the computation effort that takes the message delay into ac-
count, which is measured by the average of the equivalent non-concurrent constraint checks
(#NCCCs).12 The main difference with our work is that the authors studied the effect of
uniform message delays in terms of the number of messages transmitted and the number
of constraint checks. In contrast, we study the effect of non-uniform delays, that is simu-
lated with more realistic communication protocols, in terms of the pseudo-tree depth. The
pseudo-tree depth serves as a proxy for simulated runtimes. Hence, we propose methods to
construct shorter pseudo-trees with the aim of speeding up the performance of large class
of DCOP solvers. Different from Fernandez and Wahbi’s work, we use ns-2 simulator to
measure a more realistic communication latency. The ns-2 simulator that we use in this
paper, models packet loss, re-transmissions due to packet drops, and network congestion
that have been disregarded in recent studies.

Zivan et al.24 investigated the impact of message delays in DCSP problems. The main
difference with our work is that the authors introduced an Asynchronous Message Delay
simulator (AMD), which measures the logical time of the algorithm run and does not cap-
ture a real transmission and communication protocol. In contrast, we investigate the effect
of non-uniform message delays on DCOPs. The simulator we use provides a more accurate
estimate of the message delays through the simulation of a transport, routing, and multicast
protocols over wireless network scenarios.

Okimoto et al.25 have also studied the effect of different variable-ordering heuristics
for ABT in scale-free graphs. Similarly, we propose different variable-ordering heuris-
tics and study the effect of the proposed heuristics, specifically for the DPOP algo-
rithm. However, different from Okimoto’s work, our proposed heuristics exploit the
non-uniform communication times in a DCOP to speed up algorithms that operate on
pseudo-trees. While Okimoto et al. do not consider communication efforts in ABT al-
gorithm. Similar to their work, we have evaluated our heuristics on scale-free graphs and
showed the effect of communication times in such graphs.

Finally, Ali et al.26 have proposed preprocessing techniques that are based on dynamic
programming to accelerate the ADOPT algorithm. Similar to their work, we propose sev-
eral heuristics that construct shorter pseudo-trees as the preprocessing phase of DPOP to
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accelerate its runtime. Unlike Ali et al., our heuristics in the preprocessing phase of DPOP
take non-uniform communication times into account while communication effort is totally
neglected in their work. This article is a revised and extended version of our preliminary
effort27 which is augmented with more details on the network simulator ns-2 and concrete
experimental results on different benchmarks.

3. Preliminaries

We will describe the Distributed Constraint Optimization Problem (DCOP) paradigm and
the pseudo-tree structure used in the DPOP algorithm discussed in this paper.

3.1. Distributed constraint optimization problems

DCOPs are problems from the multi-agent systems filed in which agents can send mes-
sages to one another to cooperatively decide on their variable assignments to find a so-
lution to a global maximization reward function. DCOP is formally defined as a tuple
〈A,X,D,F, α〉, where:

• A = {ai}pi=1 is a set of agents.
• X = {xi}ni=1 is a set of decision variables.
• D = {Dx}x∈X is a set of finite domains. Each variable x ∈ X takes values from the set
Dx ∈ D.

• F = {fi}mi=1 is a set of constraints, each defined over a mixed set of decision variables:
fi : "x∈xfi Dx → R+ ∪ {⊥}, where xfi ⊆ X is the scope of fi and ⊥ is a special
element used to denote that a given combination of values for the variables in xfi is not
allowed.

• α : X→ A is a function that associates each decision variable to one agent.

A solution σ is a value assignment for a set xσ ⊆ X of variables that is consistent with
their respective domains. The utility F(σ) =

∑
f∈F,xf⊆xσ f(σ)

a is the sum of the utilities
across all the applicable constraints in σ. A solution σ is complete if xσ =X. The goal is
to find an optimal complete solution x∗ = argmaxx F(x).

For simplicity we draw our attention to binary constraints and assume that α is a bi-
jection: each agent controls exactly one variable. Thus, we will use the terms “variable”
and “agent” interchangeably and assume that α(xi) = ai. Even though this is a common
assumption in the DCOP literature as there exist pre-processing techniques that transform
a general DCOP into this more restrictive DCOP,28,29 our approach can be easily general-
ized to the unrestricted version, as we demonstrate with our Customer-Driven Microgrid
(CDMG) application domain in our experiments.

Figure 1 illustrates a typical DCOP problem where each of four agents tries to deter-
mine an optimal value assignment for their variables independently. Note, that an agent in
a DCOP has limited knowledge of the entire problem. Hence, factors such as how agents

aWith a slight abuse of notation, we use F to denote the set of constraints as well as the overall utility of the
DCOP.
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Fig. 1. Example of a DCOP.

communicate with each other and what message is exchanged are crucial in DCOP algo-
rithms.

3.2. Distributed DFS pseudo-tree

Given a DCOP P , G = (X, E) is the constraint graph of P , shown in Fig. 1(a), where
{xi, xj} ∈ E iff ∃fi ∈ F such that {xi, xj} = xfi . A DFS pseudo-tree arrangement
shown in Fig. 1(c), for G is a spanning tree T = 〈X, ET 〉 of G such that if fi ∈ F and
{xi, xj} ⊆ xfi , then xi and xj appear in the same branch of T . Edges of G that are in ET
are called tree edges, shown with solid lines, and other edges, shown with dashed lines, are
called backedges.

