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Abstract. The Power TAC simulation emphasizes the strategic problems that
broker agents face in managing the economics of a smart grid. The brokers must
make trades in multiple markets and, to be successful, brokers must make many
good predictions about future supply, demand, and prices in the wholesale and
tariff markets. In this paper, we investigate the feasibility of using learning strate-
gies to improve the performance of our broker, SPOT. Specifically, we investigate
the use of decision trees and neural networks to predict the clearing price in the
wholesale market and the use of reinforcement learning to learn good strategies
for pricing our tariffs in the tariff market. Our preliminary results show that our
learning strategies are promising ways to improve the performance of the agent
for future competitions.
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1 Introduction

The traditional energy grid lacks several important features such as effective use of
pricing and demand response of energy, customer participation, and proper distribution
management for variable-output renewable energy sources [1]. The smart grid has the
potential to address many of these issues by providing a more intelligent energy in-
frastructure [2]. Researchers rely on rich simulations such as the Power Trading Agent
Competition (Power TAC) [1] to explore the characteristics of future smart grids. In the
Power TAC smart grid simulation, brokers participate in several markets including the
wholesale market, the tariff market, and the load balancing market to purchase energy
and sell it to customers. This game was designed as a scenario for the annual Trading
Agent Competition, a research competition with over a decade of history [3].

The wholesale and tariff markets attempt to simulate existing energy markets such
as the European or North American wholesale energy markets. The wholesale market
is a “day ahead market,” where the energy is a perishable good and it allows brokers
to buy and sell quantities of energy for future delivery. Market structures like this exist
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across many different types of perishable goods. So, finding effective, robust, automated
bidding strategies for these markets is an important research challenge.

The tariff market is where the major portion of energy purchased from the wholesale
market is sold to consumers (e.g., households, offices, etc.). Energy is sold through
tariffs offered by the brokers and a goal for the broker is to offer competitive tariffs
that attract a large pool of consumers. The overall goal of each broker is to maximize
its profit (e.g., by selling energy in the tariff market at a higher price than the purchase
price of the energy in the wholesale market).

In this paper, we investigate the feasibility of using learning strategies to improve
the performance of our broker, called Southwest Portfolio Optimizing Trader (SPOT), in
Power TAC. We present our initial work on using decision trees to predict the clearing
prices in the wholesale market and the use of an unsupervised reinforcement learning
algorithm to learn good strategies for pricing our tariffs in the tariff market. Preliminary
results show that these learning strategies hold promise, though we plan to investigate
additional improvements to increase the competitiveness of the agent further.

2 Background: Power TAC

Power TAC models a competitive retail power market where the simulation runs for
approximately 60 simulated days, and takes about two hours. Broker agents compete
with each other by acting in three markets: wholesale market, tariff market and bal-
ancing market. It also includes a regulated distribution utility and a real location based
population of energy customers during a specific period. Customer models include sev-
eral entities such as households, electric vehicles, and various commercial and indus-
trial models. Brokers participating in the simulation try to make profit by balancing the
energy supply and demand as accurately as possible. By efficiently managing stochas-
tic customer behaviors, weather-dependent renewable energy sources, the broker with
highest bank balance wins the competition [4]. SPOT participated in the 2015 Power
TAC competition. The table below shows results of the 11 participating agents in 2015
across games with varying numbers of competing brokers.

Name 3 Brokers 9 Brokers 11 Brokers Total Total (Normalized)
Maxon15 (1st) 186159 3667524 80687243 84540925 3.402
TacTex15 (2nd) 488341 5196258 38755591 44440191 2.221
CUHKTac (3rd) 556792 4000749 35070699 39628240 1.927

AgentUDE -14748 1162481 52098550 53246283 1.597
Sharpy -6459 2586534 45130820 47710895 1.564

COLDPower 307197 1334765 14309076 15951038 0.371
cwiBroker -461511 -1650580 41663592 41663592 0.343
Mertacor -23099 -139344 32199 -130244 -0.786

NTUTacAgent -1533793 -10416019 43469971 31520159 -2.202
SPOT -1570860 -2361785 7521196 3588551 -2.327

CrocodileAgent -2981460 -13915197 -3318695 -20215352 -6.111

Table 1. Power TAC 2015 Final Round Results
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We only had a couple of months of development before the 2015 tournament, so
the main goal was to participate competently without major errors. Overall, our agent
achieved this objective, but was not yet competitive with the top agents in the competi-
tion. The 2015 agent had preliminary implementation of some of the ideas we describe
here, but we have since worked to improve the performance of the agent by updating
the learning strategies and decision-making components of the agent.

