A Multiagent System Approach to Scheduling Devices in Smart Homes

Ferdinando Fioretto

Department of Industrial & Operations Engineering

University of Michigan
fioretto@umich.edu

Abstract

Demand-side management (DSM) in the smart grid allows
customers to make autonomous decisions on their energy
consumption, helping energy providers to reduce the peaks
in load demand. The automated scheduling of smart devices
in residential and commercial buildings plays a key role in
DSM. Due to data privacy and user autonomy, such an ap-
proach is best implemented through distributed multi-agent
systems. This paper makes the following contributions: (i)
It introduces the Smart Home Device Scheduling (SHDS)
problem, which formalizes the device scheduling and coor-
dination problem across multiple smart homes as a multi-
agent system; (ii) It describes a mapping of this problem to a
distributed constraint optimization problem; (iii) It proposes
a distributed algorithm for the SHDS problem; and (iv) It
presents empirical results from a physically distributed sys-
tem of Raspberry Pis, each capable of controlling smart de-
vices through hardware interfaces.

Introduction

Demand-side management (DSM) in the smart grid allows
customers to make autonomous decisions on their energy
consumption, helping the energy providers to reduce the
peaks in load demand. Typical approaches for DSM focus
on enforcing grid users’ decisions to reduce consumptions
by either (i) storing energy during off-peak hours and us-
ing the stored energy when the grid load demand is high, or
(ii) scheduling shiftable loads in off-pick hours (Voice et al.
2011; Logenthiran, Srinivasan, and Shun 2012). The former
approach requires that homeowners own storage devices, in
the form of batteries or electric vehicles; these are still rare
resources in the current, and near future, smart grid scenar-
ios. The latter approach is more appealing for the current
smart grid scenario, but requires producers to control a por-
tion of the consumers electrical appliances, which strongly
affects privacy and users’ autonomy.

On the other hand, residential and commercial buildings
are progressively being partially automated, through the in-
troduction of smart devices (e.g., smart thermostats, circu-
lator heating, washing machines). In addition, a variety of
smart plugs, that allow users to intelligently control devices

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

William Yeoh Enrico Pontelli
Department of Computer Science
New Mexico State University
{wyeoh, epontell}@cs.nmsu.edu

by remotely switching them on and off, are now commer-
cially available. Device scheduling can, therefore, be exe-
cuted by users, without the control of a centralized author-
ity. However, uncoordinated scheduling may be detrimental
to DSM performance without reducing peak load demands
(Van Den Briel et al. 2013). For an effective DSM, a coordi-
nated device scheduling within a neighborhood of buildings
is necessary. Yet, privacy concerns arise when users share
resources or cooperate to find suitable schedules.

In this paper, we provide the following contributions:
(i) We introduce the Smart Home Device Scheduling (SHDS)
problem, which formalizes the problem of coordinating
smart devices schedules across multiple smart homes as a
multi-agent system; (ii) We propose a mapping of the SHDS
problem as a distributed constraint optimization problem,
when the agents are assumed to be cooperative; (iii) We
show how to solve this problem in a distributed manner; and
(iv) We evaluate this distributed algorithm on a physically
distributed system of Raspberry Pis, each capable of control-
ling a number of smart devices through hardware interfaces,
such as Z-Wave dongles.

Background and Related Work

The problem of scheduling devices in smart homes has re-
cently attracted large interest within the AI and smart grid
communities. Georgievski et al. (2012) proposed a system to
monitor and control electrical appliances in a home with the
objective of reducing the energy consumption costs. Scott
et al. (2013) also studied a centralized online stochastic op-
timization approach for (single) home automation systems
as a DSM mechanism, where future prices, occupant be-
havior, and environmental conditions are uncertain. Sou et
al. (2011) proposed a Mixed Integer Linear Program (MILP)
to address smart appliance scheduling problem in single
homes using a fine granularity for the technical specification
of smart appliance (e.g., they distinguish the different energy
phases expressed by a dishwasher or a washing machine cy-
cle). Due to the high complexity of the problem, the authors
suggest to adopt suboptimal solutions to reduce the overall
resolution time. Another proposal to enhance the resolution
time of a MILP formulation for scheduling smart devices has
been presented by Tsui and Chan (2012), through a MILP
convex relaxation for the automatic load management of ap-
pliances in a smart home. Such an approach, however, pro-

" 1 ;
@
I («»» ///’ﬁ

Figure 1: Illustration of a Neighborhood of Smart Homes

vides no guarantees on the solution quality with respect to
the original problem. Unlike our approach, these proposals
focus on single-home problems and/or are inherently cen-
tralized. In contrast, we focus on a distributed approach ap-
plied to multiple homes.