Tree edges connect a node with its parent and its children, while backedges con-
nect a node with its pseudo-parents and its pseudo-children. We use N(ai) = {aj ∈
A | {xi, xj} ∈ E} to denote the neighbors of agent ai; and P (ai), C(ai), PP (ai), and
PC(ai) to denote the parent, the set of children, the set of pseudo-parents, and the set of
pseudo-children of agent ai in the pseudo-tree. A pseudo-tree is often evaluated based on
its maximum depth or separator.

Definition 3.1. Separator. In a pseudo-tree the separator of agent ai denoted by sep(ai),
is the set of all ancestors of ai denoted by ans(ai), that are also pseudo-parents of ai or its
descendants denoted by des(ai).

sep(ai) = ans(ai) ∩

(
PP (ai) ∪

( ⋃
aj∈des(ai)

PP (aj)

))
.

Figure 1(c) shows a pseudo-tree obtained from the constraint graph in 1(a), with x3 as
the root, the separators of this example are sep(x3) = ∅, sep(x1) = {x3}, sep(x2) =

{x1, x3}, and sep(x0) = {x1, x3}. As mentioned before, “variable” and “agent” are used
interchangeably.

Distributed DFS. Such pseudo-tree structures can be obtained using a depth-first-traversal
of the constraint graph. Given a constraint graph, constructing an optimal pseudo-tree is
an NP-hard problem, the Distributed DFS algorithm has been proposed by Hamadi et al.30
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to construct pseudo-trees. This greedy-based algorithm is commonly used in many im-
plementations of complete DCOP algorithms including those within the DCOPolis13 and
FRODO31 repositories. Both of these repositories include a large number of common
DCOP algorithms and are frequently used by DCOP researchers.

The Distributed DFS algorithm operates as follows: It assigns a score to each variable
according to some heuristic function. Then, it selects a variable with the largest score as
the root of the pseudo-tree. Once the root is selected, it initiates a DFS-traversal of the
constraint graph, greedily adding the neighboring variable with the largest score as the
child of the current variable. This process repeats until all variables in the constraint graph
are added to the pseudo-tree. The variables’ scores can be chosen arbitrarily. A commonly
used heuristic is the max-degree heuristic h(xi):

h(xi) = |N(xi)|, (1)

which sets a variable’s score to its number of neighbors. In situations where multiple vari-
ables have the same maximal score, the algorithm breaks ties according to a different
heuristic, such as the variable-ID heuristic, which assigns to each variable a score that
is equal to its unique ID. In our experiments, we use the max-degree heuristic and break
ties with the variable-ID heuristic as the benchmark heuristic.

3.3. DPOP algorithm

The Distributed Pseudo-tree Optimization Procedure (DPOP)8 is a complete inference
algorithm composed of three phases:

• Pseudo-Tree Construction Phase: Agents coordinate to build a pseudo-tree using Dis-
tributed DFS.

• UTIL Propagation Phase: Each agent, starting from bottom of the pseudo-tree leaf
nodes, computes the optimal sum of utilities in its subtree for each value combination
of variables in its separator, and sends the optimal utilities up to its parent in UTIL mes-
sages. Let us denote the UTIL message sent from agent ai to agent aj by UTILi→j ,
which is a multi-dimensional matrix consist of a dimension of each variable in sep(ai).
The dimension of UTILi→j denoted by dim(UTILi→j) is the set of variables consid-
ered by the message. For an assignment σ′ ∈ dim(UTILi→j),

UTILi→j(σ
′) =

⋃
∀σ′′,σ′′=dim(UTILi→j)\σ′

UTILi→j(σ
′ ∪ σ′′).

It simply shows that each agent computes the optimal sum of utilities by adding
the utilities of its functions with the variables in its separator and the utilities in the
UTIL messages received from its children agents, and projecting out its own variables
by optimizing over them.

• VALUE Propagation Phase: Each agent, starting from the pseudo-tree root, determines
the optimal value for its variables and sends the optimal values down to its children in
VALUE messages. Each agent determines the optimal value of its variables based on its
UTIL computations and the value of variables in the VALUE messages.
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4. Customer-Driven Microgrid Application

In this section, we motivate our work using the Customer-Driven Microgrid (CDMG) op-
timization problem proposed by Gupta et al.32 The customer-driven microgrid has been
introduced32 as one of the smart grid representatives, where the energy consumption, gen-
eration, and transmission are distributed among multiple agents in the system. Our CDMG
instantiation consists of a neighborhood of homes each of which capable of generating
energy, consuming energy and transmitting energy to its neighboring homes. We model
this problem as a DCOP and represent each home by an agent, the energy consumption,
generation, and transmission of each home are the variables controlled by that agent. The
domain of these variables are thus the range of energy that can be generated, consumed,
and transmitted. Two neighboring agents are constrained with one another if they can trans-
mit energy to each other. Moreover, there are constraints that must be satisfied when the
amount of energy generated minus the amount of power consumed must be equal to the
amount of energy transmitted out of a home to its neighboring homes. Finally the objective
of the DCOP model is to minimize the difference between the largest amount of energy
consumed and the largest amount of energy generated in the neighborhood.

Like in most DCOP literature, Gupta et al.32 also assume that the communication time
of transmitting energy is uniform across all homes. However, in practice, the communica-
tion time may not be uniform and depends largely on the underlying network topologies
and communication technologies used by the agents. For example, most homes today are
equipped with smart meters that are used to measure the amount of energy flowing into
and out of the homes. The home and power plants or energy providers are connected to
each other through a communication network (e.g., wireless network). Thus these smart
meters can communicate over a wireless network to an aggregator, which then transmits
the information to the energy provider potentially through other aggregators.

