
Broadly, distributed problem solving is a subfield within
multiagent systems, where the focus is to enable multiple
agents to work together to solve a problem. These agents

are often assumed to be cooperative, that is, they are part of a
team or they are self-interested but incentives or disincentives
have been applied such that the individual agent rewards are
aligned with the team reward.

We illustrate the motivations for distributed problem solving
with an example. Imagine a decentralized channel-allocation
problem in a wireless local area network (WLAN), where each
access point (agent) in the WLAN needs to allocate itself a chan-
nel to broadcast such that no two access points with overlap-
ping broadcast regions (neighboring agents) are allocated the
same channel to avoid interference. Figure 1 shows example
mobile WLAN access points, where each access point is a Create
robot fitted with a wireless CenGen radio card. Figure 2a shows
an illustration of such a problem with three access points in a
WLAN, where each oval ring represents the broadcast region of
an access point.

This problem can, in principle, be solved with a centralized
approach by having each and every agent transmit all the rele-
vant information, that is, the set of possible channels that the
agent can allocate itself and its set of neighboring agents, to a
centralized server. However, this centralized approach may
incur unnecessary communication cost compared to a distrib-

Articles

FALL 2012 53Copyright © 2012, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Distributed
Problem Solving

William Yeoh, Makoto Yokoo

n Distributed problem solving is a subfield
within multiagent systems, where agents are
assumed to be part of a team and collaborate
with each other to reach a common goal. In this
article, we illustrate the motivations for distrib-
uted problem solving and provide an overview
of two distributed problem-solving models,
namely distributed constraint-satisfaction prob-
lems (DCSPs) and distributed constraint-opti-
mization problems (DCOPs), and some of their
algorithms.

uted approach. For example, agents in the central-
ized approach need to send information to a cen-
tralized server, which can be many hops away in
the WLAN. On the other hand, agents in a distrib-
uted approach need only send information to their
neighboring agents, which are one hop away.
Additionally, a distributed approach can also take
advantage of parallelism to solve the problem
faster. For example, if the WLAN is composed of
two disjoint networks, then the two problems can
be solved in parallel in a distributed approach but
must be solved in sequence in a centralized
approach. A distributed approach also removes sin-
gle points of failure, such as the centralized server,
which increases robustness.

Although there are many distributed problem-
solving models, we focus our scope in this article
on distributed constraint-reasoning (DCR) models
such as distributed constraint-satisfaction prob-
lems (DCSPs)1 and distributed constraint-opti-
mization problems (DCOPs). The DCR models
have a rich history and have been used to model a
wide variety of distributed problems including the
distributed scheduling of jobs in a job shop (Sycara
et al. 1991), the distributed scheduling of meetings
(Maheswaran et al. 2004; Zivan 2008), the distrib-
uted allocation of targets to sensors in a network
(Zhang et al. 2003; Zivan, Glinton, and Sycara
2009), the distributed allocation of resources in
disaster evacuation scenarios (Lass et al. 2008), the

distributed management of power distribution net-
works (Kumar, Faltings, and Petcu 2009), the dis-
tributed generation of coalition structures (Ueda,
Iwasaki, and Yokoo 2010), and the distributed
coordination of logistics operations (Léauté and
Faltings 2011).

A DCSP or DCOP can be visualized as a graph,
where nodes are agents and edges are constraints
that represent interactions between neighboring
agents. If we model the decentralized channel allo-
cation problem as a DCSP, then a constraint is
unsatisfied if the two agents sharing that con-
straint choose the same channel. The constraint is
satisfied otherwise. The goal in a DCSP is to find an
allocation of channels to all agents such that all
constraints are satisfied. If we model the problem
as a DCOP, then a constraint incurs a cost of infin-
ity if the two agents sharing that constraint choose
the same channel. The constraint incurs a finite
cost otherwise. Each pair of nonconflicting chan-
nels typically has a different cost to reflect the
channel preferences. The channel preferences
might arise due to interference from external
sources (Clifford and Leith 2007). The goal in a
DCOP is to find an allocation of channels to all
agents such that the sum of the costs of all con-
straints is minimized.

Our emphasis on DCR models in this article
comes at the unfortunate cost of neglecting many
other topics within the distributed problem-solv-

Articles

54 AI MAGAZINE

Figure 1. Mobile WLAN Access Points.

ing subfield. For example, in this article, we assume
each agent already has its own subtask. In our
decentralized channel allocation problem, the sub-
task of each agent is to assign its own channel.
However, in general, there can be a situation where
a team of agents has a global task to accomplish,
but how that task can be divided into subtasks and
which agent should be responsible for each subtask
are not predetermined. Thus, the agents must
decide how to do so. The research topic related to
such a situation is called task sharing. A classic,
representative approach in task sharing is the con-
tract net protocol (Davis and Smith 1983). Also,
when the subtask of each agent is complex and
interdependent with other subtasks, rather than
solving its subtask independently, agents should
provide each other with the information of partial
solutions as they work toward a solution. Such an
approach is called result sharing, which can
improve the accuracy of the obtained solution
since agents can cross-check their partial solutions
and obtain a better overall view (Lesser and Corkill
1981). In this article, we first describe centralized
constraint-reasoning models before describing
their distributed counterparts. We then describe
other distributed problem-solving models and con-
clude this article.

Centralized Constraint Reasoning
There are two types of centralized constraint-rea-
soning models, namely constraint-satisfaction
problems (CSPs) and constraint-optimization
problems (COPs).2 Both CSPs and COPs are defined
by a tuple 〈V, D, F〉, where V = {vi, ... } is a finite set
of variables; D = {Di, ... } is a finite set of domains,
where Di is the finite set of possible values for vari-
able vi; and F = ⋃ Fi is a finite set of constraints,
where Fn is the set of n-ary constraints. We assume
that all constraints in this article are binary con-

straints, that is, they involve only two variables, for
simplicity. Thus, F = F2 = {fij ... }, where fij : Di × Dj
is a binary constraint between variables vi and vj.
Each constraint in a CSP returns a boolean value of
satisfied or unsatisfied and each constraint in a
COP returns a numeric cost. A solution for the
problem is an assignment of values to variables. An
optimal solution is an assignment where all con-
straints are satisfied if the problem is a CSP or the
sum of the costs of all constraints is minimized if
the problem is a COP. Finding optimal solutions in
both problems is NP-hard.

Both problems can be visualized as a constraint
graph, where nodes are variables and edges are
constraints between variables. Figure 2b shows the
graph for our example decentralized channel allo-
cation problem and figure 2d shows the cost of
each pair of variables for a COP. If the problem is a
CSP, we assume that the constraint is satisfied
when its cost is a finite amount. We will use this
example throughout this article.

CSP Algorithms
There are two classes of CSP algorithms, namely
inference algorithms and search algorithms. Infer-
ence algorithms repeatedly simplify the CSP into
an equivalent CSP that is typically easier to solve
while search algorithms enumerate the space of
possible value assignments. We will describe com-
plete and incomplete algorithms that have DCSP
counterparts for each class. Table 1 shows the algo-
rithms described in this article.

Complete CSP Inference Algorithms
We describe bucket elimination (BE) (Dechter
1999) as a representative algorithm of this class. It
first constructs a pseudotree, which is a spanning
tree of the constraint graph with the property that
edges in the constraint graph connect a vertex
with one of its ancestors or descendants in the con-

Articles

FALL 2012 55

a c

v1 v2 v1 v3 v2 v3Cost
a a ∞
a b 0
b a 5
b b ∞
c a 10
c b 10

f12 f13 1023

Cost
a b 0
a c 0
b b ∞
b c 5
c b 10
c c ∞

Cost
a b 0
a c 0
b b ∞
b c 0

d

v1

v2

v3

v2

b

v1

v3

Figure 2. Example WLAN Problem.