Researchers have also used distributed constraint opti-
mization problem (DCOP) algorithms to solve resource al-
location problems in the smart grid. For example, DCOP
solutions to electric vehicle charging problems have been
proposed in (Lutati et al. 2014). Differently form such ap-
proaches, in our proposal we use a DCOP framework to
solve a distributed scheduling problem for smart devices in
smart homes. Similar to those approaches, we too propose
to use the DCOP framework for our problem, but our un-
derlying scheduling problem is different—we are schedul-
ing smart devices in homes instead of electric vehicles in
charging stations.

Scheduling of Devices in Smart Homes

A Smart Home Devices Scheduling (SHDS) problem is de-
fined by the tuple (H, Z, £, Py, Py, H,), where:

e H = {hy,hs,...} is a neighborhood of smart homes, ca-
pable of communicating with one another.

o Z = Up,cuZ; is a set of smart devices, where Z; is the
set of devices in the smart home h; (e.g., vacuum cleaning
robot, smart thermostat).

o L = Up,enlL; is a set of locations, where L; is the set of
locations in the smart home h; (e.g., living room, kitchen).

o Py is the set of the state properties of the smart homes
(e.g., cleanliness, temperature).

e P is the set of the devices state properties (e.g., battery
charge for a vacuum cleaning robot).

e H is the planning horizon of the problem. We denote with
T = {1,..., H} the set of time intervals.

e § : T — RT represents the real-time pricing schema
adopted by the energy utility company, which expresses
the cost per kWh of energy consumed by consumers.

Finally, we use €1, to denote the set of all possible states for
state property p € Py U Pz (e.g., all the different levels
of cleanliness for the cleanliness property). Figure 1 shows
an illustration of a neighborhood of smart homes with each
home controlling a set of smart devices.

‘ S H R H R H (o] H C HEH R H (6] ‘E Device Schedule
ST T [Lo [Lo o | v SO
‘ 65 H 40 H 15 H 35 H 55 “ 5 H 25 HZ| Battery Charge (%)

Goal 75—f— - — = — -

60 — [— 60

45—

30 —| —

[— 45

|

|

|
_/ | 30

|

Cleanliness (%)
(%) ab1eyd Aieneg

0 \ \ \ \ \ e
1400 1500 1600 1700 1800

Time Deadline

Figure 2: Smart Home Devices Scheduling Example

Smart Devices

For each home h; € H, the set of smart devices Z; is par-
titioned into a set of actuators A; and a set of sensors S;.
Actuators can affect the states of the home (e.g., heaters and
ovens can affect the temperature in the home) and possibly
their own states (e.g., vacuum cleaning robots drain their
battery power when running). On the other hand, sensors
monitor the states of the home.

Each device z € Z; of a home h; is defined by a tuple
(. Ay ~Z), where £, € L; denotes the relevant loca-
tion in the home that it can act or sense, A, is the set of ac-
tions that it can perform, v1 : A, — 2P# maps the actions
of the device to the relevant state properties of the home,
and vZ : A, — 2PZ maps the actions of the device to its
relevant state properties. We will use the following running
example throughout this paper.

Example 1 Consider a vacuum cleaning robot z, with lo-
cation {,, = living_-room. The set of possible actions is
A, = {run, charge, stop} and the mappings are:

v run— {cleanliness}; charge— (; stop—0)
fyzZv: run—s {battery_charge}; charge— {battery_charge};
stop— ()

where () represents a null state property.

Device Schedules

We use £ € A, to denote the action of device z at time step
t,and && = {¢! | 2 € X} to denote the set of actions of the
devices in X C Z at time step .

Definition 1 (Schedule) A schedule £ = (¢le ... ¢%t)
is a sequence of actions for the devices in X C Z within the
time interval from t, to ty.