Researchers have proposed a hierarchical architecture, where homes are connected to
aggregators in a star topology and aggregators are connected to each other in a mesh topol-
ogy.33 It is argued that this configuration is necessary for the microgrid to meet reliability,
self-configuring, and self-healing requirements of smart grid applications. Thus, as we
adopt this communication model, in order to maintain privacy and reliability, we assumed
that the communication between any two agents must go through at least one aggregator
and the communication times depend on the distance between the agents and the aggrega-
tor. Figure 2 illustrates this application with 10 homes and 3 aggregators.

4.1. Network simulator 2

Building a test-bed for performance analysis is sometimes not feasible. In addition, the
number of agents in real-world applications often increases with the complexity of the
problems; each with various configuration for performance analysis. For these reasons, re-
searchers have created a simulation model of existing network topologies to study the be-
havior of agents. Network Simulator 2 (ns-2) is a discrete event-driven network simulator
that resembles actual network behavior with the ability to support a variety of communica-
tion protocols.15
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Fig. 2. CDMG illustration.

Before discussing our simulation configuration, we briefly explain ns-2’s simulation
procedure as depicted in Fig. 3. To simulate a network for agents’ behavior study, one
needs to first generate a scenario, which includes information such as the network topol-
ogy, the protocols in the nodes’ network stacks, and the simulation duration. The topology

Fig. 3. Network simulator flow.
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is defined in form of a graph in which vertices are the nodes (agents) and the edges indi-
cate the connection between the nodes (agents relationships). The network stack of a node
defines various protocols, from the application to the physical layer, that a node uses for
communication.

Given this scenario file, ns-2 generates an initial list of events including packet gen-
eration, forwarding, reception, etc. As the simulation progresses, ns-2 fetches an event
from the list in the chronological order. Since each event is associates with a time stamp,
ns-2 updates the simulation time according to the selected event and processes the event.
Processing an event may result in generation of a new event(s). For instance, a success-
ful packet delivery using TCP protocol causes an acknowledgment packet generation by
the receiving node. Thus, after processing the selected event, ns-2 updates the event list
by adding the corresponding time-based event(s) to the list. Then, ns-2 updates the sta-
tistical information that corresponds to the completed event. At this time, ns-2 checks the
event list for further events. In case that the list is non-empty, ns-2 selects the next event
in chronological order and follows the aforementioned steps. Otherwise, the simulation is
finished.

In our experiments, we use ns-2 version 2.35. The communication between nodes oc-
curs through a wireless communication channel with omni-directional antennas and uses
the Two Ray Ground radio propagation model with a 11 Mb/s communication bandwidth.
The simulator uses the Medium Access Control (MAC) IEEE 802.11 protocol in the data
link layer; a static and fixed routing protocol in the network layer, where the routing tables
of all the nodes involved in the communication are loaded with the shortest paths to the
destination; the Transmission Control Protocol (TCP) in the transport layer; and the Con-
stant Bit Rate (CBR) application with a bit rate of 0.1 Mb/s and packet size of 500 bytes in
the application layer.

5. Non-uniform Communication Times

We extend the DCOP model to include communication-related information, specifically,
the communication times for each constraint. Therefore, this new DCOP is defined by a
tuple 〈A,X,D,F,C, α〉, where A, X, D, F, and α are as described for regular DCOPs;
and C = {ci}mi=1 is the set of communication times, where ci ∈ C specifies the commu-
nication time for agents in the scope xfi of constraint fi ∈ F to communicate with one
another.

Definition 5.1. Communication Time. The communication time for a constraint is the
time it takes for the source node to send a message until the sink node receives a complete
message, where both the source and the sink nodes are in the scope of the constraint.

One of the DCOP assumptions is that agents can only communicate with neighboring
agents that they share constraints with, and the time of those communication is specific to
each constraint. Each communication time ci can either be a constant, indicating that there
is no uncertainty in the communication time, or a probability distribution, indicating that
the actual communication time is sampled from that distribution. In our experiments, we
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investigate two distributions – uniform and Gaussian. The objective is still identical to that
of DCOPs, to find an optimal complete solution that maximizes the sum of utilities over
all constraints.

Aside from the common assumptions that messages sent are never lost and they are
received in the same order that they were sent, all off-the-shelf DCOP algorithms do not
make any additional assumption on the communication times. Therefore, they can be used
to solve our problem with non-uniform communication times. However, the new commu-
nication time specifications may impact the efficiency of DCOP algorithms in several ways
compared to when they run on problems with uniform communication times.

Complete DCOP algorithms typically require that the variables in the problem be or-
dered according to some complete ordering, in which case the variables are ordered into a
chain, or some partial ordering, in which case the variables are ordered into a pseudo-tree; a
large number of complete algorithms, including DPOP,8 ADOPT,1 and their many variants,
operate on pseudo-trees. Additionally, some incomplete algorithms such as Distributed
UCT10 and Distributed Gibbs11 also operate on pseudo-trees. As such, the properties of
these algorithms are highly dependent on the properties of the underlying pseudo-tree.
For example, DPOP’s memory requirement and message size complexity is O(exp(w∗)),
where w∗ is the induced width of the pseudo-tree, and its required number of message is
O(d∗), where d∗ is the depth of the pseudo-tree. On the other hand, ADOPT’s memory
requirement and message size complexity is O(d∗), but its required number of messages
is O(exp(d∗)). Since communication times are no longer uniform across all edges of the
pseudo-tree, we generalize the definition of depth of pseudo-trees to a generalized depth
definition:

Definition 5.2. Generalized Depth. The generalized depth of a pseudo-tree is the largest
sum of communication times ci ∈ C across all constraints over all branches of the pseudo-
tree. More specifically, the generalized depth d̂∗ is defined recursively by:

d̂∗ = d̂root (2)

d̂xi = max
fk∈F:{xi,xj}∈xfk∧xj∈C(xi)∪PC(xi)

ck + d̂xj (3)

where fk is the constraint between xi and its child or pseudo-child xj , ck is the communi-
cation time associated with that function, and d̂xj is the generalized depth of the sub-tree
rooted at xj .

