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Abstract. The Distributed Constraint Optimization Problem (DCOP)
formulation is a powerful tool to model cooperative multi-agent prob-
lems, especially when they are sparsely constrained with one another. A
key assumption in this model is that all constraints are fully specified
or known a priori, which may not hold in applications where constraints
encode preferences of human users. In this paper, we extend the model
to Incomplete DCOPs (I-DCOPs), where some constraints can be par-
tially specified. User preferences for these partially-specified constraints
can be elicited during the execution of I-DCOP algorithms, but they in-
cur some elicitation costs. Additionally, we extend SyncBB, a complete
DCOP algorithm, and ALS-MGM, an incomplete DCOP algorithm, to
solve I-DCOPs. We also propose parameterized heuristics that those al-
gorithms can utilize to trade off solution quality for faster runtime and
fewer elicitation. They also provide theoretical quality guarantees when
used by SyncBB when elicitations are free. Our model and heuristics
thus extend the state-of-the-art in distributed constraint reasoning to
better model and solve distributed agent-based applications with user
preferences.

Keywords: Multi-Agent Problems; Distributed Constraint Optimiza-
tion Problems; Preference Elicitation; Distributed Problem Solving

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) [22, 25, 6] formula-
tion is a powerful tool to model cooperative multi-agent problems. DCOPs are
well-suited to model many problems that are distributed by nature and where
agents need to coordinate their value assignments to minimize the aggregated
constraint costs. This model is widely employed for representing distributed
problems such as meeting scheduling [19], sensor and wireless networks [37],
multi-robot teams coordination [41], smart grids [21], and smart homes [7, 31].

The study and use of DCOPs have matured significantly over more than a
decade since its inception [22]. DCOP researchers have proposed a wide variety of
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solution approaches, from complete approaches that use distributed search-based
techniques [22, 37] to distributed inference-based techniques [25]. There is also a
significant body of work on incomplete methods that can be similarly categorized
into local search-based methods [39, 5], inference GDL-based techniques [35], and
sampling-based methods [24].

One of the core limitations of all these approaches is that they assume that
the constraint costs in a DCOP are specified or known a priori. In some applica-
tions, such as meeting scheduling problems, constraints encode the preferences
of human users. As such, some of the constraint costs may be unspecified and
must be elicited from human users.

To address this limitation, researchers have proposed the preference elic-
itation problem for DCOPs [29]. In this preference elicitation problem, some
constraint costs are initially unknown, and they can be accurately elicited from
human users. The goal is to identify which subset of constraints to elicit in order
to minimize a specific form of expected error in solution quality. Unfortunately,
it suffers from two limitations: First, it assumes that the cost of eliciting con-
straints is uniform across all constraints, which is unrealistic as providing the
preferences for some constraints may require more cognitive effort than the pref-
erences for other constraints. Second, it decouples the elicitation process from
the DCOP solving process since the elicitation process must be completed before
one solves the DCOP with elicited constraints. As both the elicitation and solv-
ing process are actually coupled, this two-phase decoupled approach prohibits
the elicitation process from relying on the solving process.

Therefore, in this paper, we propose the Incomplete DCOP (I-DCOP) [30,
36] model, which integrates both the elicitation and solving problems into a sin-
gle integrated optimization problem. In an I-DCOP, some constraint costs are
unknown and can be elicited. Elicitation of unknown constraint costs will in-
cur elicitation costs, and the goal is to find a solution that minimizes the sum
of constraint and elicitation costs incurred. To solve this problem, we adapt a
complete algorithm – Synchronous Branch-and-Bounds (SyncBB) [14] – and an
incomplete algorithm – an Anytime Local Search (ALS) [40] variant of Maxi-
mum Gain Message (MGM) [18], which we call ALS-MGM. We also introduce
parameterized heuristics that can be used by SyncBB and ALS-MGM to trade
off solution quality for faster runtimes and fewer elicitations, and provide quality
guarantees for I-DCOPs without elicitation costs when the underlying DCOP
algorithm is correct and complete.

2 Background

Distributed Constraint Optimization Problems (DCOPs): A DCOP [22,
25, 6] is defined by 〈A,X ,D,F , α〉, where A = {ai}pi=1 is a set of agents; X =
{xi}ni=1 is a set of decision variables; D = {Dx}x∈X is a set of finite domains
and each variable x ∈ X takes values from the set Dx; F = {fi}mi=1 is a set
of constraints, each defined over a set of decision variables: fi :

∏
x∈xfi Dx →

R ∪ {∞}, where infeasible configurations have ∞ costs, xfi ⊆ X is the scope of
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fi; and α : X → A is a mapping function that associates each decision variable
to one agent.

