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ABSTRACT
Multi-Agent Path Finding (MAPF) problems are traditionally solved
in a centralized manner. There are works focusing on optimality,
performance, or a tradeoff between them. However, there is not
much work on solving them in a distributed manner, and even less
through spatial distribution. In this paper, we introduce ros-dmapf,
a distributed MAPF solver. It consists of multiple MAPF sub-solvers,
which—besides solving their assigned sub-problems—interact with
each other to solve a given MAPF problem. In the current imple-
mentation, the sub-solvers are answer set planning systems for
multiple agents, and are created based on spatial distribution of
the problem. Interactions between components of ros-dmapf are
facilitated by the Robot Operating System (ROS). The highlights of
ros-dmapf are its scalability and a high degree of parallelism. We
empirically evaluate ros-dmapf using the move-only domain of the
asprilo system and results suggest that ros-dmapf scales up well.
For instance, ros-dmapf gives a solution of length around 600 for a
MAPF problem with 2000 robots in randomly generated 100x100
obstacle-free maps—a problem beyond the capability of a single sub-
solver—within 7 minutes on a consumer laptop. We also evaluate
the system against some other MAPF solvers and results show that
the system performs well. We also discuss possible improvements
for future work.
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ABSTRACT
We study the TAPF (combined target-assignment and path-
finding) problem for teams of agents in known terrain, which
generalizes both the anonymous and non-anonymous multi-
agent path-finding problems. Each of the teams is given
the same number of targets as there are agents in the team.
Each agent has to move to exactly one target given to its
team such that all targets are visited. The TAPF problem
is to first assign agents to targets and then plan collision-
free paths for the agents to their targets in a way such that
the makespan is minimized. We present the CBM (Conflict-
Based Min-Cost-Flow) algorithm, a hierarchical algorithm
that solves TAPF instances optimally by combining ideas
from anonymous and non-anonymous multi-agent path-
finding algorithms. On the low level, CBM uses a min-
cost max-flow algorithm on a time-expanded network to
assign all agents in a single team to targets and plan
their paths. On the high level, CBM uses conflict-based
search to resolve collisions among agents in di↵erent teams.
Theoretically, we prove that CBM is correct, complete and
optimal. Experimentally, we show the scalability of CBM
to TAPF instances with dozens of teams and hundreds of
agents and adapt it to a simulated warehouse system.
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Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.
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Figure 1: A typical Kiva warehouse system [22].

1. INTRODUCTION
Teams of agents often have to assign targets among

themselves and then plan collision-free paths to their targets.
Examples include autonomous aircraft towing vehicles [12],
automated warehouse systems [22], o�ce robots [19] and
game characters in video games [15]. For example, in the
near future, autonomous aircraft towing vehicles might tow
aircraft all the way from the runways to their gates (and vice
versa), reducing pollution, energy consumption, congestion
and human workload. Today, autonomous warehouse robots
already move inventory pods all the way from their storage
locations to the inventory stations that need the products
they store (and vice versa), see Figure 1.

We therefore study the TAPF (combined target-
assignment and path-finding) problem for teams of
agents in known terrain. The agents are partitioned into
teams. Each team is given the same number of unique
targets (goal locations) as there are agents in the team.
The TAPF problem is to assign agents to targets and
plan collision-free paths for the agents from their current
locations to their targets in a way such that each agent moves
to exactly one target given to its team, all targets are visited
and the makespan (the earliest time step when all agents
have reached their targets and stop moving) is minimized.
Any agent in a team can be assigned to a target of the team,
and the agents in the same team are thus exchangeable.
However, agents in di↵erent teams are not exchangeable.

1.1 Related Work
The TAPF problem generalizes the anonymous and non-

anonymous MAPF (multi-agent path-finding) problems:

• The anonymous MAPF problem (sometimes called
goal-invariant MAPF problem) results from the TAPF
problem if only one team exists (that consists of all

Figure 1: Layout of an Autonomous Warehouse System [36]

1 INTRODUCTION
Multi-Agent Path Finding (MAPF) deals with agents that need to
find a collision-free path from their starting to goal locations on
a graph. This model can be applied to a number of applications
including autonomous aircraft towing vehicles [22], autonomous
warehouse systems [36], office robots [31], and video games [26].
For example, in an autonomous warehouse system (illustrated by
Figure 1), robots (in orange) navigate around a warehouse to pick
up inventory pods from their storage locations (in green) and drop
them off at designated inventory stations (in purple).