It is straightforward to see that this generalized depth definition subsumes the previous
depth definition for pseudo-trees with uniform communication times of 1.

5.1. Communication times impact

Given the above generalized depth definition, we investigate the impact of non-uniform
communication times on the class of DCOP algorithms that operate on pseudo-trees. As
a case study, we exploit DPOP algorithm in this work and study the relationship between
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the runtimes of DCOP algorithms and the generalized depth of their underlying pseudo-
trees. It is worth mentioning that the commonly used runtime performance metric by the
DCOP community is the Simulated Runtime,13 which assumes that the communication
times between all pairs of agents are uniform and identical. However, we empirically show
that the simulated runtime of our algorithm no longer assumes identical communication
times between all pairs of agents and define the “Actual ” Runtime, which is computed
via Network Simulator 2.0 (ns-2),15 a de-facto simulator used by the computer networking
community,16–18 to precisely measure the communication times.

Definition 5.3. “Actual” Runtime. The “actual” runtime of DPOP is the duration between
the time the ns-2 simulation starts UTIL propagation until the time the last agent finishes
processing its message in VALUE propagation.

To measure the simulated runtime the algorithm with non-uniform communication
times, we first generate problem instances with random graph topologies34 and vary the
number of variables |X| = {10, 20}b and the constraint density p1 = {0.2, . . . , 0.7},c and
set the domain size of all variables |Di| = 3. For all these instances, we assume that the
communication time of each constraint fi ∈ F to be the product

ci = C · di (4)

where C is a constant and di is the physical distance between the two variables that are in
the scope xfi of the constraint. We sample the x- and y-coordinates of each variable from
two possible truncated distributions — uniform and GaussianN (50, 25) — from the range
[1, 100]. In other words, the variables are randomly distributed over a 100 × 100 square
meter area. We generate 20 instances for each configuration, resulting in 240 instances in
total, for this experiment.

We solve these problems using DPOP implemented on the FRODO simulation frame-
work,31 and store the computation time of each agent in the UTIL and VALUE propagation
phases as well as the size of messages that the agents transmitted to each other. Using the
assumed communication times computed using Eq. (4).d

For each of these instances we create an ns-2 scenario for the network simulator, such
that variables are connected in a mesh topology using a routing protocol that defines the
constraints between variables. The routing table follows the order of UTIL and VALUE
messages to define the corresponding source and sink nodes of the constraints. Then for
every two variables in the scope xfi of the same function fi we use di to create an exact
physical distance between them. To simulate the exact same trace of execution of the agents
we need to set two parameters in ns-2, namely the computation time of each agent and the

bAs one of the limitation of DPOP algorithm is the exponential growth of memory with the maximum number of
separators, we did not generate larger problem instances.
cp1 is defined as the ratio between the number of binary constraints in the problem and the maximum possible
number of binary constraints in the problem.
dWe set C = 1 millisecond per meter for all the experiments in this paper, note that the physical distances
between the two variables are sampled from distributions.
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size of messages sent by each agent. We use the stored computation time and message size
of each problem instance from the runs on FRODO earlier. Then in the simulator scenario,
in order to mimic an agent’s computation time we set an equal delay at the agent before
it starts its communication. For example, assume that the computation time of an agent
is 10ms during the UTIL propagation phase. Then, in ns-2, after it receives all messages
from its children, we enforce that it waits for 10ms before it sends its UTIL message to its
parent. The TCP protocol ensures a reliable communication for each agent to send com-
plete message to other agents. In order to mimic agent’s communication we set the number
of packets an agent needs to send in its communications according to the size of its mes-
sages as determined by FRODO. As we set the TCP packet size to 500 bytes, the number
of packets sent for each message is dmessage size

500 e. While packets may be dropped due to a
variety of factors such as congestion, the TCP protocol ensures that a dropped packet will
be resent through the use of acknowledgment (ACK) messages. When a variable correctly
receives a packet, it sends an ACK to the sender. The sender considers the packet to be lost
if it does not receive an ACK before its timeout. In this case, the sender resends the lost
packet.

In summary, this measured runtime is similar to the measured runtime in FRODO
except that the communication time between two agents is now determined by the ns-2
simulator instead of the assumed communication times ci. The communication time de-
termined by ns-2 is dependent on the message size, the distance between the agents, the
congestion in the network, and the protocols in the various networking layers. For exam-
ple, an agent with many children in the pseudo-tree may receive messages from all of
them simultaneously, resulting in congestion and packet drops. ns-2 is able to simulate the
message delays automatically. We believe that the network latency, captured in message
communication time, has an important impact in the performance of DCOP algorithms,
therefore it must be taken into account to accurately approximate the “actual” time of the
solving process.