(a) Illustration (b) Constraint Graph (c) Pseudotree.

straint tree (Freuder and Quinn 1985, Bayardo and
Miranker 1995). An edge of the constraint graph
that is not part of the pseudotree is called a
backedge. Figure 2c shows a pseudotree for our
example problem, where the dotted line is a
backedge. The algorithm then starts the variable
elimination phase by repeatedly eliminating a vari-
able upwards from the leaves of the pseudotree. It
eliminates a variable by substituting the con-
straints involving the eliminated variable with
new constraints that do not involve that variable.
Tables 2a and 2b show the two steps of the algo-
rithm eliminating variable v3. It first joins the con-
straints that involve variable v3, namely con-
straints f13 and f23, by taking all combinations of
pairs of values with the same value for variable v3,
resulting in constraint f13 ⋈ f23. For example, the
pairs of values (v1 = a, v3 = b) from constraint f13
and (v2 = a, v3 = b) from constraint f23 are combined
into the tuple (v1 = a, v2 = a, v3 = b) in constraint f13⋈ f23. The algorithm then projects that constraint
down on variable v3 by removing the values of
variable v3 from the constraint, resulting in con-
straint (f13 ⋈ f23) ⇓ v3.

This phase continues until every variable except
the root of the pseudotree is eliminated, at which
point the algorithm starts the variable assignment

phase by repeatedly assigning values to variables
downwards from the root. The algorithm assigns
the root a value from its set of values that do not
violate any constraint and breaks ties randomly. In
our example, variable v1 is assigned the value a,
which is shown in boldface in table 2d. The child
of the root is then assigned a value from its set of
values given the value assignment of the root. In
our example, variable v2 is assigned the value b,
which is shown in boldface in table 2c. This phase
continues until all the leaves are assigned values
given the values of all their ancestors in the
pseudotree, at which point the CSP is solved.

Incomplete CSP Inference Algorithms
We describe arc-consistency algorithm #3 (AC-3)
(Mackworth 1977), which simplifies a CSP into an
arc-consistent CSP, as a representative algorithm of
this class. A CSP is arc consistent if every value in
the domain of every variable is viable. A value of a
variable is viable iff there exists a support for that
value with respect to each binary constraint
involving that variable. Pairs of values are supports
for each other with respect to the constraint
between their respective variables if they satisfy
that constraint. Therefore, arc-consistent CSPs typ-
ically have variables with smaller domain sizes,
which makes them easier to solve. If the domain of

Articles

56 AI MAGAZINE

Constraint reasoning models CSP COP DCSP DCOP

Complete inference algorithms BE BE DPOP DPOP

Incomplete inference algorithms AC-3 W-AC3 DisAC-9 Distributed SAC

Complete search algorithms BT AOBB ABT ADOPT

Incomplete search algorithms BA BA DBA DBA

v1 v2 v3 v1 v2 v1 v2 v1

a a b a a a b a

a a c a b b a b

a b c b a c a c

b a c b b

b b c c a

c a b

a b c d

Table 1. Centralized and Distributed Constraint-Reasoning Algorithms.

Table 2. CSP Variable Elimination Phase.

a. f13 ⋈ f23. b. (f13 ⋈ f23) ⇓v3. c. f12 ⋈ (f13 ⋈ f23) ⇓3. d. (f12 ⋈ (f13 ⋈ f23) ⇓ v3) ⇓v2

one variable in an arc-consistent CSP is empty,
then the CSP does not have an optimal solution. If
the domains of all variables contain exactly one
value, then an assignment of those values to their
respective variables is a unique optimal solution
for the CSP. Otherwise, there are multiple optimal
solutions for the CSP and a complete algorithm is
needed to find one.

Complete CSP Search Algorithms
We describe a depth-first branch-and-bound algo-
rithm called Backtracking (BT) as a representative
algorithm of this class. Like BE, it also operates on
a pseudotree. It sequentially assigns values to vari-
ables downwards from the root of the pseudotree
until no value can be assigned to a variable with-
out violating a constraint. The algorithm then
backtracks, that is, changes the value of the most
recently assigned variable. This process continues
until it has assigned a value to all variables, in
which case it has found an optimal solution, or it
has tried all possible combination of values, in
which case it reports that there are no optimal
solutions.

Incomplete CSP Search Algorithms
We describe a hill-climbing algorithm called the
Breakout Algorithm (BA) (Morris 1993) as a repre-
sentative algorithm of this class. It starts with an
initial assignment of values to all variables and an
initial weight of one to all constraints. It uses the
sum of the weights of all violated constraints in a
solution as the evaluation of the solution. If the
initial assignment violates some constraint, then
the algorithm chooses a variable and changes its
value such that the evaluation of the solution is
reduced. This process continues until the evalua-
tion of the solution is zero, in which case it has
found an optimal solution, or the time limit of the
algorithm is reached, in which case it returns the
best solution found. When the algorithm detects
that it is in a local minima, it increases the weight
of all violated constraints by one so that the eval-
uation of the current solution is larger than its

neighboring solutions.

COP Algorithms
Like CSP algorithms, there are also two classes of
COP algorithms, namely inference algorithms and
search algorithms. We will describe complete and
incomplete algorithms that have DCOP counter-
parts for each class.

Complete COP Inference Algorithms
We describe an extension of BE (Dechter 1999),
which we described earlier, as a representative algo-
rithm of this class. Like BE, its extension also elim-
inates variables upwards from the leaves of the
pseudotree in the variable elimination phase and
assigns values to variables downwards from the
root of the pseudotree in the variable assignment
phase.

The difference in the variable elimination phase
is that each new constraint that substitutes the
constraints involving the eliminated variable now
has costs. Tables 3a and 3b show the two steps of
the algorithm eliminating variable v3. It first joins
the constraints that involve variable v3, namely
constraints f13 and f23, resulting in constraint f13 ⋈
f23. The cost in each row is the sum of the corre-
sponding costs in constraints f13 and f23. For exam-
ple, the cost of (v1 = c, v2 = a, v3 = b) is the sum of
the cost of (v1 = c, v3 = b) in constraint f13 and the
cost of (v2 = a, v3 = b) in constraint f23. It then proj-
ects that constraint down on variable v3 by remov-
ing the values of variable v3 from the constraint,
resulting in constraint (f13 ⋈ f23) ⇓ v3. The cost in
each row is the minimum over all corresponding
costs in the preprojected constraint. For example,
the cost of (v1 = a, v2 = a) is the minimum over the
costs of (v1 = a, v2 = a, v3 = b) and (v1 = a, v2 = a, v3
= c) in the unprojected constraint.

The difference in the variable assignment phase
is that each variable is now assigned a value such
that the cost is minimized given the values of all its
ancestors. In our example, variable v1 is assigned
the value a, which has the minimal cost, as shown

Articles

FALL 2012 57

v1 v2 v3 Cost v1 v2 Cost v1 v2 Cost v1 Cost
a a b 0 a a 0 a b 0 a 0
a a c 0 a b 0 b a 10 b 10
a b c 0 b a 5 c a 20 c 20
b a c 5 b b 5
b b c 5 c a 10
c a b 10

a b c d

Table 3. COP Variable Elimination Process.

a. f13 ⋈ f23. b. (f13 ⋈ f23) ⇓v3. c. f12 ⋈ (f13 ⋈ f23) ⇓v3. d. (f12 ⋈ (f13 ⋈ f23) ⇓v3) ⇓v2

in table 3d. This phase continues until all the
leaves are assigned values given the values of all
their ancestors in the pseudotree, at which point
the COP is solved.