2.1 Wholesale Market

The wholesale market functions as a short-term spot market for buying and selling
energy commitments in specific timeslots, where each timeslot represents a simulated
hour. At any point in the simulation, agents can participate in auctions to trade energy
for the next 24 hours, so there are always 24 active auctions. These auctions are periodic
double auctions, similar to those used in European or North American wholesale energy
markets [5]. Each simulation begins with 14 days pregame data (bootstrap data), which
includes data on customers, the wholesale market, and weather data based on the default
broker. Brokers can submit bids (orders to buy energy) and asks (orders to sell energy),
represented by a quantity and an optional limit price. In addition to the bids of the
brokers, several large gencos also sell energy on the wholesale market. The simulation
clears the bids by matching buy and sell orders, and determines the clearing price for
each auction every day. If the minimum ask price has a higher value than the maximum
bid price, then the market does not clear.

The main problem we consider here is learning to predict the clearing prices of
these auctions, which can be used by the agent to implement an effective bidding strat-
egy. Previous agents in both Power TAC and earlier TAC competitions have consid-
ered similar price prediction problems. AstonTAC is a Power TAC agent that uses a
Non-Homogeneous Hidden Markov Model (NHHMM) to forecast energy demand and
price [6]. This was the only agent in that competition that was able to buy energy at a
low price in the wholesale market and keep energy imbalance low. TacTex13, winner
of 2013 Power TAC competition, uses a modified version of Tesauro’s bidding algo-
rithm, where they modeled the sequential bidding process as a Markov Decision Pro-
cess (MDP) for the wholesale market [7]. In the TAC/SCM game, Deep Maize used a
Bayesian model of the stochastic demand process to estimate the underlying demand
and trend. It employs a k-Nearest-Neighbors technique to predict the effective demand
curves from historical data, self-play games data, and the current game data [8].

2.2 Tariff Market

The Power TAC environment offers the ability for brokers to issue several different
types of tariffs three times per simulation day. Each tariff may be as complex or sim-
ple as the broker desires though each tariff can only target a single power type such
as consumption or production. The most simple type of tariff one may issue is a flat
rate tariff that offers a single price per kWh to subscribers. From there, the tariff may
be augmented with signup bonuses, or a minimum subscription duration and early ter-
mination fee. Tariffs may also be customized to offer tiered usage pricing, time of use



4 Moinul Morshed Porag Chowdhury et al.

pricing, or a daily fee in addition to usage pricing. Tariffs may be issued, revoked, or
modified at any time, though the new tariffs will only become available for subscrip-
tion at the designated 6 hour intervals. A tariff is modified by publishing a new tariff
with the superseding flag set to the old tariff and then revoking the old tariff. For the
purpose of the experiments outlined in this paper, our broker issued a single, simplified
flat rate tariff at the beginning of the game and modified it throughout the simulation by
superseding the past tariff and revoking the past tariff.

In order to publish the optimal tariff so that we gain both the most subscribers,
henceforth referred to as market-share, and the greatest net balance, we utilized an un-
supervised reinforced learning technique. This technique is chosen because we want the
agent to be able to learn to react in such a way that gains the best possible reward with
little interaction from the researchers. To achieve this goal we modeled this problem as
a Markov Decision Process (MDP) [9] and utilize the Q-Learning algorithm [10] to dis-
cover the optimal policy. Q-Learning involves an iterative process whereby the SPOT
agent plays many simulations constantly updating the Q-Value for a given state, action
pair. Q-Learning will continue to improve the Q-Values until a convergence is obtained
where the Q-Values for each state, action pair change very little per iteration. In order
to expedite the convergence of the Q-Learning algorithm, we implemented a distributed
system that allowed many simulations to be run simultaneously.

3 Learning in the Wholesale Market

Our baseline broker used a moving average price prediction based on the price history
of the agent. To predict a new price for a week ahead specific hour price, the baseline
agent uses a weighted sum of the current hour’s clearing price, yesterday’s predicted
clearing price for that specific hour and 6 day ahead same hour predicted price. We
have experimented with three different machine learning methods to predict clearing
prices in the wholesale market: (i) REPTree (a type of decision tree) [11], (ii) Linear
Regression, and (iii) Multilayer Perceptron (a type of neural network). We have also
investigated a variety of different features for training the predictors. These include
8 price features that capture information about the recent trading history, such as the
clearing price for the previous hour and the prices for the equivalent time slot in the
previous day and week. We also include the weather forecast and time of day because
the energy production of renewable energy producers (e.g., solar) depends on these
factors. The number of participants in the game is included because the amount of
competition affects the market clearing price. Finally, we include a moving average of
the prices as a convenient way to capture an aggregate price history.