5.2. Theoretical results

In this section we describe the theoretical runtime complexities measured using the
“actual” runtimes and simulated runtimes metrics mentioned above and then empirically
evaluate the correlation between the two runtime metrics. Let b denote the set of agents
along a branch of a pseudo-tree and B denote the set of all branches in the pseudo-tree.

Theorem 5.1. The simulated runtime of DPOP is maxb∈B
∑
ai∈bO(exp(|sep(ai)|)).

The runtime of DPOP is dominated by its runtime in the UTIL phase, where the agents
along each branch of the pseudo-tree sequentially compute their UTIL tables and sends
them up to their respective parents. Therefore, along each branch b ∈ B of the pseudo-
tree, the runtime along that branch is∑

ai∈b

O(exp(|sep(ai)|)) +O(di) (5)
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where the first term is the time to compute the UTIL table and the second term is the time
to send the table to the parent.e This sum is then simplified to

∑
ai∈bO(exp(|sep(ai)|)).

Theorem 5.2. The “actual” runtime of DPOP is maxb∈B
∑
ai∈bO(exp(|sep(ai)|) · di).

Using the similar argument as above for the simulated runtime case, the runtime of the
UTIL phase along a branch b ∈ B is∑

ai∈b

O(exp(|sep(ai)|)) +O(exp(|sep(ai)|) · di) (6)

which simplifies to
∑
ai∈bO(exp(|sep(ai)|) · di). The communication time is exponen-

tial in the separator size according to a preliminary experiment, where we observe that
the largest message size and number of packets grow exponentially with the maximum
separator size (Table 1).

Table 1. Maximum separator size, largest message size, and largest number of packets.

Constraint Density p1 0.2 0.3 0.4 0.5 0.6 0.7

Maximum Separator
Size 3.5 5.8 7.3 8.5 9.6 10.2

Largest Message
Size (Bytes) 8165.8 120 056.5 1 068 614.1 5 127 311.2 14 953 595.6 14 953 599.8

Largest Number
of Packets 16.6 240.6 2137.7 10 255.4 29 907.8 29 907.7

Table 2. Correlations.

Constraint Density p1 0.2 0.3 0.4 0.5 0.6 0.7

Correlation of “Actual” and Simulated Runtimes 0.74 0.84 0.97 0.91 0.94 0.95
Correlation of Depth and Simulated Runtime 0.99 0.97 0.82 0.66 0.69 0.67
Correlation of Depth and “Actual” Runtime 0.74 0.74 0.74 0.62 0.63 0.59

Now, we empirically evaluate the correlation between “actual” runtimes, simulated run-
times, and pseudo-tree depths on the instances described in Section 5.1. Table 2 tabulates
the correlation factors according to the Pearson correlation metric.

Correlation between “Actual” and Simulated Runtimes: There is a positive correla-
tion between the two runtimes, and the correlation increases as p1 increases. The reason
is that the separator size increases with p1 and, thus, the simulated computation runtime
increasingly dominates the simulated communication runtime. Therefore, the total sim-
ulated runtime becomes increasingly proportional to maxb∈B

∑
ai∈bO(exp(|sep(ai)|))

and increasingly correlated with the “actual” runtime, which is also proportional to
maxb∈B

∑
ai∈bO(exp(|sep(ai)|)).

eWe use di to refer to the physical distance between ai and its parent in the pseudo-tree, which is used to calculate
the communication time using Eq. (4).
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Correlation of Both Runtimes and Pseudo-tree Depth: Both runtimes are positively
correlated with the depth, and decreases as p1 increases. The simulated runtimes also have
a higher correlation than the “actual” runtimes.

The positive correlations are due to the communication runtimes. For example, the sim-
ulated communication runtime is

∑
ai∈bO(di) for the branch b with the longest simulated

(computation and communication) time, which is proportional to
∑
ai∈bO(ci) (Eq. (4))

and is a close approximation of the pseudo-tree depth (Definition 5.2). As p1 increases,
the simulated communication runtimes become increasingly dominated by the simulated
computation runtimes, thereby decreasing the correlation with the depth.

On the other hand, the “actual” communication runtime is
∑
ai∈bO(exp(|sep(ai)|) ·

di), which is also positively correlated with the depth for the same reason as above. How-
ever, it is a weaker correlation due to the exponential factor in the communication runtimes.
Due to the positive correlations, we use pseudo-tree depths as the proxy for DPOP runtimes
in the remainder of the paper.

6. Pseudo-Tree Construction Heuristics

Recall that a large class of DCOP algorithms including ADOPT and DPOP order the vari-
ables in the problem using pseudo-trees. The runtimes of these algorithms thus typically
depend on the depth of the pseudo-tree as information needs to propagate either down-
wards from the root of the pseudo-tree to all the leafs of the pseudo-tree or upwards from
the leafs to the root. Therefore, in this section, we introduce several heuristics methods that
exploit the non-uniform communication times to construct pseudo-trees with small depths.
These small depth pseudo-trees aim at accelerating the runtime of those algorithms that
operate on pseudo-trees.