For example, the top row of Figure 2 shows a possi-
ble schedule (R, C, C, C, R, R, C, R) for a vacuum cleaning
robot starting at time 1400 hrs, where each time step is 30
minutes. The robot’s actions at each time step are shown in
the colored boxes with letters in them: red with ‘S’ for stop,
green with ‘R’ for run, and blue with ‘C’ for charge.

The high-level SHDS goal is to find schedules for all
the devices in every smart home that achieve some user-
defined objectives (e.g., the home is at a particular temper-
ature within a time window, the home is at a certain clean-
liness level by some deadline) that may be personalized for
each home. We refer to these objectives as scheduling rules.

Scheduling Rules

We define two types of scheduling rules: (i) Active schedul-
ing rules (ASRs) that define user-defined objectives on a de-
sired state of the home (e.g., living room is cleaned by 1800
hrs), and (ii) Passive scheduling rules (PSRs) that define im-
plicit constraints on devices that must hold at all times (e.g.,
the battery charge on a vacuum cleaning robot is always be-
tween 0% and 100%). We introduce a simple syntax to ex-
press scheduling rules:

(location) (state property) (relation) (state) (time)'

Example 2 The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living.room cleanliness > 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot z,, needs to
be between 0 and 100 % of its full charge at all the times:

zy battery_.charge > 0 always 2)
zy battery.charge < 100 always 3)

For a home h;, we denote with R,[)t arto] a scheduling rule
over a state property p€ Py UP z, and time interval [t,, tp].
Each scheduling rule indicates a goal state (either a desired
state of a home if it is an ASR or a required state of a de-
vice or a home if it is a PSR) at a location ¢ R, € L;iUZ;
of a particular state property p that must hold over the time
interval [t,,t;] C T. Each rule is associated with a set of
actuators ®,, C A, that can be used to reach the goal state.
Additionally, a rule is associated with a sensor s, € S; ca-
pable of sensing the state property p. Finally, in a PSRs the
device can also sense its own internal states. More formally,

®,={z€A;|L,=(g, ANa € A, : per(a)} 4)
,={z€A;| 2=lg, V.=l ,NJa€A, : pev(a)} (5

where the former defines ASR and the latter defines a PSR.

The ASR of Equation (1) is illustrated in Figure 2 by dot-
ted red lines on the graph. The PSRs are not shown as they
must hold for all time steps.

Feasibility of Schedules

To ensure that a goal state can be achieved across the de-
sired time window, the system has a predictive model of the
various state properties.

!The type of relations that can be captured by our current im-
plementation are: at ¢, before t,after t,within [t1,t2],
and for ttime units, with ¢,¢1,t2 € T.

Definition 2 (Predictive Model) A predictive model "), for
a state property p (of either the home or a device) is a func-
tion Ty : Q) X Xoep, Az U{L} = Q, U{L}, where L
denotes an infeasible state and 1. + () = L.

In other words, the model describes the transition of state
property p from state w, € (), at time step ¢ to time step
t + 1 when it is affected by a set of actuators ®,, running
joint actions £§

F;Jrl(wpa gfb,,) = wp + Ap(wp, gfb,,) (6)
where A (wy, £) is a function describing the effect of the
actuators’ joint action &tl,p on state property p.

Example 3 Consider the battery_charge state property of
the vacuum cleaning robot z,. Assume it has 65% charge
at time step t and its action is g;u at that time step. Thus:

Fi:tlteryfcharge(GE)’ giv) =65+ Abattery—Charge(GE)’ giv) (7
Abattea"y,charge (w7 §§v) =

min(20,100—w) if &L =charge A w <100

-25 ifel =runAw > 25 ®)
0 if¢L, =stop
1 otherwise

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

Example 4 Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot z, (i.e., Pcleaniiness = {%v })- As-
sume the room is 0% clean at time step t and the action of
robot z, is & at that time step. Thus:

Ff:lt}mliness (07 giv) =0+ Acleanliness (0, 5;) (9)

in(15,100—w) if & =run
Ac eanliness ! = mln(’ -
leanl (w, £,) {0 otherwise

(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Using the predictive model, one can recursively call it to
predict the trajectory of a state property p for future time
steps given a schedule of actions of relevant actuators ®,,.