To generate training data, we use simulations with a variety of agent binaries from
previous tournaments, as well as a variety of different bootstrap initialization files. We
train our models using Weka [12], and evaluate their ability to predict market clearing
prices based on the mean absolute prediction error only for auctions that clear (we
do not include auctions that do not clear in the error calculations). In the following
experiments, we investigate the performance of the models in several areas, including
how well they generalize to new agents, different numbers of agents, and how important
the different features are to the performance of the predictors.
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3.1 Prediction Accuracy Comparisons

We begin with a basic evaluation of the prediction accuracy of the learned models.
One of the most significant factors we discovered that influences the accuracy of the
models is how we handle auctions that do not clear. In many cases, an auction will have
no clearing price due to a spread between the bid and ask prices, which results in the
simulation returning null values for these prices. This causes significant problems with
the price features we use, as well as the final error calculations. To improve this, we
calculate an estimated clearing price for auctions that do not clear by taking the average
of lowest ask price and the highest bid price. Figure 1 shows the prediction errors during
the course of a single simulation for two different REPTree models trained on 20 games,
one with estimated clearing prices and the other without. We also include the errors for
a simple moving average price predictor as a baseline for comparison. Each data point
shows the average error for all auctions in a window of five timeslots. The data show that
both REPTree models outperform the moving average predictor, but the version with
estimated clearing prices is dramatically better, and produces much more consistent
predictions throughout the entire game. Next, we compare the performance of the three

Fig. 1. Effect of Clearing Price Estimation

different learning methods with different amounts of training data ranging from 5 to
20 games. We evaluated a variety of different configurations of hidden layers for the
Multilayer Perceptron model; only the best one is shown here (MP-20-20, i.e., 2 layer
neural network with 20 nodes in each layer). Figure 2 shows the average mean absolute
error for the different models based on 5 games of test data. The results show that the
decision tree model makes good predictions compared to other models. The decision
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tree model slowly improves according to the number of games while other models do
not show this trend. The default Multilayer Perceptron (1 layer with 18 nodes) with
estimated prices shows some improvement in the initial number of games than REPTree
but finally looses to REPTree in the 20 game model. In all cases, the models with
estimated clearing prices are much better than models without estimated prices.

Fig. 2. Comparison of Several Prediction Models by Number of Games

3.2 Evaluation with Different Agents

In the Power TAC competition, broker agents play many games against different oppo-
nents with varying strategies. Here, we test how well our predictors generalize to play-
ing new agents that are not in the training data. We test our models on games of the same
size, but varying one of the agents in the game between AgentUDE15, cwiBroker15 and
TacTex14. All the predictor model are generated from the training dataset where Agen-
tUDE is used. Figure 3 shows the average results for each of the learning methods in
the three different agent environments. The REPTree predictor consistently does better
than others, though there are differences depending on the pool of opponents. We can
also see that the models do best against AgentUDE (which was in the training set), and
there is a significant decrease in accuracy when playing either cwiBroker or TacTex.
Further work is needed to help the models generalize better to new opponents.

3.3 Evaluation with Different Numbers of Agents

In the competition, broker agents must play in games with varying numbers of oppo-
nents. We experiment with different number of brokers in the games, ranging from 3 to 7
brokers. We focus here on the REPTree predictor since it performs better than the others
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Fig. 3. Comparison of Several Prediction Models

consistently in previous experiments. The 5 agent predictor models trained on data gen-
erated from SPOT(Baseline), AgentUDE15, cwiBroker15, SampleBroker, Maxon14
and the 7 agent predictor models use data from SPOT(Baseline), AgentUDE15, cwiBro-
ker15, SampleBroker, Maxon14, Maxon15, COLDPower and CrocodileAgent15. The
test data uses the same agents. We also trained a predictor based on a mixed dataset
that included the same number of training games, but with a combination of 3, 5, and
7 agent games. The data in Figure 4 shows that, in each case, the model trained on

Fig. 4. Comparison for Different Number of Agents
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the correct number of agents has the best performance. However, we also note that the
mixed model performs very well in all three cases. Table 2 shows the average error
of the predictor models over the 3 different test game data, and demonstrates that the
average error for the mixed model is better than any of the other three models.