A solution σ is a value assignment for a set xσ ⊆ X of variables that is
consistent with their respective domains. The cost F(xσ) =

∑
f∈F,xf⊆xσ f(xσ)

is the sum of the costs across all the applicable constraints in xσ. A solution σ
is a complete solution if xσ =X and is a partial solution otherwise. The goal is
to find an optimal complete solution x∗ = argminx F(x).

A constraint graph visualizes a DCOP, where nodes in the graph correspond
to variables in the DCOP and edges connect pairs of variables appearing in the
same constraint. A pseudo-tree arrangement has the same nodes as the constraint
graph and includes all the edges of the constraint graph. The edges in the pseudo-
tree are divided into tree edges, which connect parent-child nodes and all together
form a rooted tree, and backedges, which connect a node with its pseudo-parents
and pseudo-children. Finally, two variables that are constrained together in the
constraint graph must appear in the same branch of the pseudo-tree. When the
pseudo-tree has only a single branch, it is called a pseudo-chain. One can also
view a pseudo-chain as a complete ordering of all the variables in a DCOP, which
is used by SyncBB and in our descriptions later on. Finally, unless otherwise
specified, we assume that each agent controls exactly one decision variable and
thus use the terms “agent” and “variable” interchangeably.

Synchronous Branch-and-Bound (SyncBB): SyncBB [14] is a complete,
synchronous, search-based algorithm that can be considered as a distributed
version of a depth-first branch-and-bound algorithm. It uses a complete ordering
of the agents to extend a Current Partial Assignment (CPA) via a synchronous
communication process. The CPA holds the assignments of all the variables
controlled by all the visited agents and, in addition, functions as a mechanism
to propagate bound information. The algorithm prunes those parts of the search
space whose solution quality is sub-optimal by exploiting the bounds that are
updated at each step of the algorithm. In other words, an agent backtracks when
the cost of its CPA is no smaller than the cost of the best complete solution found
so far. The algorithm terminates when the root backtracks (i.e., the algorithm
has explored or pruned the entire search space).

Anytime Local Search Algorithms: Local search DCOP algorithms (e.g.,
MGM, DSA) [18, 39] are synchronous iterative processes, where, in each step of
the algorithm, each agent sends its value assignment to all its neighbors in the
constraint graph and waits to receive the value assignments of all its neighbors
before deciding whether to change its value. In local search algorithms, agents
are only aware of the cost of their own assignments and their neighbors’ as-
signments. Therefore, no agent knows when a globally good solution is found.
The Anytime Local Search (ALS) framework [40] enhances the local search al-
gorithms by allowing them to detect when a globally better solution is found
and return that solution upon termination (i.e., the anytime property). It uses
a Breadth-First Search spanning tree (BFS-tree) of the constraint graph to ag-
gregate costs up the tree to the root agent such that it is able to detect when a
better solution is found. When such a solution is found, the root agent propa-
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Fig. 1: Incomplete DCOP with Elicitation Costs and Search Tree Nodes

gates the step number in which that solution is found down to its descendants.
Therefore, upon termination, all the agents have a consistent view on when the
best solution is found and take on their corresponding values.

3 Incomplete DCOPs

An Incomplete DCOP (I-DCOP) extends a DCOP by allowing some constraints
to be partially specified. It is defined by a tuple 〈A,X ,D,F , F̃ , E , α〉, where A,
X , D, F , and α are exactly the same as in a DCOP. There are two key differences:

• The set of constraints F are not known to agents in an I-DCOP. Instead,
only the set of partially-specified constraints F̃ = {f̃i}mi=1 are known. Each
partially-specified constraint is a function f̃i :

∏
x∈xfi Dx → R∪{∞, ?}, where

? is a special element denoting that the cost for a given combination of value
assignment is not specified. The costs R ∪ {∞} that are specified are exactly
the costs of the corresponding constraints fi ∈ F .

• E = {ei}mi=1 is the set of elicitation costs, where each elicitation cost ei :∏
x∈xfi Dx → R specifies the cost of eliciting the constraint cost of a particular

? in f̃i.