Incomplete COP Inference Algorithms
We describe an extension of AC-3, which we
described earlier, called weighted AC-3 (W-AC3)
(Larrosa and Schiex 2004), as a representative algo-
rithm of this class. Like AC-3, W-AC3 also simpli-
fies a COP into a soft arc-consistent COP. The defi-
nition of soft arc consistency is similar to the
definition of arc consistency with the exception of
the definition of supports. In COPs, members in a
pair of values are supports for each other with
respect to the constraint between their respective
variables if the cost of that pair of values in the
constraint is finite (Cooper and Schiex 2004, Lar-
rosa and Schiex 2004).

Complete COP Search Algorithms
We describe an extension of BT, which we
described earlier, called AND/OR Branch-and-
Bound (AOBB) (Marinescu and Dechter 2009), as a
representative algorithm of this class. Like BT,
AOBB also assigns values to variables in a depth-
first manner. The difference is that it now main-
tains lower and upper bounds and uses them to
backtrack. The lower bound is the sum of costs of
all constraints involving variables with assigned
values, and the upper bound is cost of the best
solution found so far. The algorithm backtracks
when the lower bound is no smaller than the
upper bound.

Incomplete COP Search Algorithms
We describe a simple extension of BA (Morris
1993), which we described earlier, as a representa-
tive algorithm of this class. Like BA, its extension
also starts with an initial assignment of values to
all variables and repeatedly changes the value of a
variable such that the evaluation of the solution is
reduced. The difference is that it now uses the sum
of constraint costs in a solution as the evaluation
of the solution.

Distributed Constraint Reasoning
There are two types of distributed constraint-rea-
soning models, namely distributed CSPs (DCSPs)
and distributed COPs (DCOPs), which extend CSPs
and COPs, respectively. Both DCSPs and DCOPs are
defined by a tuple 〈A, V, D, F, �〉, where V, D, and F
are sets of variables, domains, and constraints,
respectively, like in CSPs and COPs. A = {ai, ... } is a
finite set of agents and �: V → A is a function that
maps each variable to an agent that owns it. In this
article, we assume that each agent owns exactly one
variable. Thus, we will use the terms agents and vari-
ables interchangeably. Each agent is responsible for
assigning values to its variable based only on its

knowledge of the constraints involving its variable
and messages that it can exchange with other
agents. These messages can be delayed by a finite
amount of time but are never lost.

DCSP Algorithms
Like CSP algorithms, there are also two classes of
DCSP algorithms, namely inference and search
algorithms. We will describe one complete and one
incomplete algorithm for each class.

Complete DCSP Inference Algorithms
We describe an extension of BE, which we
described earlier, called Distributed Pseudotree
Optimization Procedure (DPOP) (Petcu and Falt-
ings 2005b), as a representative algorithm of this
class. DPOP was actually designed to solve DCOPs,
but it can be used to solve DCSPs as well. Like BE,
DPOP also operates on a pseudotree. Thus, it first
calls existing distributed pseudotree construction
algorithm like Distributed DFS (Hamadi, Bessière,
and Quinqueton 1998) to construct a pseudotree.

At a high level, the key ideas of DPOP are as fol-
lows: When BE eliminates a variable, it knows the
projected constraint because it is a centralized
algorithm. Unfortunately, each agent in DPOP is
only aware of the constraints in the original prob-
lem that it is involved in. Thus, each agent sends
UTIL messages containing its projected constraint
after it eliminates its variable. When BE assigns a
value to a variable, it also knows the good values
for the current unassigned variable, that is, the val-
ues that do not violate any constraints given the
value assignment of all its ancestors. Unfortunate-
ly, each agent in DPOP is only aware of its own val-
ue assignment and it thus does not know its good
values. Thus, each agent sends VALUE messages
containing its value after it assigns itself.

We now describe DPOP in more detail. There are
two phases in the operation of DPOP. The first
phase, called the UTIL phase, is similar to the CSP
variable-elimination phase. The difference now is
that each agent eliminates its own variable and
sends a UTIL message containing the projected
constraint up to its parent agent. In our example,
agent v3 performs the join and projection opera-
tions as shown in tables 2a and 2b and sends a
UTIL message containing the projected constraint
to its parent agent v2. This phase continues until
the root agent receives a projected constraint from
each of its child agents in the pseudotree.

At the end of the variable elimination phase,
DPOP starts the second phase, called the VALUE
phase, which is similar to the CSP variable assign-
ment phase. The difference now is that each agent
assigns itself a value and sends a VALUE message
containing its value down to each of its descen-
dant agents that it shares a constraint with. The
root agent starts this phase by assigning itself a val-
ue from its set of values that do not violate any

Articles

58 AI MAGAZINE

constraint. In our example, agent v1 assigns itself
the value a as shown in table 2d and sends a VAL-
UE message containing its value to its child agent
v2. Upon receipt of the message, agent v2 assigns
itself a value from its set of values given that agent
v1 assigned itself the value in the VALUE message.
In our example, agent v2 assigns itself the value b
given that agent v1 assigned itself the value a. This
phase continues until the leaf agents assign them-
selves values given the values of all their ancestor
agents in the pseudotree, at which point the DCSP
is solved.

The number of messages sent between agents in
DPOP is linear in the number of agents. However,
the size of the messages and the memory require-
ment of each agent are exponential in the induced
width of the DCOP.

Incomplete DCSP Inference Algorithms
There exist distributed arc-consistency-based algo-
rithms, such as distributed arc-consistency algo-
rithm #9 (DisAC-9) (Hamadi 2002). Like AC-3, Dis-
AC-9 also simplifies a DCSP into an arc-consistent
DCSP. The difference is that this simplification is
now done in a distributed manner; each agent
knows only about the constraints involving its
variable and must thus communicate with neigh-
boring agents to exchange information.

Complete DCSP Search Algorithms
A classic complete search algorithm for DCSP is an
extension of BT, which we described earlier, called
asynchronous backtracking (ABT) (Yokoo et al.
1992, 1998). Like BT, ABT also assigns values to
variables in a depth-first manner and backtracks
when a constraint is violated. The difference is that
they are done in a distributed and asynchronous
manner.

At a high level, the key ideas of ABT are as fol-
lows: When BT assigns a value to a variable, it
knows the current value assignment of all variables
because it is a centralized algorithm and it thus
knows the good values for the current unassigned
variable, that is, the values that do not violate any
constraints given the value assignment of all its
ancestors. Unfortunately, when ABT assigns a val-
ue to a variable, each agent is only aware of its own
value assignment and it thus does not know its
good values. Thus, each agent sends OK? messages
containing its value after it assigns itself. When BT
backtracks, it can also infer the cause of the con-
straint violations because it knows the current val-
ue assignment of all variables. Unfortunately,
when ABT backtracks, the agent to which ABT
backtracks does not know the cause of the con-
straint violations since it does not know the
assumed value assignments of the ancestor agents
of the backtracking agent. Thus, each agent sends
NOGOOD messages containing its assumed value
assignments of its ancestor agents when it back-
tracks.