Definition 3 (Predicted State Trajectory) Given a state
property p, its current state w,, at time step t,, and a sched-
ule §<[1fftb] of relevant actuators ®,, the predicted state tra-

([11)5,1 *)tb])

Jjectory m,(wp, € . of that state property is defined as:

t t
Wp(wpa <[1>Z_> b]) =

Do (T (o (Tl (wp, €60),) 6), €0) (1)

One can verify if a schedule satisfies a scheduling rule
by checking if its predicted state trajectories are within the

set of feasible state trajectories of that rule. Note that each
active and passive scheduling rule defines a set of feasible
state trajectories. For example, the active scheduling rule of
Equation (1) allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use
R,[t] C Q, to denote the set of states that are feasible ac-
cording to rule IR, of state property p at time step ?.

More formally, a schedule &; [ta—to]

rule Rz[na_’tb (written as §[t°_>tb] = R[t —ly iff.

satisfies a scheduling

Wt € [ta,] : mp(wl, €527 € Ry] (12)

p)
where wf;l is the state of state property p at time step ¢,.

Definition 4 (Feasible Schedule) A schedule is feasible if it
satisfies all the passive and active scheduling rules of each
home in the SHDS problem.

The predicted state trajectories of the battery_charge and
cleanliness state properties following Equations (7) and (9)
are shown in the second and third rows of Figure 2. These
trajectories are predicted given that the vacuum cleaning
robot will take on the schedule shown in the first row of the
figure. The predicted trajectories of these state properties are
also illustrated in the graph, where the dark grey line shows
the states for the robot’s battery charge and the black line
shows the states for the cleanliness of the room. The evalu-
ated schedule is a feasible schedule, since the trajectories of
both states over time satisfy both the active scheduling rule
(1) and the passive scheduling rules (2) and (3).

Cost of Schedules

In addition to finding feasible schedules, the goal in the
SHDS problem is to optimize for the aggregated total cost
of energy consumed; we later define an egalitarian solution
approach to this problem.

Each action a € A, of device z € Z; in home h; € H has an
associated energy consumption p, : A, — R™T, expressed in

(%)i_)H]) across all devices

] is:

kWh. The aggregated energy E!

consumed by h; at time step ¢ under trajectory 55 i_>H

e =" pa(eh) (13)

2€EZ;

where ¢! is the action of device z at time ¢ in the schedule

fz 9=H] The cost ci([ZO?H]) associated to schedule &, OHH]
in home h; is:

ciley ™My =" (e + Bl eZ™™) - 0(1) (14)

teT

where ¢! is the home background load produced at time ¢,
which includes all non-schedulable devices (e.g., TV, refrig-
erator), and sensor devices, which are always active, and
6(t) is the real-time price of energy per kWh at time ¢.

Optimization Objective

The objective of an SHDS problem is that of minimizing the
following weighted bi-objective function:

min - ae-C"™ + a, - EP% (15)

i

subject to:

Whi € LRI e Ry gl = Rl (16)

where o, a. €R are weights,

osm Z Cz(fg)_)H])

i
h;,eH

is the aggregated monetary cost across all homes h;; and

Bk =3 N (Bleg ™)

teT h;eH

is a quadratic penalty function on the aggregated energy con-
sumption across all homes h;. Finally, constraint (16) de-
fines the valid trajectories for each scheduling rule » € R;,
where R;; is the set of all scheduling rules of home h;.

Solution Approach

‘We now describe our solution approach based on distributed
constraint optimization problems (DCOP) (Modi et al. 2005;
Petcu and Faltings 2005; Yeoh and Yokoo 2012; Fioretto,
Pontelli, and Yeoh 2016). This is an egalitarian model,
where agents are cooperative and seek to minimize the ag-
gregated cost.

Distributed Constraint Optimization Problems

A distributed constraint optimization problem (DCOP) is a
tuple P = (X, D, F, A, o), where: X ={x1,...,z,} isa
set of variables; D={D, ..., Dy} is aset of finite domains
(i.e., D; is the domain of z;); F = {f1,..., fe} is a set of
constraints (also called cost tables in this work), where f; :
X, exti Di = R§ U {co} maps each combination of value

assignments of the variables x/i C X in the scope of the
function to a non-negative cost; A={a,...,a,} is a set of
agents; and o : X — A s a function that maps each variable
to one agent.