We first evaluate the potential improvement to existing pseudo-trees constructed us-
ing the default max-degree heuristic (Eq. (1)). In order to find optimal pseudo-trees with
smallest depth, we run an exhaustive search and construct all possible pseudo-trees of ev-
ery DCOP and return the tree with minimum depth as the optimal pseudo-tree. Figure 4
shows a depth comparison between the default pseudo-trees and the optimal pseudo-trees.
These pseudo-trees are for problems, where we vary the number of variables |X| from 10
to 20, set the constraint density p1 to 0.3, and choose distances with a truncated Gaus-
sian N (50, 25) distribution from the range [1, 100] and define the communication time ci
with these distances (Eq. (4)). Since DPOP algorithm does not scale well to larger number
of variables due its memory constraint, we could not find optimal pseudo-trees for larger
problems. But one can easily observe that the difference between the depth of the default
pseudo-tree and the optimal depth increases as the number of variables increases, thereby
indicating that there is a larger room for improvement in larger problems.

We thus propose various heuristics that can be used by Distributed DFS to construct
pseudo-trees with small depths:

• The max-weighted-sum (mws) heuristic hmws:

hmws(xi) =
∑

fk∈F:{xi,xj}∈xfk∧xj∈N(xi)\[{P (xi)}∪PP (xi)]

ck. (7)
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Fig. 4. Comparing the optimal and default pseudo-tree depths.

It sums the communication times between variable xi and all its neighbors xj that are
not yet part of the pseudo-tree. We do not consider neighbors that are already part of the
pseudo-tree for the following reason: From the depth definition in Eq. (3), the depth of a
variable xp is the largest sum of the depth of a (pseudo) child xq and the communication
time with that (pseudo) child over all children and pseudo-children. Therefore, once the
variable xp is already chosen to be part of the pseudo-tree, it is desirable for its neighbor
xq that has a large communication time with xp to be a pseudo-child instead of a regular
child. The reason is that the farther a variable is from the root, generally, the smaller the
depth of that variable. We thus ignore neighbors that are already part of the pseudo-tree
in this heuristic as well as the two heuristics below.
• The max-weighted-average (mwa) heuristic hmwa:

hmwa(xi) =
hmws(xi)

|N(xi) \ [{P (xi)} ∪ PP (xi)]|
. (8)

It is identical to the previous hmws heuristic except that it averages the values over the
number of neighboring variables that are not yet part of the pseudo-tree.
• The max-unweighted-sum (mus) heuristic hmus:

hmus(xi) = |N(xi) \ [{P (xi)} ∪ PP (xi)]| . (9)

It is identical to the default max-degree heuristic except that it considers only neighbor-
ing variables that are not yet part of the pseudo-tree.

It is common to use two different heuristic functions for choosing the root of the
pseudo-trees and the non-root variables of the pseudo-tree. We do the same here and the
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Table 3. Pseudo-tree construction heuristics.

Root Variable

hmws hmwa hmus

Non-Root
hmws h1 h2 h3

Variables
hmwa h4 h5 h6

hmus h7 h8 h9

combination of all the three heuristics above generates nine alternatives that are tabulated
in Table 3.

6.1. Experimental results

We empirically evaluate our nine heuristics against the default max-degree heuristic
(Eq. (1)) on (a) random graphs,34 (b) scale-free graphs,35 and (c) graphs motivated by
our motivating CDMG application. We measure the depths of pseudo-trees constructed by
the heuristics and use them as the proxy for the runtimes of DPOP. We averaged our results
over 500 instances, except for CDMG results, which are averaged over 50 instances. We
ran all the experiments on a machine with an Intel Core i7-3770 CPU at 3.40 GHz and
16 GB of RAM.

Random Graphs: We generate 500 DCOP instances following the Erdös-Rényi graph
model to create random graphs. Such random graphs have low heterogeneity and edges
have equal probability of connecting to any vertex in a graph. As described earlier, when
we compared the depth between the default pseudo-trees and the optimal pseudo-trees, we
observed significant differences as the number of variables increased. Therefore, we vary
the number of variables as |X| = {20, 40, 60} with increment of 20, fix the constraint den-
sity p1 = 0.3, |Di| = 3 and all constraints are binary. For each configuration, we sample
the physical distances di of the constraints from two possible truncated distributions —
uniform and GaussianN (50, 25) — from the range [1, 100] and define the communication
time ci with these distances (Eq. (4)). Figure 5 illustrates the percentage of savings in depth
of pseudo-trees constructed by the four best heuristics. The results state that the savings
increase with the number of variables. As we increase the number of variables, the number
of possible pseudo-parents and pseudo-children each variable can have, increase as well.
A larger set of pseudo-parents and pseudo-children lead to a larger number of possible
pseudo-tree configurations. Then our heuristics construct the tree with the possible smaller
depth.

The h1 and h2 heuristics converge to savings ≈ 19% with uniform and ≈ 16% with
Gaussian distributions; indicating that heuristics that take communication times into ac-
count perform better than those that do not. The h7 and h9 heuristics converge to smaller
savings (≈ 7% with uniform and ≈ 8% with Gaussian distributions). Hence, for random
DCOPs, using h1 and h2 heuristics to construct pseudo-trees results in approximately
19% improvement of DPOP algorithm runtime. Further, Table 4 tabulates the depths
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Fig. 5. Saving in pseudo-tree depths, when the distances between agents are sampled from uniform and Gaus-
sian distribution in Random Graphs.

Table 4. DPOP runtimes comparison in random graphs.

Default Max-Degree Heuristic h1 h2

Pseudo-Tree Depth 519.45 472.85 481

Simulated Runtime of DPOP (ms) 1427.57 1317.20 1320.46
“Actual” Runtime of DPOP (ms) 3585.15 3328.94 2995.24

of the pseudo-trees and both the “actual” and simulated runtimes of DPOP with those
pseudo-trees constructed by h1 and h2 heuristics compared against the default max-degree
heuristic.f The “actual” runtime is precisely measured by ns-2. These results show that the
savings in pseudo-tree depths of the two heuristics translate to savings in both runtimes
as well.