We now describe ABT in more detail. Each agent
maintains an agent view, which is a set of agent-
value pairs that represents the agent’s assumption
of its ancestor agents’ assigned values. The algo-
rithm starts by having the root agent assign itself a
value and sends an OK? message containing its val-
ue to each of its descendant agents that it shares a
constraint with. Upon receipt of an OK? message,
the receiving agent updates its agent view to reflect
the latest value of the sending agent. If there exists
a value in its domain that does not violate any con-
straint given that its ancestors are assigned values
according to its agent view, it assigns itself that val-
ue and sends an OK? message to each of its descen-
dant agents that it shares a constraint with. If no
such value exists, then it backtracks by sending a
NOGOOD message containing its agent view to an
ancestor agent. Upon receipt of a NOGOOD mes-
sage, if they are compatible, that is, they agree on
all common agent-value pairs, then the receiving
agent changes its value to a different value that
does not violate any constraint given the assump-
tion that agents are assigned values according to
their own agent view and the agent view in the
NOGOOD message. If they are incompatible, then
the receiving agent backtracks. This process con-
tinues until either all agents are assigned values
and no NOGOOD messages are sent, at which
point the algorithm has found an optimal solu-
tion, or the root agent receives a NOGOOD mes-
sage for each of its values, at which point the algo-
rithm can conclude that there is no optimal
solution for the problem.

The number of messages sent between agents in
ABT is exponential in the number of agents. How-
ever, the size of the messages and the memory
requirement of each agent are linear in the number
of agents. Researchers have developed various
extensions of this algorithm including extensions
with dynamic ordering of agents in the pseudotree
(Yokoo 1995; Zivan and Meisels 2005).

Incomplete DCSP Search Algorithms
A classic incomplete DCSP search algorithm is an
extension of BA, which we described earlier, called
the distributed breakout algorithm (DBA) (Hiraya-
ma and Yokoo 2005). Like BA, DBA also starts with
an initial assignment of values to all variables and
an initial weight of one to all constraints. The dif-
ference is that this assignment is now done in a
distributed manner; each agent assigns itself a val-
ue randomly, sends that value in OK? messages to
its neighboring agents and assigns a weight of one
to each constraint that it is involved in. Addition-
ally, each agent now sums up the weights of vio-
lated constraints that it is involved in only and
uses that as the evaluation of its value. Each agent
also calculates its gain, that is, the possible
improvement in the evaluation if it changes its val-
ue, and sends an IMPROVE message containing

Articles

FALL 2012 59

that gain to each of its neighboring agents. To
guarantee that the (global) solution improves, only
the agent with the highest gain amongst its neigh-
boring agents can change its value. However, note
that two nonneighboring agents can change their
values concurrently. Researchers have developed
various extensions of this algorithm including
extensions where any agent with a positive gain
can change its value with a given probability (Fitz-
patrick and Meertens 2003; Zhang and Wittenburg
2002).

DCOP Algorithms
Like COP algorithms, there are also two classes of
DCOP algorithms, namely inference and search
algorithms. We will describe one complete and one
incomplete algorithm for each class.

Complete DCOP Inference Algorithms
As BE can be used to solve both CSPs and COPs,
DPOP, which we described earlier for solving
DCSPs, can also be used to solve DCOPs. There are
the same two phases in the operation of the ver-
sion of DPOP that solves DCOPs, where the UTIL
phase is similar to the COP variable-elimination
phase and the VALUE phase is similar to the COP
variable-assignment phase.

The number and size of messages and the mem-
ory requirement of each agent in this version of
DPOP are the same as those in the version that
solves DCSPs. Researchers have developed various
extensions of this algorithm including extensions
that trade between memory requirement and com-
putation time (Petcu and Faltings 2007a; Petcu,
Faltings, and Mailler 2007) or solution optimality
(Petcu and Faltings 2005a) and an extension that
speeds up DPOP by using function filtering (Brito
and Meseguer 2010).

Incomplete DCOP Inference Algorithms
There exist distributed versions of arc-consistency-
based algorithms called distributed soft arc-consis-
tency (SAC) algorithms (Matsui et al. 2009; Gutier-
rez and Meseguer 2010). Like W-AC3, these
algorithms also simplify a DCOP into a soft arc-
consistent DCOP. The difference is that this sim-
plification is now done in a distributed manner;
each agent knows only about the constraints
involving its variable and must thus communicate
with neighboring agents to exchange information.

Complete DCOP Search Algorithms
A classic complete DCOP search algorithm is called
Asynchronous Distributed Optimization (ADOPT)
(Modi et al. 2005). ADOPT can be considered as a
variation of AOBB, but it was developed before it.
Like AOBB, ADOPT also uses lower and upper
bounds to backtrack. The difference is that it is
now done in a distributed and asynchronous man-
ner.

At a high level, the key ideas of ADOPT are sim-
ilar to those of ABT: Each agent sends VALUE mes-

sages (instead of OK? messages) containing its val-
ue after it assigns itself and it sends COST messages
(instead of NOGOOD messages) containing its
assumed value assignments of its ancestor agents
when it backtracks. The difference is that COST
messages also include the lower and upper bounds
in addition to the assumed value assignments of
the ancestor agents.

We now describe ADOPT in more detail. Each
agent vi maintains its current value di; its current
context Xi, which is a set of agent-value pairs that
represents the agent’s assumption of the current
values of its ancestor agents; the lower and upper
bounds LBi and UBi, which are bounds on the opti-
mal cost OPTi given that its ancestors take on their
respective values in Xi; the lower and upper
bounds LBi (d) and UBi(d) for all values d � Di,
which are bounds on the optimal costs OPTi(d) giv-
en that agent vi takes on the value d and its ances-
tor agents take on their respective values in Xi; and
the lower and upper bounds lbi

c(d) and ubi
c(d) for

all values d � Di and child agents vc, which are its
assumption on the bounds LBc and UBc of its child
agents vc with context Xi ∪ (vi, d). The optimal
costs are calculated using:

for all values d � Di, where Ci is the set of child
agents of agent vi and �i(d) is the sum of the costs
of all cost constraints between agent vi and its
ancestor agents given that agent vi takes on the val-
ue d and the ancestors take on their respective val-
ues in Xi.

At the start, each agent vi initializes its current
context Xi to ∅, lower and upper bounds lbi

c(d) and
ubi

c(d) to 0 and ∞, respectively. For all values d � Di
and all child agents vc, agent vi calculates the
remaining lower and upper bounds and takes on
its best value using:

Agent vi sends a VALUE message containing its
value di to each of its descendant agents that it
shares a constraint with. It also sends a COST mes-
sage containing its context Xi and its bounds LBi
and UBi to its parent agent. Upon receipt of a VAL-
UE message, if its current context Xi is compatible

OPTi(d)= !i(d)+ OPTc
vc"Ci

#
OPTi =mind"Di

OPTi(d)

!i(d)= fij
(vj ,dj)"Xi

(d,dj)

LBi(d)= !i(d)+ l
vc"Ci

bi
c(d)

UBi(d)= !i(d)+ u
vc"Ci

bi
c(d)

LBi =mind"Di
LBi(d){ }

UBi =mind"Di
UBi(d){ }

di = argmind"Di
LBi(d){ }

Articles

60 AI MAGAZINE

with the value in the VALUE message, it updates its
context to reflect the new value of its ancestor
agent and reinitializes its lower and upper bounds
lbi

c(d) and ubi
c(d). Upon receipt of a COST message

from child agent vc, if its current context Xi is com-
patible with the context in the message, then it
updates its lower and upper bounds lbi

c(d) and
ubi

c(d) to the lower and upper bounds in the mes-
sage, respectively. Otherwise, the COST message is
discarded. After processing either message, it recal-
culates the remaining lower and upper bounds and
takes on its best value using the above equations
and sends VALUE and COST messages. This process
repeats until the root agent vr reaches the termina-
tion condition LBr = UBr, which means that it has
found the optimal cost.