A solution o is a value assignment to a set of variables
X, C X that is consistent with the variables’ domains. The
cost function Fp(0)=3",c » .sc x_ f(o) is the sum of the
costs of all the applicable constraints in o. A solution is said
to be complete if X, = X is the value assignment for all
variables. The goal is to find an optimal complete solution
x* = argmin, Fp(x).

To describe the SHDS problem as a DCOP, it is required
that agents control multiple variables (i.e., the set of ac-
tuators in each house). We thus use the Multiple-Variable
Agents (MVA) formulation introduced in (Fioretto, Yeoh,
and Pontelli 2016). One can map the SHDS problem to a
DCOP as follows:

e AGENTS: Each agent a; €

ahome h; € H.

A in the DCOP is mapped to

e VARIABLES and DOMAINS: Each agent a; controls the
following set of variables:
e For each actuator z € A; and each time step ¢ € T, a
variable x} . whose domain is the set of actions in A..
The sensors in S; are considered to be always active,
and thus not directly controlled by the agent.

e An auxiliary interface variable a%z whose domain is the

set {0,...,> " cz plargmax,c 4 p-(a))}, which rep-
resents the aggregated energy consumed by all the de-
vices in the home at each time step ¢.

o CONSTRAINTS: There are three types of constraints:

e Local soft constraints (i.e., constraints that involve only
variables controlled by the agent) whose costs corre-
spond to the weighted summation of monetary costs,
as defined in Equation (14).

e Local hard constraints that enforce Constraint (16).
Feasible schedules incur a cost of 0 while infeasible
schedules incur a cost of co.

e Global soft constraints (i.e., constraints that involve
variables controlled by different agents) whose costs
correspond to the peak energy consumption, as defined
in the second term in Equation (15).

Distributed Algorithm

SH-MGM is a distributed algorithm that operates in syn-
chronous cycles. The algorithm first finds a feasible DCOP
solution and then iteratively improves it, at each cycle, until
convergence or time out. SH-MGM operates as follows:

e FIRST CYCLE: Each agent a; starts up and independently

searches for a solution gg) ,_>H} to its local subproblem

(i.e., schedule for all devices that satisfy all the rules of the
&2,
putes the energy consumption E(%)i_’m) of that sched-
ule and broadcasts it to all the other agents in the problem.
e SECOND CYCLE: Each agent waits to receive the en-
ergy consumption of all the other agents. After receiving
this information, it computes the peak energy consump-
tion EP% (second term in Equation (15)) of the prob-

lem with its current solution, and stores the weighted cost

ae ¢ E)?H]) + a, - EP** of its current solution.

Then, within a given time limit, it tries to find a new so-

home) that has the minimal cost ¢; . It then com-

lution fg)fH] to its local subproblem that is no worse
(i.e., whose weighted cost is no smaller) than its current
solution. In other words,

ac_ci(Ag)iﬁH])_i_ae.Epeak < ac'Ci(%)iaH])_i_ae_Epeak

where EPek is the new difference in aggregated energy
consumption that takes into account the new schedule of
the agent.? If no time limit is imposed, it will find an opti-
mal solution to its local subproblem. It then computes its

2t is the sum of the energy consumption of the new agent’s
schedule with that of the other agents’ schedules received at the
start of the cycle.

Figure 3: A Raspberry Pi with Z-Wave dongle (left); Exam-
ple of Z-wave compatible smart devices (right).

gain GG; (improvement in cost):
Gi = (ac ' ci(E)iH]) + Qe - Epeak)

_ (ac el A[ZO?H]) +oa,- Epeak) a7

between its current solution and new solution, and broad-
casts this gain to all other agents in the problem. Upon
receiving the gains of all agents, it checks if they are all
0, in which case the algorithm has converged to a local
optima and no agent can unilaterally improve its sched-
ule to improve the global solution (joint schedule of all
agents). Otherwise, if the agent has the largest gain, then
it will change its schedule to the new schedule. If it does
not have the largest gain, it keeps its old schedule. Ties
are broken using an order based on the agent IDs. This
mechanism ensures that at most one agent will change
its schedule at each time step, and that the new global
solution will continuously improve until convergence. Fi-
nally, all the agents send the energy consumption of their
respective schedules before starting the next cycle.

e The process repeats until convergence or a termination
condition is satisfied (e.g., timeout, maximum number of
cycles reached).