Scale-Free Graphs: We generate 500 DCOP instances following the Barabási-Albert
graph model to create scale-free graphs. The structure of such graphs combines het-
erogeneity and randomness. When a new vertex is added to the graph, it has a higher
probability to connect to vertices with larger degrees. We vary the number of variables
|X| = {20, 40, 60} with increment of 20 and set the maximum degree of all variables to 4.
We also set |Di| = 3 and all constraints are binary. Similar to random graphs, we sample
the physical distances using the same two truncated distributions and use them to define
communication times. Unlike random graphs, the constraint density p1 is not constant and
decreases as the number of variables increases.

fThese results are averaged over |X| = {10, 20} only as DPOP failed to scale for larger problems.

1860008-18



October 16, 2018 9:2 IJAIT S0218213018600084 page 19

Communication-Sensitive Pseudo-Tree Heuristics for DCOP Algorithms

20 40 60
Number of Variables

S
av

in
g 

in
 D

ep
th

 (
%

)
0

5
10

15
20

25
30

h2
h1
h7
h9

(a) Uniform Distribution

20 40 60
Number of Variables

S
av

in
g 

in
 D

ep
th

 (
%

)
0

5
10

15
20

25
30

h2
h1
h7
h9

(b) Gaussian Distribution

Fig. 6. Saving in pseudo-tree depths, when the distances between agents are sampled from uniform and Gaus-
sian distribution in Scale-free graphs.

Figure 6 shows the percentage of savings in pseudo-tree depths, which decreases by
increasing the number of variables, for uniform and Gaussian distributions. We observe a
larger saving in all four heuristics when |X| = 20 because of its larger constraint density
(p1 ≈ 0.2) while in graphs with 40 and 60 variables, the constraint density drops sig-
nificantly. The smaller the constraint density the fewer the number of pseudo-parents and
pseudo-children of a variable that leads to a lower number of pseudo-tree configurations.
Therefore, graphs with smaller constraint density has a higher probability of constructing
a chain rather than a pseudo-tree. Moreover, the h7 and h9 heuristics converge to savings
(≈ 19% with uniform and ≈ 20% with Gaussian distributions) when the constraint den-
sity is at its largest. However, heuristics h1 and h2 still converge to savings ≈ 15% with
uniform and ≈ 17% with Gaussian distributions. The results show that h1 and h2 perform
better than h7 and h9 on larger number of variables even if the constraint density is very
small and the pseudo-trees look like chains.

We perform an additional experiment on random graphs with |X| = 20 in which we
vary p1 from 0.1 to 0.8 (refer to Fig. 7 for results). For all four heuristics, at small constraint
densities (p1 ≤ 0.4), the savings decrease with decreasing p1, thereby explaining their
behavior in scale-free graphs. Moreover, unlike the savings of h1 and h2, the savings of
h7 and h9 do not increase by increasing the constraint density as these heuristics do not
take communication times into account. We thus choose h1 and h2 as our best heuristics
to construct small depth pseudo-trees in our CDMG application.

Customer-Driven Microgrids (CDMGs): Here, we explains how we generate graphs of
our motivating CDMGs. We first sample neighborhoods in three cities in the United States
(Des Moines, IA; Boston, MA; and San Francisco, CA) and estimate the density of houses
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Fig. 7. Saving in pseudo-tree depths,varying the constraints density p1 of random graphs with 20 variables.

Fig. 8. Example of a smart neighborhood communication in CDMG.

in each city. The average density (in houses per square kilometers) is 718 in Des Moines,
1357 in Boston, and 3766 in San Francisco.

As Fig. 8 shows, for each city, we generated a 200 m× 200 m grid, where the distance
between intersections is 20 m, and randomly placed houses in this grid until the density is
the same as the sampled density. As explained in Section 4, houses can transfer energy to
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Fig. 9. Saving in pseudo-tree depths in CDMG graphs.

their neighboring houses while communicating through aggregators. Therefore, we enforce
each house to be constrained with its immediate neighbors in the four cardinal directions
of the grid. If the resulting graphs are disjoint, then for each pair of disjoint graphs, we
find a pair of houses that has the smallest distance between them and constrain them, using
the Dijkstra’s algorithm. Finally, we greedily placed aggregators, with a communication
radius of 100 m, in the grid until all houses are within the radius of at least one aggregator.
Aggregators can then communicate with all houses and other aggregators that are within
their communication radius.

Unlike random and scale-free graphs, in the resulting CDMG graphs, each agent con-
trols multiple variables. It is worth mentioning that constraints among variables are no
longer binary, as a house energy consumption, generation, and transmission are in con-
strained with each other (explained in Section 4). The number of variables for resulting
CDMG graphs is set to 130 in Des Moines, 260 in Boston and 784 in San Francisco
(|X| = {130 260 784} and |Di| = {2, 5}). Figure 9 illustrates the savings in pseudo-
tree depths of our CDMG graphs. As we expected, our best heuristics (h1 and h2) that take
the communication times into account demonstrate increasing savings (≈ 20%) with the
number of variables. It implies that by constructing a shorter pseudo-tree we improved the
runtime of DPOP algorithm by approximately 20%, even with non-uniform communica-
tion times among agents.