The number and size of messages and the mem-
ory requirement of each agent in ADOPT are the
same as those in ABT. Researchers have developed
various extensions of this algorithm including an
extension that incorporates elements of ABT like
NOGOOD messages (Silaghi and Yokoo 2009), an
extension that uses depth-first search instead of
best-first search (Yeoh, Felner, and Koenig 2010),
an extension that trades between computation
time and solution optimality (Yeoh, Sun, and
Koenig 2009), and an extension that trades
between memory requirement and computation
time (Matsui, Matsuo, and Iwata 2005; Yeoh,
Varakantham, and Koenig 2009).

Incomplete DCOP Search Algorithms
As BA can be used to solve both CSPs and COPs,
DBA, which we described earlier for solving DCSPs,
can also be used to solve DCOPs. Like the version
that solves DCSPs, each agent in this version also
assigns itself a value randomly and sends an OK?
message containing that value to each of its neigh-
boring agents, calculates its gain from changing
values, sends an IMPROVE message containing
that gain to each of its neighboring agents, and
changes its value if it has the highest gain amongst
its neighboring agents. The difference is that each
agent now uses the cost of a constraint as the
weight of that constraint in the evaluation of its
current value.

Recent Extensions
Researchers have extended DCR models and algo-
rithms in various directions to more accurately
model and solve real-world problems. We now
describe some of these extensions.

Privacy-Preserving Algorithms
One of the motivations for modeling problems like
the distributed scheduling of meetings with the
DCR model is the preservation of privacy. For
example, two users that do not need to schedule a
meeting between them should not have access to
each other’s meeting time preferences. Unfortu-
nately, privacy loss is often unavoidable because

the agents exchange messages that include aggre-
gated constraint cost information. The exception
is if the agents use obfuscation or encryption
methods (Yokoo, Suzuki, and Hirayama 2005; Falt-
ings, Léauté, and Petcu 2008; Léauté and Faltings
2009, 2011). Researchers have thus introduced sev-
eral metrics for measuring privacy loss in DCR
algorithms (Greenstadt, Pearce, and Tambe 2006)
as well as extensions of DCR algorithms that pre-
serve more privacy (Greenstadt, Grosz, and Smith
2007; Greenstadt 2009).

Dynamic DCR models
Many multiagent coordination problems like the
distributed management of power distribution net-
works occur in dynamically changing environ-
ments. For example, power lines might fail or pow-
er requirements of a district might change.
Researchers have thus extended DCR models to
dynamic DCR models like dynamic DCSPs (Mailler
2005; Omomowo, Arana, and Ahriz 2008) and
dynamic DCOPs (Petcu and Faltings 2005c; Sul-
tanik, Lass, and Regli 2009; Yeoh et al. 2011). A
typical model of a dynamic DCR problem is a
sequence of (static) DCR problems with changes
from one DCR problem to the next one in the
sequence. The advantage of this approach is that
solving a dynamic DCR problem is no harder than
solving multiple (static) DCR problems. Other
related extensions include a continuous-time mod-
el where agents have deadlines to choose their val-
ues (Petcu and Faltings 2007b) and a model where
agents can have imperfect knowledge about their
environment (Lass, Sultanik, and Regli 2008).

Multiobjective DCR Models
Many multiagent coordination problems like the
distributed planning of truck routes can have mul-
tiple objectives that need to be optimized. For
example, two possible conflicting objectives might
be the length of the route and the financial cost of
the route (due to tolls); short routes are expensive
and long routes are cheap. Researchers have thus
extended DCOPs to multiobjective DCOPs, where
each pair of values in a constraint has multiple
costs, one for each objective (Delle Fave et al.
2011). The goal in such a problem is to find a Pare-
to-optimal solution. Other related extensions
include resource-constrained DCOPs, where each
pair of values in a constraint has an additional
resource cost (Bowring, Tambe, and Yokoo 2006;
Matsui et al. 2008). The goal in such a problem is
to find an optimal solution among the set of solu-
tions whose sum of resource costs is within an
upper bound.

Quantified DCR Models
Many multiagent coordination problems like the
distributed tracking of targets in a sensor network
can include adversarial agents. For example, the
target might try to avoid detection and is thus
adversarial. Researchers have thus extended DCR

Articles

FALL 2012 61

models to quantified DCR models (Baba et al.
2010, Matsui et al. 2010). Quantified DCR models
allow some agents in the problem to be adversari-
al, that is, they can assign themselves any value
regardless whether the value will increase or
decrease the overall solution cost. The goal in such
a problem is to find an optimal solution given that
all the adversarial agents will assign themselves
the worst possible values, which increase the over-
all solution cost the most. Other related exten-
sions include an algorithm that explicitly models
the deception of adversarial agents (Lisy et al.
2010).

Other Models
Aside from distributed constraint-reasoning mod-
els, researchers have developed other distributed
problem-solving models to capture different char-
acteristics of common distributed problems. We
now describe some of these models.

DEC-POMDPs
Partially observable Markov decision processes
(POMDPs) (Smallwood and Sondik 1973) have
been shown to be popular models for modeling
centralized sequential decision making under
uncertainty problems. As a result, decentralized
POMDPs (DEC-POMDPs) (Bernstein et al. 2002)
have emerged as a natural extension for modeling
decentralized sequential decision making under
uncertainty problems. An example application is
the cooperative multirobot navigation problem,
where the robots (agents) need to cooperatively get
to their respective goal locations. They have actu-
ators for locomotion, but their movements depend
on factors like wheel alignment and slippage. They
also have sensors for sensing their environment,
but their sensory data depend on factors like sen-
sor noise. Despite the uncertainty, they need to
find a sequence of actions that will result in the
largest likelihood of reaching their respective goal
locations.

DCR models are ill-suited for modeling this
problem as they do not take uncertainty into
account. Thus, a DEC-POMDP is a better-suited
model in such a problem. Unfortunately, the
increased richness of DEC-POMDPs compared to
DCR models comes at a price of higher complexity
— finding optimal DEC-POMDP solutions is
NEXP-hard (Bernstein et al. 2002). Researchers
have thus proposed specialized models that lever-
age sparse agent interactions to improve the scala-
bility of DEC-POMDP algorithms (Nair et al. 2005;
Kumar and Zilberstein 2009; Oliehoek et al. 2008;
Velagapudi et al. 2011).

Auctions
Auction-based approaches are also popular for

modeling decentralized coordination problems
(Koenig, Keskinocak, and Tovey 2010). In an auc-
tion-based algorithm, the auctioneer calls for bids
for tasks/resources and the agents bid according
to their valuation of the tasks and their capabili-
ties of performing those tasks. Generally, each
agent maximizes its own payoff, which is defined
as its income (from performing its task) minus its
cost (of performing its task). Thus, the primary
difference between auctions and the DCR models
is that auction-based algorithms expect that coor-
dinated behaviors of agents emerge through the
individual optimization of each agent. However,
unlike game-theoretic approaches, we usually
assume that the agents always bid truthfully inde-
pendent of the game mechanism. Auction-based
approaches have been applied to solve the dis-
tributed processing of streaming data (An,
Douglis, and Ye 2008), the distributed allocation
of resources in cloud computing centers (An et al.
2010), and the distributed allocation of roles in
RoboCup soccer (Frías-Martínez, Sklar, and Par-
sons 2004).