Empirical Evaluations

Hardware and Physical Implementation: In order to eval-
uate SH-MGM in as realistic a setting as possible, we im-
plemented the algorithm on an actual distributed system of
Raspberry Pis. A Raspberry Pi (called “PI” for short) is a
bare-bones single-board computer with limited computation
and storage capabilities. We used Raspberry Pi 2 Model Bs
with quadcore 900MHz CPUs and 1GB of RAM. We imple-
mented the SH-MGM algorithm using the Java Agent Devel-
opment (JADE) framework,? which provides agent abstrac-
tions and peer to peer agent communication based on the
asynchronous message passing paradigm. Each PI imple-
ments the logic for one agent. The algorithm takes as inputs
a list of simulated smart devices to schedule as well as their
associated scheduling rules and the real-time pricing schema
adopted. In order to find a feasible local schedules, the agent
uses a Constraint Programming solver* as subroutine. Fi-
nally, the agents communication is supported through JADE,
and using a wired network connected through a router.

‘http://jade.tilab.com/
“We adopt the Java Constraint Programming (JaCoP) solver
(http://www. jacop.eu/)

°
e
R N
B © &/
S
5 o (- o SH-MGM
2 8 00000 + Uncoordinated
=] N~ (o%)
<] 0o,
(%] - 000g
o ©000000000
000,
S o
9000000
T T T T T T
0 10 20 30 40 50

Number of Cycles

Figure 4: Average solution cost of SH-MGM vs. an uncoor-
dinated over 100 instances.

The Figure 3(left) shows an illustration of a PI with a Z-
Wave dongle that can be used to issue commands to smart
devices and receive information from them. Figure 3(right)
shows a sample of smart devices that can be controlled.
While our implementations can be used to schedule actual
physical devices, we decided to use simulated devices as
procuring a large number of commercially-available smart
devices is too costly for the current project.

Experimental Setup: We set up our experiments with 7
PIs, each controlling 9 smart actuators—Tesla electric vehi-
cle, Kenmore oven and dishwasher, GE clothes washer and
dryer, iRobot vacuum cleaner, LG air conditioner, Bryant
heat pump, and American water heater—to schedule, and 5
sensors. We selected these devices as they are available in a
typical home and they have published statistics (e.g., energy
consumption profiles). Each device has an associated active
scheduling rule that is randomly generated for each agent
and a number of passive rules that must always hold. The ef-
fect A, of each device p (see Equation (6)) on the different
possible properties (e.g., how much a room can be cooled by
an air-conditioner) is collated from the literature.

We set H = 12 and adopted a pricing schema used by
the Pacific Gas & Electric Co. for its customers in parts of
California,> which accounts for 7 tiers ranging from $0.198
per kWh to $0.849 per kWh. Finally, we choose the weights
o = =25 and o, = 22 (see Equation (15)) so
that both the components have equal normalized weights.

Experimental Results: To evaluate the impact of SH-
MGM, we compared it against a baseline, where the agents
schedule their devices in an uncoordinated way: Each agent
finds a schedule that minimizes its local monetary cost and
disregards the aggregated peak energy incurred. Figure 4
shows the results, where we imposed a timeout of 10 sec-
onds for the CP solver. As expected, it shows that the SH-
MGM solution improves with increasing number of cycles,
providing economical advantage for the uses as well as
peak energy reduction, when compared to the uncoordinated
schema. These results, thus, show the feasibility of using a
local search-based schema implemented on hardware with
limited storage and processing power to solve a complex

*https://goo.gl/vOeNq?

problem. The SH-MGM finds locally optimal DCOP solu-
tions.