7. Conclusions

The communication efforts among agents have been neglected by the DCOP community.
Consequently, the existing DCOP algorithms have typically assumed that communication
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times are identical for all pairs of agents, which can be unrealistic in many real-world ap-
plications. In this extended framework, in the DCOP model we include communication
times for each constraint and incorporate these communication times within the simu-
lated runtime metric. We also measure communication times through ns-2 simulations, use
it to compute “actual” runtimes, and show that these runtimes are positively correlated
with simulated runtimes. We empirically show the impact of communication times on the
performance of a DCOP algorithm as a case study. Finally, we propose communication-
sensitive pseudo-tree construction heuristics to generate pseudo-trees that have smaller
depths than the pseudo-trees that are generated by the max-degree heuristic. These heuris-
tic methods exploit the non-uniform communication times and find pseudo-trees that are
up to 20% shorter than those constructed by the max-degree heuristic. As a large class of
DCOP algorithms operate on pseudo-trees in their variable-ordering phase, the proposed
heuristics can speed up the runtime of these algorithms. All these heuristics are evaluated
on three problem domains such as random graphs, scale-free graphs, and CDMG graphs.
We use the pseudo-tree depth as the proxy of the algorithm runtime, and show the behavior
of our heuristics in different problem domains in terms savings in pseudo-tree depths.

Acknowledgments

This research is partially supported by NSF grants 1345232, 1550662, and 1812619. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, or the U.S. government.

References
1. P. Modi, W. Shen, M. Tambe and M. Yokoo, ADOPT: Asynchronous distributed constraint op-

timization with quality guarantees, Artificial Intelligence 161(1–2) (2005) 149–180.
2. W. Yeoh and M. Yokoo, Distributed problem solving, AI Magazine 33(3) (2012) 53–65.
3. R. Maheswaran, M. Tambe, E. Bowring, J. Pearce and P. Varakantham, Taking DCOP to the real

world: Efficient complete solutions for distributed event scheduling, in Proc. of AAMAS (2004),
pp. 310–317.

4. A. Farinelli, A. Rogers, A. Petcu and N. Jennings, Decentralised coordination of low-power
embedded devices using the Max-Sum algorithm, in Proc. of AAMAS (2008), pp. 639–646.

5. S. Miller, S. Ramchurn and A. Rogers, Optimal decentralised dispatch of embedded generation
in the smart grid, in Proc. of AAMAS (2012), pp. 281–288.

6. D. T. Nguyen, W. Yeoh, H. C. Lau, S. Zilberstein and C. Zhang, Decentralized multi-agent
reinforcement learning in average-reward dynamic DCOPs, in Proc. of AAAI (2014), pp. 1447–
1455.

7. R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton and K. Sycara, Distributed constraint optimiza-
tion for teams of mobile sensing agents, Autonomous Agents and Multi-Agent Systems 29(3)
(2015) 495–536.

8. A. Petcu and B. Faltings, A scalable method for multiagent constraint optimization, in Proc. of
IJCAI (2005), pp. 1413–1420.

9. W. Yeoh, A. Felner and S. Koenig, BnB-ADOPT: An asynchronous branch-and-bound DCOP
algorithm, Journal of Artificial Intelligence Research 38 (2010) 85–133.

1860008-22



October 16, 2018 9:2 IJAIT S0218213018600084 page 23

Communication-Sensitive Pseudo-Tree Heuristics for DCOP Algorithms

10. B. Ottens, C. Dimitrakakis and B. Faltings, DUCT: An upper confidence bound approach to
distributed constraint optimization problems, in Proc. of AAAI (2012), pp. 528–534.

11. D. T. Nguyen, W. Yeoh and H. C. Lau, Distributed Gibbs: A memory-bounded sampling-based
DCOP algorithm, in Proc. of AAMAS (2013), pp. 167–174.

12. A. Chechetka and K. Sycara, No-commitment branch and bound search for distributed constraint
optimization, in Proc. of AAMAS (2006), pp. 1427–1429.

13. E. Sultanik, R. Lass and W. Regli, DCOPolis: A framework for simulating and deploying dis-
tributed constraint reasoning algorithms, in Proc. of the Distributed Constraint Reasoning Work-
shop (2007).

14. J. Kurose and K. Ross, Computer Networking: A Top Down Approach (Pearson, 2012).
15. S. McCanne and S. Floyd, ns–network simulator, http://nsnam.sourceforge.net/wiki/.
16. J. Sommers and A. Moore, Scaling the practical education experience, in Proc. of the ACM

SIGCOMM Education Workshop (2011).
17. N. Rozhnova and S. Fdida, An effective hop-by-hop interest shaping mechanism for CCN com-

munications, in Proc. of IEEE INFOCOM Workshops (2012), pp. 322–327.
18. N. E. Majd, S. Misra and R. Tourani, Split-cache: A holistic caching framework for improved

network performance in wireless ad hoc networks, in Proc. of IEEE GLOBECOM (2014),
pp. 137–142.

19. F. Fioretto, W. Yeoh and E. Pontelli, A multiagent system approach to scheduling devices in
smart homes, in Proc. of the 16th Conf. on Autonomous Agents and MultiAgent Systems (2017),
pp. 981–989.

20. A. M. Tabakhi, T. Le, F. Fioretto and W. Yeoh, Preference elicitation for DCOPs, in Proc. of CP
(2017), pp. 278–296.

21. F. Cruz, P. Gutierrez and P. Meseguer, Simulation vs real execution in DCOP solving, in Proc.
of the Distributed Constraint Reasoning Workshop (2014).
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