InMAPF, the objective is to find a collision-free path for agents to
move to their goal locations while minimizing either the makespan
or the total path cost. Researchers have proposed various optimal
and bounded-suboptimal algorithms [1, 4, 12, 25, 32] as well as sub-
optimal ones [5, 19, 34]. While most of them are search-based, there
are also approaches that reformulate the problem using answer set
programming (ASP) [6, 23], mixed-integer programming (MIP) [37],
and satisfiability testing [30]. Stern et al. presents a short survey
on different MAPF formulations and extensions [29].

The general consensus within the MAPF community has been
that declarative approaches, such as those based on ASP and MIP,
outperform imperative search-based approaches in small complex
problems (e.g., problems where agents need to repeatedly swap
locations) [23]. However, most declarative approaches fail to scale
to large problems due to memory limitations—they often need to
ground or instantiate a large number of variables that is propor-
tional to the entire search space of the problem.

To remedy this limitation, we propose a distributed system, called
ros-dmapf, that combines both imperative search-based and declar-
ative ASP-based approaches. ros-dmapf first spatially partitions the
MAPF graph into subgraphs. The pathing problem of agents within
each subgraph is solved by a software agent running an ASP solver
called asprilo [10]. To differentiate between the agents that are run-
ning the solvers and the agents whose paths we need to find, we
will refer to the former agents as agents and the latter agents as
robots from here on.

https://doi.org/10.1145/3356464.3357702
https://doi.org/10.1145/3356464.3357702
https://doi.org/10.1145/3356464.3357702
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For a robot to get to its goal, it may need to traverse through
several subgraphs. Therefore, ros-dmapf searches over the abstract
graph—a graph where nodes are the subgraphs of the actual MAPF
graph and vertices connect neighboring subgraphs—to find a path
from the starting subgraph to the goal subgraph of each robot. The
agents of these subgraphs then coordinate to identify where and
when the robot should cross between subgraphs.

Our empirical results show that ros-dmapf scales significantly
better compared to many similar systems as well as the original
single-agent solver. Furthermore, the size of the subgraphs does
affect the performance of ros-dmapf. We conclude the paper with
a discussion on possible improvements of ros-dmapfas part of our
plans for future work.

2 BACKGROUND
2.1 Multi-Agent Path Finding Problem (MAPF)
A Multi-Agent Path Finding Problem (MAPF) problem is given by a
triple P = (G,R,T ), where G = (V ,E) is an undirected connected
graph, where V and E correspond to locations and ways of moving
between them for the agents; R is a set of robots; and T is a set of
orders. For each robot r ∈ R, the starting location of r is specified
by a location lr ∈ V . Each order o ∈ T is specified by a location
lo ∈ V .

Robots can move between the vertices along the edges of G,
one edge at a time, under the restrictions: (a) two robots cannot
swap locations in a single timestep; and (b) each location can be
occupied by at most one robot at any time. A path for a robot r is
a sequence of vertices α = ⟨v1, . . . ,vn⟩ if (i) the robot starts at v1;
and (ii) for any two subsequent vertices vi and vi+1, there is an
edge between them (i.e., (vi ,vi+1) ∈ E) or they are the same vertex
(i.e., vi = vi+1).

A robot r completes an order o via a path α = ⟨v1, . . . ,vn⟩ if
lo ∈ {v1, . . . ,vn }. A solution of a MAPF problem P is a collection
of paths S = {αr | r ∈ R} for the robots in R so that all orders in T
are completed.

2.2 Answer Set Programming (ASP)
A logic program Π is a set of rules of the form

a0 ← a1, . . . ,am , not am+1, . . . , not an
where 0≤m≤n, each ai is an atom of a propositional language and
not represents (default) negation. An atom is of the formp(c1, ..., ck ),
where p is a k-ary predicate, also written as p/k , and each c j is a
constant. Intuitively, a rule states that if all positive literals ai are
believed to be true and no negative literal not ai is believed to
be true, then a0 must be true. Semantically, a program induces a
collection of so-called answer sets, which are distinguished models
determined by answer sets semantics; see [11] for details.