Conclusions
In this article, we gave a brief overview of distrib-
uted problem solving. Due to space limitations, we
focused on distributed constraint-reasoning (DCR)
models, which are problems where each agent has
a fixed, finite set of possible actions, and the
agents try to find a combination of individual
actions that satisfies or optimizes some global cri-
teria. Distributed problem solving has a long
research history and the topics covered in this arti-
cle are very limited. We encourage readers to refer
to other articles that discuss other issues in dis-
tributed problem solving (Lesser and Corkill 1981;
Davis and Smith 1983; Durfee 1999). Researchers
have developed several testbeds (Ezzahir et al.
2007; Sultanik, Lass, and Regli 2007; Léauté,
Ottens, and Szymanek 2009) for running DCR
algorithms including DisChoco3, DCOPolis4, and
FRODO5. These testbeds include implementations
for a variety of popular DCR algorithms (includ-
ing most of the algorithms described in this arti-
cle), evaluation domains and evaluation metrics.
We encourage readers who are interested in dis-
tributed constraint reasoning to download and try
out these testbeds.

Notes
1. Researchers have also used DisCSPs to refer to distrib-
uted CSPs and DCSPs to refer to dynamic CSPs.

2. COPs are also known as weighted CSPs (Schiex, Fargi-
er, and Verfaillie 1995; Bistarelli et al. 1999).

3. www.lirmm.fr/coconut/dischoco.

4. www.dcopolis.org.

5. sourceforge.net/projects/frodo2.

Articles

62 AI MAGAZINE

References
An, B.; Douglis, F.; and Ye, F. 2008. Heuristics for Negoti-
ation Schedules in Multiplan Optimization. In Proceed-
ings of the Seventh International Joint Conference on
Autonomous Agents and Multiagent Systems, 551–558. Rich-
land, SC: International Foundation for Autonomous
Agents and Multiagent Systems.

An, B.; Lesser, V.; Irwin, D.; and Zink, M. 2010. Automat-
ed Negotiation with Decommitment for Dynamic
Resource Allocation in Cloud Computing. In Proceedings
of the Ninth International Joint Conference on Autonomous
Agents and Multiagent Systems, 981–988. Richland, SC:
International Foundation for Autonomous Agents and
Multiagent Systems.

Baba, S.; Iwasaki, A.; Yokoo, M.; Silaghi, M.; Hirayama, K.;
and Matsui, T. 2010. Cooperative Problem Solving
Against Adversary: Quantified Distributed Constraint Sat-
isfaction Problem. In Proceedings of the Ninth Internation-
al Joint Conference on Autonomous Agents and Multiagent
Systems, 781–788. Richland, SC: International Founda-
tion for Autonomous Agents and Multiagent Systems.

Bayardo, R., and Miranker, D. 1995. On the Space-Time
Trade-Off in Solving Constraint Satisfaction Problems. In
Proceedings of the 14th International Joint Conference on Arti-
ficial Intelligence, 558–562. San Francisco: Morgan Kauf-
mann Publishers.

Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The Complexity of Decentralized Control of
Markov Decision Processes. Mathematics of Operations
Research 27(4): 819–840.

Bistarelli, S.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie,
G.; and Fargier, H. 1999. Semiring-Based CSPs and Valued
CSPs: Basic Properties and Comparison. Constraints 4(3):
199–240.

Bowring, E.; Tambe, M.; and Yokoo, M. 2006. Multiply-
Constrained Distributed Constraint Optimization. In Pro-
ceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, 1413–1420.
New York: Association for Computing Machinery.

Brito, I., and Meseguer, P. 2010. Improving DPOP with
Function Filtering. In Proceedings of the Ninth Internation-
al Joint Conference on Autonomous Agents and Multiagent
Systems, 141–158. Richland, SC: International Founda-
tion for Autonomous Agents and Multiagent Systems.

Clifford, P., and Leith, D. 2007. Channel Dependent
Interference and Decentralized Colouring. In Proceedings
of the International Conference on Network Control and Opti-
mization, Lecture Notes in Computer Science Volume
4465, 95–104. Berlin: Springer.

Cooper, M., and Schiex, T. 2004. Arc Consistency for Soft
Constraints. Artificial Intelligence 154(1-2): 199–227.

Davis, R., and Smith, R. 1983. Negotiation as a Metaphor
for Distributed Problem Solving. Artificial Intelligence
20(1): 63–109.

Dechter, R. 1999. Bucket Elimination: A Unifying Frame-
work for Reasoning. Artificial Intelligence 113(1–2): 41–85.

Delle Fave, F.; Stranders, R.; Rogers, A.; and Jennings, N.
2011. Bounded Decentralised Coordination over Multi-
ple Objectives. In Proceedings of the Tenth International
Joint Conference on Autonomous Agents and Multiagent Sys-
tems, 371–378. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems.

Durfee, E. 1999. Distributed Problem Solving and Plan-
ning. In Multiagent Systems: A Modern Approach to Distrib-
uted Artificial Intelligence, ed. G. Weiss. Cambridge, MA:
The MIT Press. 121–164.

Ezzahir, R.; Bessière, C.; Belaissaoui, M.; and Bouyakhf, E.
H. 2007. DisChoco: A Platform for Distributed Constraint
Programming. Paper presented at the 8th International
Workshop on Distributed Constraint Reasoning. Hyder-
abad, India, 8 January.

Faltings, B.; Léauté, T.; and Petcu, A. 2008. Privacy Guar-
antees Through Distributed Constraint Satisfaction. In
Proceedings of the 2008 IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology, 350–358. Los Alami-
tos, CA: IEEE Computer Society.

Fitzpatrick, S., and Meertens, L. 2003. Distributed Coor-
dination Through Anarchic Optimization. In Distributed
Sensor Networks: A Multiagent Perspective, ed. V. Lesser, C.
Ortiz, and M. Tambe, 257–295. Dordrecht, The Nether-
lands: Kluwer.

Freuder, E., and Quinn, M. 1985. Taking Advantage of
Stable Sets of Variables in Constraint Satisfaction Prob-
lems. In Proceedings of the 9th International Joint Conference
on Artificial Intelligence, 1076–1078. Los Altos, CA:
William Kaufmann, Inc.

Frías-Martínez, V.; Sklar, E.; and Parsons, S. 2004. Explor-
ing Auction Mechanisms for Role Assignment in Teams
of Autonomous Robots. In RoboCup 2004: Robot Soccer
World Cup VIII. Lecture Notes in Computer Science 3276,
532–539. Berlin: Springer.

Greenstadt, R. 2009. An Overview of Privacy Improve-
ments to K-Optimal DCOP Algorithms (Extended
Abstract). In Proceedings of the Eighth International Joint
Conference on Autonomous Agents and Multiagent Systems,
1279–1280. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems.

Greenstadt, R.; Grosz, B.; and Smith, M. 2007. SSDPOP:
Improving the Privacy of DCOP with Secret Sharing. In
Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems, 1098–1100.
Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems.

Greenstadt, R.; Pearce, J.; and Tambe, M. 2006. Analysis
of Privacy Loss in DCOP Algorithms. In Proceedings of the
21st National Conference on Artificial Intelligence, 647–653.
Menlo Park, CA: AAAI Press.

Gutierrez, P., and Meseguer, P. 2010. BnB-ADOPT+ with
Several Soft Arc Consistency Levels. In Proceedings of the
29th European Conference on Artificial Intelligence, 67–72.
Amsterdam: IOS Press.