7 Agent 5 Agent 3 Agent Mixed Agent
13.406 13.714 13.958 13.225

Table 2. Average Error for the Various Agent Models

3.4 Using Price Predictions for Bidding

We took the best performing predictor from our experiments (REPTree) and tested
whether using these predictions could improve performance for a basic bidding strat-
egy. This strategy attempts to target auctions where the clearing price is predicted to be
low, and to buy a higher volume of the needed energy in those specific auctions. Fig-
ure 5 shows that using the new predictions and bidding strategy the agent is able to buy
a high volume of the needed energy when the average clearing price is lowest against
the champion agent Maxon15.

Fig. 5. Comparison for Wholesale Bidding Strategies
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3.5 Feature Evaluation

To evaluate which features are the most important for the predictions we used Relief-
FAttributeEvaluation [13] and the Ranker method in Weka to rank our 18 features. We
also used the ClassifierSubsetEval method and best-first search to get the best subset of
features from all the features. Table 3 shows the top 7 features using the ranker algo-
rithm and the best subset of features using the ClassifierSubsetEval method. We ran the

Ranked Features Subset Evaluation
PreviousHourN 1Price YesterdayClrPrice

PrevHourClrPrice PreviousHourN 1Price
PredictedClrPrice PredictedClrPrice
YesterdayClrPrice PrevHourClrPrice

AWeekAgoN 1Price Day
YesterdayN 1Price HourAhead

PrevOneWeekClrPrice CloudCoverage

Table 3. Feature Evaluation

subset evaluation on 5, 10, 15, and 20 games and, for all cases, we found a consistent
subset of seven features. The features such as temperature, day of a month, month of a
year, number of participants are ranked low and also out of the best subset. We could
potentially discard these types of features while training a predictor model. From the
ranked feature column, we see that price features are very important for the REPTree
predictor model. So, adding additional features of this type may improve performance.

4 Learning in the Tariff Market

We describe how we formulate our problem in the tariff market as a Markov Decision
Process (MDP) [9] and use Q-learning [10] to learn the optimal policy.

4.1 Formulating the Problem as an MDP

Recall that in the tariff market, the goal is to design tariffs that will result in the largest
profit for the broker agent. In this paper, we investigate a restricted version of the prob-
lem, where we assume that the broker can only offer flat-rate tariffs, i.e., the price per
kWh is uniform across all time steps. However, the broker can vary the price of the
flat-rate tariff and the objective is still to maximize the profit of the broker. This prob-
lem can be formulated as a Markov Decision Process (MDP) [9], defined by the tuple
〈S, s0,A,T,R〉:
• A set of states S. In our problem, we define the set of states to be all possible pairs

of 〈MS,Bal〉, where MS is the percentage of market share controlled by our agent
(i.e., the percentage of customers that are subscribing to our agent) and Bal is the
overall profit or loss since the start of the simulation (i.e., the amount of money in the
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“bank”). We discretized MS from 0% to 100% in increments of 5% and Bal from
−e2,000,000 to e8,000,000 in increments of e20,000.
• A start state s0 ∈ S. In our problem, the start state is always 〈0%, e0〉 since the agent

does not have any subscribers to its tariff and starts with no initial profit or loss.
• A set of actions A. In our problem, the first action of the agent is to publish a new

flat-rate tariff at e15 per kWh. Subsequent actions are from the following set of
actions:
↑: Increase the price of the tariff by e2.00 per kWh. This is implemented by publish-

ing a new tariff at the higher price and revoking the previous lower-priced tariff.
↔: Keep the price of the tariff. This is implemented by not publishing or revoking any

tariffs.
↓: Decrease the price of the tariff bye2.25 per kWh. This is implemented by publish-

ing a new tariff at the lower price and revoking the previous higher-priced tariff.
• A transition function T : S ×A × S → [0, 1] that gives the probability T (s, a, s′)

of transitioning from state s to s′ when action a is executed. In our problem, the
transition function is not explicitly defined and transitions are executed by the Power
TAC simulator.
• A reward function R : S×A×S→ R+ that gives the rewardR(s, a, s′) of executing

action a in state s and arriving in state s′. In our problem, the reward is the gain or
loss in profits of the agent, determined by the Power TAC simulator.

A “solution” to an MDP is a policy π, which maps states to actions. Solving an MDP is
to find an optimal policy, that is, a policy with the largest expected reward.

4.2 Learning Optimal Tariff Prices

We now describe how to learn the optimal policy of the MDP using Q-learning [10].
We initialize the Q-values of all state-action pairsQ(s, a) to 1,000,000 in order to better
encourage exploration [10] and use the following update rule to update the Q-values
after executing action a from state s and transitioning to state s′:

Q(s, a)← α

{
R(s, a, s′) + γ · max

a′∈A
Q′(s′, a′)

}
(1)

where α = 0.9 is the learning rate and γ = 1.0 is the discount factor.