To facilitate the use of Answer Set Programming (ASP) in practice,
several extensions have been developed. First of all, rules with vari-
ables are viewed as shorthands for the set of their ground instances.
Further language constructs include conditional literals and cardi-
nality constraints [27]. The former are of form a : b1, . . . ,bm , the
latter can be written as s{d1, . . . ,dn }t , where a and bi are possibly
default negated literals, and each dj is a conditional literal; s and t
provide optional lower and upper bounds on the number of satisfied
literals within the cardinality constraints. We refer to b1, . . . ,bm

as a condition. Aggregate functions such as count, sum, etc. are also
introduced. For example, count {X : a(X )} computes the number
of different objects X such that a(X ) is true.

2.3 ASP and MAPF
ASP has been employed effectively in planning for single and multi-
ple agents [28] and a generalized version of MAPF [23]. The general
idea is that to solve a MAPF problem P using ASP, we translate
it to a logic program π (P,n) where n is an integer representing
the maximum length (or makespan) of solutions to P that we are
interested in. For the self-containedness of the paper, we summarize
the main rules of the program π (P,n) below. Let P= (G,R,T ) be a
MAPF problem.
MAPF Input Representation. Edges and vertices in a graphG are
encoded by e(x ,y) andv(r ) atoms, respectively. Agents are specified
by ag(a, l) atoms (a: agent identifier, l : starting location). Orders
are specified by order(i, l) atoms (i: order identifier, l : destination).
MAPF ASP Rules. For an integer i ∈ {0, 1, . . . ,n}, st(i) denotes
a timestep in a solution of P. at(r , l , s) encodes that “agent r is at
location l at timestep s .”
Action Generation. mv(r , l , s) (respectively, stay(r , l , s)) denotes
that agent r moves to (respectively, stays at) the vertex l in timestep
s . At any timestep S , an agent R at location L executes exactly one
action of either moving to a connected location L′ (mv(R,L′, S)) or
staying at L (stay(R,L, S)). The next rule generates an action for an
agent R at timestep S with this restriction:

1{mv(R,L′, S) :e(L,L′); stay(R,L, S)}1← (1)
ag(R, _), at(R,L, S), S < n.

The starting location of an agent is specified by:

at(R,L, 0) ← ag(R,L). (2)

The next two rules encode the effects of the actionmv and stay
and the constraints forbidding agents to collide or exchange their
places:

at(R,L′, S) ← at(R,L, S−1),mv(R,L′, S−1), e(L,L′). (3)
at(R,L, S) ← at(R,L, S−1), stay(R,L, S−1). (4)

← at(R,L, S), at(R′,L, S),R , R′. (5)
← at(R,L, S), at(R′,L′, S),R , R′, e(L,L′), (6)

at(R,L′, S − 1), at(R′,L, S − 1).

Order Allocation. The next rule assigns an order to an agent and
guaranteed that each agent is assigned at most one order and each
order has at least one agent assigned to it.

1{goal(R,T ) :ag(R, _)}1←order(T ,L). (7)
← дoal(R,T ),дoal(R,T ′),T , T ′. (8)

Solution Verification. The next rules verify that each robot has
completed the order assigned to it at the step n.

finished(R,T , S) ← goal(R,T ),order (T ,L),at(R,L, S). (9)
finished(R,T , S + 1) ← finished(R,T , S). (10)
← goal(R,T ), not finished(R,T ,n). (11)

Let Π(P,n) be the program consisting of the input and Rules (1)—
(11) and A be an answer set of Π(P,n). It is easy to see that for
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each agent r , A must contain some atoms of the form at(r ,vs , s)
for each timestep s = 0, . . . ,n due to Rules (2)–(4). Define αr (A) =
⟨v0, . . . ,vn⟩ where at(r ,vj , j) ∈ A for j = 0, . . . ,n. It can be shown
that S = {αr (A) | r ∈ R} is a solution of P (see [23] for details).