Hamadi, Y. 2002. Optimal Distributed Arc-Consistency.
Constraints 7(3-4): 367–385.

Hamadi, Y.; Bessière, C.; and Quinqueton, J. 1998. Dis-
tributed Intelligent Backtracking. In Proceedings of the
13th European Conference on Artificial Intelligence, 219–223.
Chichester, UK: John Wiley and Sons.

Hirayama, K., and Yokoo, M. 2005. The Distributed
Breakout Algorithms. Artificial Intelligence 161(1-2): 89–
115.

Koenig, S.; Keskinocak, P.; and Tovey, C. 2010. Progress
on Agent Coordination with Cooperative Auctions. In
Proceedings of the 24th AAAI Conference on Artificial Intelli-
gence, 1713–1717. Menlo Park, CA: AAAI Press.

Kumar, A., and Zilberstein, S. 2009. Constraint-Based

Articles

FALL 2012 63

Articles

64 AI MAGAZINE

Dynamic Programming for Decentralized POMDPs with
Structured Interactions. In Proceedings of the Eighth Inter-
national Joint Conference on Autonomous Agents and Multi-
agent Systems, 561–568. Richland, SC: International Foun-
dation for Autonomous Agents and Multiagent Systems.

Kumar, A.; Faltings, B.; and Petcu, A. 2009. Distributed
Constraint Optimization with Structured Resource Con-
straints. In Proceedings of the Eighth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, 923–
930. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems.

Larrosa, J., and Schiex, T. 2004. Solving Weighted CSP by
Maintaining Arc Consistency. Artificial Intelligence 159(1-
2): 1–26.

Lass, R.; Kopena, J.; Sultanik, E.; Nguyen, D.; Dugan, C.;
Modi, P.; and Regli, W. 2008. Coordination of First
Responders Under Communication and Resource Con-
straints (Short Paper). In Proceedings of the Seventh Inter-
national Joint Conference on Autonomous Agents and Multi-
agent Systems, 1409–1413. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Sys-
tems.

Lass, R.; Sultanik, E.; and Regli, W. 2008. Dynamic Dis-
tributed Constraint Reasoning. In Proceedings of the 23rd
AAAI Conference on Artificial Intelligence, 1466–1469. Men-
lo Park, CA: AAAI Press.

Léauté, T., and Faltings, B. 2009. Privacy-Preserving Mul-
tiagent Constraint Satisfaction. In Proceedings of the 2009
IEEE International Conference on Privacy, Security, Risk and
Trust, 17–25. Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Léauté, T., and Faltings, B. 2011. Coordinating Logistics
Operations with Privacy Guarantees. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence,
2482–2487. Menlo Park, CA: AAAI Press.

Léauté, T.; Ottens, B.; and Szymanek, R. 2009. FRODO
2.0: An Open-Source Framework for Distributed Con-
straint Optimization. Paper presented at the IJCAI-09 Dis-
tributed Constraint Reasoning Workshop, Pasadena, CA,
13 July.

Lesser, V., and Corkill, D. 1981. Functionally-Accurate,
Cooperative Distributed Systems. IEEE Transactions on
Systems, Man and Cybernetics SMC11(1): 81–96.

Lisy, V.; Zivan, R.; Sycara, K.; and Péchoucek, M. 2010.
Deception in Networks of Mobile Sensing Agents. In Pro-
ceedings of the Ninth International Joint Conference on
Autonomous Agents and Multiagent Systems, 1031–1038.
Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems.

Mackworth, A. 1977. Consistency in Networks of Rela-
tions. Artificial Intelligence 8(1): 99–118.

Maheswaran, R.; Tambe, M.; Bowring, E.; Pearce, J.; and
Varakantham, P. 2004. Taking DCOP to the Real World:
Efficient Complete Solutions for Distributed Event Sched-
uling. In Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, 310–
317. Piscataway, NJ: Institute of Electrical and Electronic
Engineers.

Mailler, R. 2005. Comparing Two Approaches to Dynam-
ic, Distributed Constraint Satisfaction. In Proceedings of
the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, 1049–1056. New York:
Association for Computing Machinery.

Marinescu, R., and Dechter, R. 2009. AND/OR Branch-
and-Bound Search for Combinatorial Optimization in
Graphical Models. Artificial Intelligence 173(16–17): 1457–
1491.

Matsui, T.; Matsuo, H.; Silaghi, M.; Hirayama, K.; Yokoo,
M.; and Baba, S. 2010. A Quantified Distributed Con-
straint Optimization Problem. In Proceedings of the Ninth
International Joint Conference on Autonomous Agents and
Multiagent Systems, 1023–1030. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multia-
gent Systems.

Matsui, T.; Matsuo, H.; and Iwata, A. 2005. Efficient
Methods for Asynchronous Distributed Constraint Opti-
mization Algorithm. In Proceedings of the IASTED Interna-
tional Conference on Artificial Intelligence and Applications,
727–732. Calgary, AB, Canada: International Association
of Science and Technology for Development.

Matsui, T.; Silaghi, M.; Hirayama, K.; Yokoo, M.; and Mat-
suo, H. 2008. Resource Constrained Distributed Con-
straint Optimization with Virtual Variables. In Proceedings
of the 23rd AAA Conference on Artificial Intelligence, 120–
125. Menlo Park, CA: AAAI Press.

Matsui, T.; Silaghi, M.; Hirayama, K.; Yokoo, M.; and Mat-
suo, H. 2009. Directed Soft Arc Consistency in Pseudo
Trees. In Proceedings of the Eighth International Joint Con-
ference on Autonomous Agents and Multiagent Systems,
1065–1072. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems.

Modi, P.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous Distributed Constraint Optimiza-
tion with Quality Guarantees. Artificial Intelligence 161(1-
2): 149–180.

Morris, P. 1993. The Breakout Method for Escaping from
Local Minima. In Proceedings of the 11th National Confer-
ence on Artificial Intelligence, 40–45. Menlo Park, CA: AAAI
Press.

Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M.
2005. Networked Distributed POMDPs: A Synthesis of
Distributed Constraint Optimization and POMDPs. In
Proceedings of the 20th National Conference on Artificial
Intelligence, 133–139. Menlo Park, CA: AAAI Press.

Oliehoek, F.; Spaan, M.; Whiteson, S.; and Vlassis, N.
2008. Exploiting Locality of Interaction in Factored Dec-
POMDPs. In Proceedings of the Seventh International Joint
Conference on Autonomous Agents and Multiagent Systems,
517–524. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems.

Omomowo, B.; Arana, I.; and Ahriz, H. 2008. DynABT:
Dynamic Asynchronous Backtracking for Dynamic DisC-
SPs. In Proceedings of the 13th International Conference on
Artificial Intelligence: Methodology, Systems, and Applica-
tions, Lecture Notes in Computer Science 5253, 285–296.
Berlin: Springer.

Petcu, A., and Faltings, B. 2005a. Approximations in Dis-
tributed Optimization. In Proceedings of the 11th Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science 3709,
802–806. Berlin: Springer.

Petcu, A., and Faltings, B. 2005b. A Scalable Method for
Multiagent Constraint Optimization. In Proceedings of the
19th International Joint Conference on Artificial Intelligence,
1413–1420. San Francisco: Morgan Kaufmann Publishers.