Conclusions and Future Work

With the proliferation of smart devices the automation of
smart home scheduling can be a powerful tool for demand-
side management within the smart grid vision. In this paper
we proposed the Smart Home Device Scheduling (SHDS)
problem, which formalizes the device scheduling and coor-
dination problem across multiple smart homes as a multi-
agent system. Furthermore, we describes a mapping of this
problem to a distributed constraint optimization problem;
This model is suitable in problems where agents are cooper-
ative (e.g., buildings in a campus), while the latter is suitable
in a setting where the agents are self-interested (e.g., homes
in a neighborhood). We introduced a distributed local search
algorithm to find locally optimal solutions, when formu-
lated as a DCOP. This algorithm is implemented on an ac-
tual physical distributed system of Raspberry Pis, each ca-
pable of controlling and scheduling smart devices through
hardware interfaces. Our experimental results shows that
such approach outperforms a simple uncoordinated solu-
tions. Therefore, in this paper, we make the key first steps
toward the formal modeling of the SHDS problem as well as
deployment of distributed algorithms on physical systems.

In the future, we plan to tackle a number of signifi-
cant challenges on multiple fronts including: (1) Investigat-
ing the use of more sophisticated algorithms that exploit
the structure of the network to better propagate the prob-
lem constraints (e.g., as done in (Fioretto et al. 2014)), and
conduct more comprehensive experiments; (2) Developing
user-friendly user interfaces that will enable human users
to interact with the system as well as provide scheduling
rules; (3) Using machine learning techniques to automati-
cally learn and predict such scheduling rules to improve the
convenience factor of the users; and (4) Extending the SHDS
model to allow conditional scheduling rules and to take into
account uncertainty from background loads. These efforts,
together with a number of others, are needed for actual de-
ployment of such systems in the future.

Acknowledgments

This research is partially supported by the National Science
Foundation under grants 1345232 and 1550662. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the sponsoring
organizations, agencies, or the U.S. government.

References

Fioretto, F.; Le, T.; Yeoh, W.; Pontelli, E.; and Son, T. C.
2014. Improving DPOP with branch consistency for solv-
ing distributed constraint optimization problems. In Pro-
ceedings of the International Conference on Principles and
Practice of Constraint Programming (CP), 307-323.

Fioretto, F.; Pontelli, E.; and Yeoh, W. 2016. Distributed
constraint optimization problems and applications: A sur-
vey. CoRR abs/1602.06347.

Fioretto, F.; Yeoh, W.; and Pontelli, E. 2016. Multi-variable
agent decomposition for DCOPs. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).
Georgievski, I.; Degeler, V.; Pagani, G. A.; Nguyen, T. A;
Lazovik, A.; and Aiello, M. 2012. Optimizing energy costs
for offices connected to the smart grid. IEEE Transactions
on Smart Grid 3(4):2273-2285.

Logenthiran, T.; Srinivasan, D.; and Shun, T. 2012. Demand
side management in smart grid using heuristic optimization.
IEEE Transactions on Smart Grid 3(3):1244-1252.

Lutati, B.; Levit, V.; Grinshpoun, T.; and Meisels, A. 2014.
Congestion games for v2g-enabled ev charging. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 1421-1427.

Modi, P.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence 161(1—
2):149-180.

Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. In Proceedings of the

International Joint Conference on Artificial Intelligence (1J-
CAI), 1413-1420.

Scott, P.; Thiébaux, S.; van den Briel, M.; and van Henten-
ryck, P. 2013. Residential demand response under uncer-
tainty. In Proceedings of the International Conference on
Principles and Practice of Constraint Programming (CP),
645-660.

Sou, K. C.; Weimer, J.; Sandberg, H.; and Johansson, K. H.
2011. Scheduling smart home appliances using mixed in-
teger linear programming. In /EEE Conference on Deci-
sion and Control and European Control Conference (CDC-
ECC), 5144-5149.

Tsui, K. M., and Chan, S.-C. 2012. Demand response opti-
mization for smart home scheduling under real-time pricing.
IEEE Transactions on Smart Grid 3(4):1812-1821.

Van Den Briel, M.; Scott, P.; Thiébaux, S.; et al. 2013.
Randomized load control: A simple distributed approach for
scheduling smart appliances. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Voice, T.; Vytelingum, P.; Ramchurn, S.; Rogers, A.; and
Jennings, N. 2011. Decentralised control of micro-storage
in the smart grid. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 1421-1427.

Yeoh, W., and Yokoo, M. 2012. Distributed problem solv-
ing. AI Magazine 33(3):53-65.