2.4 Robot Operating System (ROS)
The Robot Operating System (ROS) is an open-source distributed
framework that is geared toward building robotics systems [24].
We adopt ROS since it provides services for the development of
heterogeneous clusters of software agents written in C++, Python,
Lisp, etc., which ensures that ros-dmapf is not limited to ASP, but
could potentially be used with other MAPF solvers.

For the purpose of this paper, it suffices to say that a ROS sys-
tem consists of individual ROS nodes and the ROS master. Each
node does not know about other nodes. For nodes to communi-
cate, they first have to locate one another via the ROS master. Once
they have located each other, the nodes can then use peer-to-peer
communication.

There are mainly two forms of communication between nodes:
(1) In publish/subscribe, nodes are connected through a topic,

which is a named bus. A node sending messages to a topic is
called a publisher. A node listening to a topic for messages is
called a subscriber. One node can be both a publisher and a
subscriber on the same or multiple topics. A topic may have
zero or more publishers and/or subscribers.

(2) In request/response, two nodes follow an RPC interaction
through a service. A node that provides/calls a service is
called a service server/service client. There can only be ex-
actly one server and client at a time for the same service
(subsequent service calls are put on a queue).

3 A DISTRIBUTED SYSTEM FOR SOLVING
MAPF PROBLEMS

This section describes a ROS-based distributed system for solving
MAPF problems. In the following, a solver or a client—or generi-
cally an agent—refers to a ROS node, unless otherwise specified.
The solvers use the ASP-code in Subsection 2.1 with C++ wrapper.
The description of the system focuses on its use in solving one
MAPF problem. However, the system could be used for solving sev-
eral related MAPF problems (e.g., when the problems share some
subgraphs, robots, etc.).

3.1 Overview
Figure 2 illustrates the overall architecture of ros-dmapf. A map
is divided into areas 1, 2, 3, . . . ,n, and each area is assigned to a
sub-solver. The division of a map can be done arbitrarily. However,
a reasonable way of dividing could be helpful for the scalability of
the system. We will discuss some considerations for the division
of a map in Section 5. The client supplies the sub-solvers with the
orders, which are destinations for robots. A sub-solver is said to be
responsible for a robot if the robot is located in the area assigned
to the sub-solver. In essence, a sub-solver works with a modified
MAPF problem in which the destinations of some robots in its area
might not be on the map. The sub-solvers communicate with each
other to find their neighboring sub-solvers and create a neighboring
map (or abstract map). This map is used for computing an abstract

Figure 2: Overall architecture of ros-dmapf

path for each robot by the sub-solver that is responsible for the
robot. An abstract path is a sequence of sub-solvers a robot needs
to visit to reach its destination. The current implementation uses
breadth-first search for computing the abstract paths.

To describe the system, we need some additional terminologies.
Given a robot r and a sub-solver s , we say that r is a local robot (to
s) if its destination is on the map assigned to s ; otherwise, r is a mi-
grating robot. The abstract map and the destination assigned by the
client for a robot r will be denoted byA(r ) and дoal(r ), respectively.
Obviously, a migrating robot needs to go to a neighbor—following
its abstract path—to reach its destination. A border location that
enables r to migrate to the next sub-solver on its abstract path is
called a jump. Each sub-solver runs the following two phases:

(1) Abstract Planning: In this phase, each sub-solver s repeatedly
(i) adds the robots that it has agreed to accommodate to
its set of local or migrating robots; and (ii) negotiates with
its neighbors to identify jumps for its migrating robots. To
identify a jump for a robot r , s will select the nearest free
border location l to r and sends a request to the neighbor,
based on the abstract map of r , indicating that r wants to
migrate to a location connecting to l . The neighbor will
respond with a new location l ′, indicating that it accepts
the request and l ′ is the cross border location, or false to
reject the request. At the end of each iteration, s will record
all migrating robots that could move to its neighbors. This
process stops when every sub-solver has only local robots.
The result of this phase is that each sub-solver contains a
jump list which encodes the jumps for the migrating robots
at each iteration.