Petcu, A., and Faltings, B. 2005c. Superstabilizing, Fault-

Containing Multiagent Combinatorial Opti-
mization. In Proceedings of the 20th National
Conference on Artificial Intelligence, 449–454.
Menlo Park, CA: AAAI Press.

Petcu, A., and Faltings, B. 2007a. MB-DPOP:
A New Memory-Bounded Algorithm for Dis-
tributed Optimization. In Proceedings of the
20th International Joint Conference on Artifi-
cial Intelligence, 1452–1457. Menlo Park, CA:
AAAI Press.

Petcu, A., and Faltings, B. 2007b. Optimal
Solution Stability in Dynamic, Distributed
Constraint Optimization. In Proceedings of
the 2007 IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology, 321–
327. Los Alamitos, CA: IEEE Computer Soci-
ety.

Petcu, A.; Faltings, B.; and Mailler, R. 2007.
PC-DPOP: A New Partial Centralization
Algorithm for Distributed Optimization. In
Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, 167–172.
Menlo Park, CA: AAAI Press.

Schiex, T.; Fargier, H.; and Verfaillie, G.
1995. Valued Constraint Satisfaction Prob-
lems: Hard and Easy Problems. In Proceed-
ings of the 14th International Joint Conference
on Artificial Intelligence, 631–637. San Fran-
cisco: Morgan Kaufmann Publishers.

Silaghi, M., and Yokoo, M. 2009. ADOPT-
ing: Unifying Asynchronous Distributed
Optimization with Asynchronous Back-
tracking. Autonomous Agents and MultiAgent
Systems 19(2): 89–123.

Smallwood, R., and Sondik, E. 1973. The
Optimal Control of Partially Observable
Markov Processes over a Finite Horizon.
Operations Research 21(5): 1071–1088.

Sultanik, E.; Lass, R.; and Regli, W. 2007.
DCOPolis: A Framework for Simulating and
Deploying Distributed Constraint Reason-
ing Algorithms. Paper presented at the
Eighth International Workshop on Distrib-
uted Constraint Reasoning. Hyderabad,
India, 8 January.

Sultanik, E.; Lass, R.; and Regli, W. 2009.
Dynamic Configuration of Agent Organiza-
tions. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence, 305–
311. Menlo Park, CA: AAAI Press.

Sycara, K.; Roth, S.; Sadeh, N.; and Fox, M.
1991. Distributed Constrained Heuristic
Search. IEEE Transactions on Systems, Man
and Cybernetics 6(21): 1446–1461.

Ueda, S.; Iwasaki, A.; and Yokoo, M. 2010.
Coalition Structure Generation Based on
Distributed Constraint Optimization. In
Proceedings of the 24th AAAI Conference on
Artificial Intelligence, 197–203. Menlo Park,
CA: AAAI Press.

Velagapudi, P.; Varakantham, P.; Scerri, P.;
and Sycara, K. 2011. Distributed Model
Shaping for Scaling to Decentralized

POMDPs with Hundreds of Agents. In Pro-
ceedings of the Tenth International Joint Con-
ference on Autonomous Agents and Multiagent
Systems, 955–962. Richland, SC: Interna-
tional Foundation for Autonomous Agents
and Multiagent Systems.

Yeoh, W.; Felner, A.; and Koenig, S. 2010.
BnB-ADOPT: An Asynchronous Branch-and-
Bound DCOP Algorithm. Journal of Artificial
Intelligence Research 38: 85–133.

Yeoh, W.; Sun, X.; and Koenig, S. 2009. Trad-
ing Off Solution Quality for Faster Compu-
tation in DCOP Search Algorithms. In Pro-
ceedings of the 21st International Joint
Conference on Artificial Intelligence, 354–360.
Menlo Park, CA: AAAI Press.

Yeoh, W.; Varakantham, P.; and Koenig, S.
2009. Caching Schemes for DCOP Search
Algorithms. In Proceedings of the Eighth Inter-
national Joint Conference on Autonomous
Agents and Multiagent Systems, 609–616.
Richland, SC: International Foundation for
Autonomous Agents and Multiagent Sys-
tems.

Yeoh, W.; Varakantham, P.; Sun, X.; and
Koenig, S. 2011. Incremental DCOP Search
Algorithms for Solving Dynamic DCOPs
(Extended Abstract). In Proceedings of the
Tenth International Joint Conference on
Autonomous Agents and Multiagent Systems,
1069–1070. Richland, SC: International
Foundation for Autonomous Agents and
Multiagent Systems.

Yokoo, M. 1995. Asynchronous Weak-Com-
mitment Search for Solving Distributed
Constraint Satisfaction Problems. In Pro-
ceedings of the First International Conference
on Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Sci-
ence 976, 88–102. Berlin: Springer.

Yokoo, M.; Durfee, E.; Ishida, T.; and
Kuwabara, K. 1992. Distributed Constraint
Satisfaction for Formalizing Distributed
Problem Solving. In Proceedings of the 12th
International Conference on Distributed Com-
puting Systems, 614–621. Los Alamitos, CA:
IEEE Computer Society.

Yokoo, M.; Durfee, E.; Ishida, T.; and
Kuwabara, K. 1998. The Distributed Con-
straint Satisfaction Problem: Formalization
and Algorithms. IEEE Transactions on Knowl-
edge and Data Engineering 10(5): 673–685.

Yokoo, M.; Suzuki, K.; and Hirayama, K.
2005. Secure Distributed Constraint Satis-
faction: Reaching Agreement Without
Revealing Private Information. Artificial
Intelligence 161(1–2): 229–245.

Zhang, W., and Wittenburg, L. 2002. Dis-
tributed Breakout Revisited. In Proceedings of
the 18th National Conference on Artificial
Intelligence, 352–357. Menlo Park, CA: AAAI
Press.

Zhang, W.; Xing, Z.; Wang, G.; and Witten-

Articles

FALL 2012 65

burg, L. 2003. An Analysis and Application
of Distributed Constraint Satisfaction and
Optimization Algorithms in Sensor Net-
works. In Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents
and Multiagent Systems, 185–192. New York:
Association for Computing Machinery.

Zivan, R. 2008. Anytime Local Search for
Distributed Constraint Optimization. In
Proceedings of the 23rd AAAI Conference on
Artificial Intelligence, 393–398. Menlo Park,
CA: AAAI Press.

Zivan, R., and Meisels, A. 2005. Dynamic
ordering for asynchronous backtracking on
disCSPs. In Proceedings of the 11th Interna-
tional Conference on Principles and Practice of
Constraint Programming, Lecture Notes in
Computer Science 3709, 32–46. Berlin:
Springer.

Zivan, R.; Glinton, R.; and Sycara, K. 2009.
Distributed Constraint Optimization for
Large Teams of Mobile Sensing Agents. In
Proceedings of the 2009 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Tech-
nology, 347–354. Los Alamitos, CA: IEEE
Computer Society.

William Yeoh is an assistant professor of
computer science at New Mexico State Uni-
versity. He received his Ph.D. in computer
science at the University of Southern Cali-
fornia. His research interests include multi-
agent systems, distributed constraint rea-
soning, heuristic search, and planning with
uncertainty. He was a coorganizer of the
International Workshop on Distributed
Constraint Reasoning in 2008 and the AAAI
Symposium on Multiagent Coordination
under Uncertainty in 2011.

Makoto Yokoo is a professor of information
science and electrical engineering at Kyushu
University, Japan. He received a Ph.D, in
information and communication from the
University of Tokyo in 1995. His research
interests include multiagent systems, con-
straint reasoning, and game theory. He is
currently the president of International
Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS) and an AAAI
fellow.