Parallelizing the learning process: In order to increase the robustness of the resulting
learned policy, we executed the learning algorithm with 10 different simulation boot-
strap files [14]. The different bootstrap files may contain different combinations of types
of users, with different energy consumption profiles, energy generation capabilities, etc.
In order to speed up the learning process, we parallelize the Q-learning algorithm by
running multiple instances of the simulation. We run the simulations in groups of 10
instances, where each instance in the group uses one of the 10 unique bootstrap files.
Instead of using and updating their local Q-values, all these instances will use and up-
date the same set of Q-values stored on a central database. Once the simulation of one
of the instances ends (the Power TAC simulation can end any time between 1440 to
1800 simulated hours), it will restart with the same bootstrap file from the first time
step again.
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(a) Against Inferior Agents (b) Against Similar Agents

(c) Against Superior Agents (d) Against Random Agents

Fig. 6. Convergence Rates

4.3 Experimental Results

In our experiments, we learn policies against two opposing agents; this scenario cor-
responds to the 3-agent scenario in the previous Power TAC competition. We char-
acterized possible opposing agents according to their relative competitiveness in the
previous years’ Power TAC competitions. We learned four different sets of Q-values
and, equivalently, four different sets of policies against four different types (in terms of
their competitive level) of opposing agents:
• SUPERIOR AGENTS: AgentUDE15 and Maxon15.
• SIMILAR AGENTS: Mertacor and COLDPower.
• INFERIOR AGENTS: TacTex14 and CWIBroker14.
• RANDOM AGENTS: Two randomly chosen agents from the set of 6 agents above.

Figure 6 shows the convergence rates for all of the scenarios, where the y-axis shows
the final balance at the last time step for each iteration. SPOT is able to learn better poli-
cies and improve its final balance with more iterations. To reach convergence, SPOT
takes various numbers of iterations according to opponents. SPOT sees the most vari-
ance in games where the opponents are randomized. Against a set list of opponents,
policy convergence is reached in a limited number of iterations. For example, after ap-
proximately 200 iterations convergence is reached against superior brokers.

Figure 7 illustrates the explored states in the same scenarios. The color of each
state represents the number of times the actions for each state were explored, ranging
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(a) Against Inferior Agents (b) Against Similar Agents

(c) Against Superior Agents (d) Against Random Agents

Fig. 7. Explored States

from black, where all three actions were explored the most, to white, where no actions
were explored. The figure shows that more states and actions were explored against
inferior agents than against superior agents. Additionally, these results also explain the
performance of the agent; against superior agents, our agent was very limited in the
states it was able to explore, most times being unable to gain more than 5% of the
market share, and when it did get a significant amount it was often at a loss. Thus, it
took its best actions and maintained a balance of approximately e50,000.

We evaluated the learned policies against the same set of opposing agents. Figure 8
shows the profit in the tariff market alone of each agent over the various time steps.
These results are averaged over 5 different bootstrap files (different from those used in
the learning process) and 3 runs per bootstrap file. These results are consistent with the
final converged results shown in Figure 6, where our agent does better against inferior
agents than against superior agents.

Figure 9 plots the performance of our agent with each of the four learned policies
in addition to an agent with no learned strategy against each pair of opposing agents.
Not surprisingly, the results show that the agent with the policy learned through play-
ing against a specific pair of opponents does best when playing against the same pair
of opponents (e.g., the agent with the policy learned through playing against superior
agents does better than other policies when playing against superior agents). The policy
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(a) Against Inferior Agents (b) Against Similar Agents

(c) Against Superior Agents (d) Against Random Agents

Fig. 8. Comparison against Opposing Agents

Fig. 9. Profit in the Tariff Market per Timeslot

learned through playing against random agents is more robust towards different op-
ponent types, especially compared against the policy learned through playing against
superior agents.
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5 Conclusions and Future Work

A forward-looking policy is needed between the tariff and wholesale strategy to make
consistent profit. The preliminary results in this paper show that the application of
learning strategies to broker agents within Power TAC have immediate benefits in both
the wholesale and tariff markets separately. However, a more comprehensive study is
needed to better harness the strength of these learning approaches. Currently, the eval-
uations in the wholesale and tariff markets are conducted independently of each other.
Therefore, future work includes learning good bidding strategies such as Monte Carlo
Tree Search in the wholesale market by taking into account the predicted clearing prices
as well as empirically evaluating the coupling effects of the learning strategies between
the wholesale and tariff markets.
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