(2) Movement Planning: In this phase, each sub-solver executes
the ASP code that is referred to in Section 2.3 to realize the
steps of the jump list generated by the abstract planning
phase.

We next describe the algorithm in more details. For a sub-solver
s , let Rs denote the set of robots assigned to s by the client node;
and for each iteration i in the abstract planning phase, Lis ,Mi

s , and
J is denote the set of local robots, the migrating robots, and the set
of jumps for migrating robots to/from s at i , respectively. We begin
with the overall algorithm for each sub-solver (Algorithm 1):

Intuitively, Algorithm 1 implements the two phases as described
earlier. Lines 3–6 initialize the necessary variables.
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Lines 7–15 implements the abstract planning phase. For each
iteration, the termination check (Lines 8–11) is executed and is
done as follows: Each robot broadcasts (|Lis |, |Lis | + |Mi

s |) (the num-
ber of local robots and total robots currently on its map) and
waits to receive the numbers of local robots and total robots from
other sub-solvers. If the total number of local robots on all sub-
solvers equals the total number of robots on all sub-solvers, then
the function returns true; otherwise, it returns false. It then con-
tinues with an update of local and migrating robots from the
set of jumps from the solver’s neighbors. Each jump is a tuple
(robot_id, location(current_solver ), location′(next_solver )). Upon
receiving the set of jumps from a neighbor, a sub-solver s extracts all
tuples with s = next_solver and adds these tuples to its list of jumps
for the current iteration. Algorithm 2 computes (Li+1s ,M

i+1
s , J

i+1
s ).

Lines 16–26 compute the solution of the problem. For each it-
eration i of the abstract planning phase, a MAPF problem (Lis ∪
Mi
s ,G

s ,T is ) is defined by setting, for each r ∈ Lis ∪Mi
s , a destina-

tion as described earlier: If r ∈ Mi
s and (r , l(s), l ′(n)) ∈ J i+1s (see

Algorithm 2), then l is the destination of r ; if r ∈ Mi
s and there is

no tuple with r as first element appeared in J i+1s , then select1 a
location in Gs as the destination of r ; if r ∈ Lis and дoal(r ) does
not appear in the second element of any tuple in J i+1s , then дoal(r )
is set as its destination; otherwise, select1 a location in Gs as r ’s
destination. We note that this is necessary to ensure that the call
to a MAPF solver asks for a solution of a MAPF problem. If the
computation of the plan for all iterations presented in the jump list
is successful, the solver will return to the client node of ros-dmapf
a sequence sols of moves where sols [t] is of the form mv(r , l , t)
(or stay(r , l , t)). The solution to the original MAPF problem P is
defined as follows: For each time step t , the actions executed by the
actions of P is given by

⋃
s ∈{1, ...,n } sol

s [t].
We note that additional book-keeping of robots achieving their

goals, the migrating actions (move between neighbors), or synchro-
nization between sub-solvers for the horizons of the ASP compu-
tation are implemented to ensure that the plans generated by the
planning algorithm (Line 21, Algorithm 1) have the same length for
each step in the jump list (different steps may have different plan
lengths). We omit this detail due to space limitations.

To conclude the section, we would like to briefly discuss some
properties of Algorithm 1. It is obvious that if the abstract planning
phase cannot complete, then Algorithm 1 would never stop (and
times out!). This can happen if there are deadlocks between the
sub-solvers. This situation would not occur if at every negotiation
cycle, the sub-solvers manage to have at least one robot moving
forward on its abstract path, i.e., closer to its destination. This
condition might be satisfied when the density of the robots is low
(see Section 5).

4 RELATEDWORK
We now discuss related work from the MAPF literature that also
draws inspiration from solving MAPF problems in a distributed
manner. In the early years of MAPF research, researchers proposed
a number of distributed approaches, where each robot plans its
own path to get to its goal and resolves conflicts with other robots

1 In the implementation, we use a heuristic called ‘nearest destination’ that selects the
nearest available location to r .

Algorithm 1 solver(Gs ,Rs ,T s )

1: Input: A modified MAPF problem (Gs ,Rs ,T s )
2: Output: Partial solutions for the general problem
3: L0s = {r ∈ R

s | дoal(r ) ∈ Gs }

4: M0
s = Rs \ L0s and J0s = ∅

5: termination = f alse
6: i = 0
7: while not termination do
8: termination = check()
9: if termination = true then
10: break
11: end if
12: update J is by

⋃
n∈N (s) J

i
n

where N (s) is the set of neighbors of s
13: (Li+1s ,M

i+1
s , J

i+1
s )=ab_plan(Lis ,Mi

s , J
i
s ,R

s ,Gs )

14: i = i + 1
15: end while
16: sols = []
17: for k = 0 to i do
18: Rk = Lks ∪M

k
s

19: create TK for Rk using Jk+1s
20: create a MAPF (Rk ,Gs ,Tk )

21: solks = planninд(Rk ,G
s ,Tk )

22: if solks = f alse then
23: return false
24: end if
25: sols = sols ◦ solks
26: end for
27: return sols [sending to client node]

Algorithm 2 ab_plan(L,M, J ,R,G)

1: compute X = {r | r is migrating to the solver via J }
2: L′ = L ∪ {r ∈ X | дoal(r ) ∈ G}
3: J ′ = ∅
4: M ′ = M ∪ X \ L′

5: for each r ∈ M ′ do
6: identify l ∈ G bordering the neighbor n that r needs to go to

some neighbor l ′ of l that belongs to n
7: negotiate with n on l
8: if the negotiation success with some l ′ then
9: add to J ′ the tuple (r , l(sel f ), l ′(n))
10: end if
11: end for
12: return (L′,M ′, J ′)

as and when these conflicts are detected. One of the pioneering
algorithms in this category isWindowed Hierarchical Cooperative
A* (WHCA*) [26], which finds collision-free paths for all robots for
their next window of moves. It shares the paths of all robots up
to the given move limit through a reservation table, which adds a
time dimension to the search space and thus results in expensive
searches.

Another early key algorithm is Flow Annotated Replanning
(FAR) [33], which combines the reservation table from WHCA*
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with flow annotations that make its searches less expensive since
no time dimension has to be added to the search space. Each robot
has to reserve its next moves before it executes them. Robots do
not incorporate these reservations into their search but simply wait
until other robots that block them have moved away, similar to
waiting at traffic lights. FAR attempts to break deadlocks (where
several robots wait on each other indefinitely) by pushing some
robots temporarily off their goal nodes. However, robots can still
get stuck in some cases.

A key limitation for bothWHCA* and FAR is that they are incom-
plete approaches. Multi-Agent Path Planning (MAPP) [34] tackles
this limitation by proposing a more systematic approach to resolve
conflicts by imposing a total ordering of all robots, resulting in
completeness guarantees for a subclass of MAPF problems. Ex-
perimentally, MAPP is shown to be able to solve more problem
instances than FAR, but at the cost of larger runtimes.

Chouhan and Niyogi followed up on the idea of using priority or-
dering to guarantee completeness for their Distributed Multi-Agent
Path Planning (DMAPP) algorithm [3]. DMAPP consists of three
steps: (i) Each robot finds a plan to reach its goal independently,
using the FastForward planner [13] with Euclidean distances as a
heuristic; (ii) they then decide the priority of robots based on plan
lengths (longer plans have higher priorities); and (iii) the robot with
the highest priority passes its plan to the robot with the second
highest priority. This robot combines its plan with the plan received,
re-plans if the plans conflict, and then sends the combined plan
to the next robot, and so on. In the worst case, the lowest priority
robot will have to plan for all the robots in a centralized manner,
thereby significantly limiting scalability.

Sharon et al. generalizes this approach with their Conflict-Based
Search (CBS) algorithm [25]. Like MAPP and DMAPP, robots in CBS
also plan their individual paths to their goals. However, they resolve
conflicts in an even more systematic fashion—by enumerating over
the space of possible conflicts in a conflict tree. When a conflict is
detected, the conflicting robots evaluate all the possible ways of
resolving the conflict and chooses the way that results in the least
overall cost. This higher-level search on the conflict tree is complete,
exhaustively going through all possible conflicts in the worst case,
thereby guaranteeing that CBS is also complete. Researchers have
proposed a number of improvements to CBS over the years [2, 7, 8,
15, 16] as well as extensions to solve other MAPF variants [14, 17,
18, 20, 21].

A key difference between between ros-dmapf and the algorithms
described above is that ros-dmapf distributes the problem spatially
into sub-problems while the algorithms described above distributes
the problem into sub-problems of individual agents. Nonetheless,
other MAPF researchers have also investigated spatial decomposi-
tions. A key algorithm in this category is Spatially Distributed Mul-
tiagent Planner (SDP) [35]. It spatially divides the MAPF map into
high-congestion areas (e.g., narrow passages) and low-congestion
areas with an agent (called “controller” in the paper) assigned to
each area. Like ros-dmapf, each agent is in charge of planning the
paths of robots in its area and can do so independently of other areas
to improve scalability. Also, like ros-dmapf, adjacent agents com-
municate with each other in identifying how robots can move from
one area to the next neighboring area. However, the key differences
between ros-dmapf and SDP are the following: (i) High-congestion

Maps Robots Time (s) Span Moves

20
x
20

16 0.278/0.413 39 231
32 0.279/0.846 41 453
48 0.284/1.610 55 745
64 0.276/2.602 71 1148
80 0.271/3.340 68 1318

40
x
40

64 2.191/1.786 94 1770
128 1.895/4.179 111 3613
192 2.003/7.594 127 5954
256 2.001/13.076 150 8857
320 1.952/18.887 175 12077

60
x
60

144 2.217/6.432 149 5996
288 2.415/14.809 185 12934
432 2.001/29.361 230 21627
576 2.018/45.256 264 30704

720/3 2.343/71.045 310 43740

80
x
80

256 2.393/15.224 212 14312
512 2.616/42.121 284 31643
768 2.498/78.041 362 53510

1024/8 2.448/146.054 433 82165
1280/29 2.740/232.130 484 116210

10
0
x
10
0

400 4.366/31.702 272 28138
800 5.080/79.964 371 62987

1200/2 4.451/154.601 459 106516
1600/26 4.182/253.609 538 158392
2000/44 3.889/386.903 598 225924

Table 1: Experimental Results from Running 10x10 Fixed-
Size Sub-Solvers on Different Map Sizes and Robot Densities

areas in SDP cannot contain starting positions and goals of robots.
In contrast, there is no such limitation in all areas in ros-dmapf.
(ii) Agents in SDP plans the movement of robots between adjacent
areas one robot at a time and must replan when there is a conflict.
In contrast, ros-dmapf plans for the movement of multiple robots
collectively, thereby eliminating conflicts and the need for replan-
ning. (iii) Finally, SDP runs a modified version of Cooperative A*
(CA*) [26] as the underlying multi-agent path finding algorithm
while ros-dmapf relies on ASP to find the paths.

5 EXPERIMENTS
We conduct three sets of experiments to (i) evaluate the scalability
of ros-dmapf; (ii) evaluate the impact of the size of the subgraphs
on the performance of ros-dmapf; and (iii) compare ros-dmapf with
other MAPF solvers.

Inspired by asprilo, we generate gird-based, obstacle-free, and
rectangular maps in our experiments.2 The robots have distinct
starting and goal locations that are randomly generated. The exper-
iments are run on a laptop with an Intel Core i7-7700HQ processor
and 16 GB of memory with ROS Kinetic on Ubuntu 16.04.

Table 1 shows the results of ros-dmapf when subgraphs are of
the size 10x10. The first column shows the map size. The second
column shows the numbers of robots, which are 4%, 8%, 12%, 16%,

2We would have used asprilo but the its code does not generate instances large enough
for the experiments.
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Solvers 288 robots 576 robots
Time (s) Span Time (s) Span

20 1.903/35.085 210 1.769/181.429 286
25 2.037/24.496 201 2.840/91.471 313
30 1.864/21.587 217 2.512/79.326 307
36 1.882/15.409 188 2.540/46.170 267
45 2.743/15.295 177 1.359/35.142 269
60 1.981/11.290 196 3.092/27.728 283
75 2.857/11.168 181 3.884/25.112 253
90 4.810/13.404 224 6.154/26.296 308
100 6.292/9.5560 167 5.863/22.671 215

Table 2: Experimental Results from Running Varying-Size
Sub-Solvers on a 60x60 Map with 288 and 576 Robots

and 20% of the respective map size, and the number of instances,
indicated by a boldface number following ‘/’, that ros-dmapf was
not able to find a solution. The third column shows runtime in
seconds spent on setup/solving periods. The setup period is when
all the clients and sub-solvers are launched and waiting for ROS to
set up their communication channels. The solving period is when
ros-dmapf is working on solving the problem. The fourth column
shows the makespan. The last column shows the combined total
number of moves of all the robots. We generate 5 problem instances
for each pair of map and number of robots, and run each instance
10 times to give the averaged result of 50 runs in each row.

Table 1 shows that: (i) the setup times stay relatively the same
in the same map size even with different number of robots and
only increase slightly as the map gets bigger; (ii) the solving times
increase in relatively the same rate as the the number of robots,
impervious to map size; and (iii) the makespan and the number of
moves tend to grow faster in bigger maps than in smaller ones.

Table 2 shows the results of varying the size of subgraphs on
two problem instances—60x60 map with 288 and 576 robots. We
choose these instances for the experiment as they seem, from Ta-
ble 1, reasonably difficult for ros-dmapf. The first column shows
the number of sub-solvers, which come from varying the size of
subgraphs to 15x12, 12x12, 15x8, 10x10, 10x8, 10x6, 8x6, 10x4, and
6x6, respectively. The second and the last column show runtime
(setup/solving) in seconds and makespan averaged from 10 runs
on the two problem instances, respectively. The number of moves
are similar among the different numbers of sub-solvers and, so, we
omit them for brevity. Table 2 shows that the size of subgraphs
affects runtime and makespan, and being able to identify it might
lead to significant performance improvement.

Table 3 shows comparisons between ros-dmapf,3 WHCA*, asprilo,
and CBSH-RM in terms of runtime in seconds, makespan, and the
total number of moves, averaged from 10 runs on each problem
instance. Among these algorithms, ros-dmapf and WHCA* are sub-
optimal, while asprilo and CBSH-RM are optimal MAPF solvers.
We choose these systems because they are a good representative
of state-of-the-art approaches and are available to download and
compile on our machine. We use an improved implementation
of WHCA* that allows diagonal moves, and choose the window

3We only consider the solving time of ros-dmapf.

size to be 8 because it gives a good tradeoff between runtime and
solution quality in our experiments. asprilo [10] is an ASP encoding
for robotic intra-logistics domain. We use the move-only domain
of asprilo with a slight modification that assigns each robot to a
specific goal. CBSH-RM [16] is the most recent improved version
of CBS [25].

The results show that ros-dmapf has the best scalability with
competitive number of moves and acceptable makespan. The dis-
parity of the quality between the number of moves and makespan
tells us that some robots have to spend more time than the oth-
ers just to wait to migrate. WHCA* is the second best in terms of
scalability and also gives the best makespan in a few cases because
diagonal moves are allowed. However, the runtime and solution
quality get worse much quicker than ros-dmapf as the problem gets
bigger. In some cases (e.g., 40x40(192)), it gives the largest number
of moves. asprilo is the slowest in most cases and also seems to
be mostly affected by map size, but it is optimal and does not get
worse as fast as CBSH-RM. This is noticeable by the difference in
runtime between the 40x40(64) and 40x40(128) problem instances.
CBSH-RM performs extremely fast on small problem instances, but
has the worst scalability, demonstrated by the difference in runtime
between the 40x40(64) and 40x40(128) problem instances.

6 CONCLUSIONS AND FUTUREWORK
We have presented an initial version of ros-dmapf, a distributed
MAPF solver, where empirical results show that it has promising
scalability. To the best of our knowledge, ros-dmapf is one of the
first MAPF solvers in which the components are distributed and
work together with a high degree of parallelism. In the future, we
plan to (i) identify a better way to handle densemaps; (ii) investigate
a new implementation of the sub-solvers using multi-shot ASP [9];
and (iii) experiment with ros-dmapf on maps with obstacles.
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