An explored solution space x̃ is the union of all solutions explored so far by
a particular algorithm. The cumulative elicitation cost E(x̃) =

∑
e∈E e(x̃) is the

sum of the costs of all elicitations conducted while exploring x̃.
The total cost F(x, x̃) = αf ·F(x) + αe ·E(x̃) is the weighted sum of both

the cumulative constraint cost F(x) of solution x and the cumulative elicitation
cost E(x̃) of the explored solution space x̃, where αf ∈ (0, 1] and αe ∈ [0, 1] such
that αf + αe = 1. The weights represent the tradeoffs between the importance
of solution quality and the cumulative elicitation cost.

The goal is to find an optimal complete solution x∗ while eliciting only a
cost-minimal set of preferences from a solution space x̃∗. More formally, the goal
is to find (x∗, x̃∗) = argmin(x,x̃) F(x, x̃).

Figure 1(a) shows the constraint graph of an example I-DCOP that we will
use as a running example in this paper. It has three variables x1, x2, and x3 with
identical domains D1 = D2 = D3 = {0, 1}. All three variables are constrained
with one another and Figure 1(b) shows the partially-specified constraints f̃i,
their corresponding fully-specified constraints fi, and the elicitation costs ei. For
simplicity, assume that αf = αe = 0.5 throughout this paper. Therefore, in this
example, the optimal complete solution is x∗= 〈x1 = 1, x2 = 1, x3 = 0〉 and only
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that solution is explored (i.e., x̃ = x∗). The constraint cost of that solution is
3 (= f1(〈x1 = 1, x2 = 1〉) + f2(〈x1 = 1, x3 = 0〉) + f3(〈x2 = 1, x3 = 0〉)). The
cumulative elicitation cost is 2 (= e2(〈x1 = 1, x3 = 0〉) + e3(〈x2 = 1, x3 = 0〉)).
Thus, the total cost is αf ·3 + αe ·2 = 0.5·3 + 0.5·2 = 2.5.

4 Solving I-DCOPs

To solve I-DCOPs, one can easily adapt existing DCOP algorithms by allowing
them to elicit unknown costs whenever those costs are needed by the algorithm.
We describe below how to adapt SyncBB, a complete search algorithm, and
ALS-MGM, a variant of the MGM [18] local search algorithm using the ALS
framework [40], to solve I-DCOPs. We will also employ SyncBB and ALS-MGM
as the underlying algorithms that use our proposed heuristics later.

4.1 SyncBB

The operations of SyncBB can be visualized with search trees. Figure 1(c) shows
the search tree for our example I-DCOP shown in Figures 1(a) and 1(b), where
levels 1, 2, and 3 correspond to variable x1, x2, and x3, respectively. Left branches
correspond to the variables being assigned the value 0 and right branches cor-
respond to the variables being assigned the value 1. Each non-leaf node thus
corresponds to a partial solution and each leaf node corresponds to a complete
solution. These nodes also correspond to unique CPAs of agents when they run
SyncBB. We label each node of the search tree with an identifier so that we can
refer to them easily below. When SyncBB evaluates a node n after exploring
search space x̃, it considers only the cumulative elicitation cost so far E(x̃) and
the constraint costs of the CPA at node n, which we will refer to as g-values,
denoted by g(n).3 We refer to the weighted sum of these values as f -values,
denoted by f(n, x̃) = αf ·g(n) + αe ·E(x̃).

Assume that all the agents know that there is a lower bound L on all the
constraint costs. Before calculating f(n, x̃) at node n, the algorithm estimates
the total cost (i.e., constraint cost + elicitation cost) by replacing unknown
constraint costs with L and summing them up with the elicitation cost thus far.
If the estimated total cost is no smaller than the cost of the best solution found
so far, SyncBB prunes node n. Otherwise, it elicits the unknown costs of node
n and calculates its true total cost. By estimating the total costs, SyncBB only
elicits unknown constraints when their costs are needed.

4.2 ALS-MGM

Like for regular DCOPs, ALS-MGM for I-DCOPs also uses a Breadth-First
Search spanning tree (BFS-tree) of the constraint graph to aggregate costs up
the tree to the root agent such that it is able to detect when a better solution is

3 We use A* notations [13] here.
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found. When such a solution is found, the root agent propagates the step num-
ber in which that solution is found down to its descendants. Therefore, upon
termination, all the agents have a consistent view on when the best solution is
found and take on their corresponding values.

5 SyncBB Cost-Estimate Heuristic

To speed up SyncBB, one can use cost-estimate heuristics h(n) to estimate
the sum of the constraint and elicitation costs needed to complete the CPA
at a particular node n. And if those heuristics are underestimates of the true
cost, then they can be used to better prune the search space, that is, when
f(n, x̃) = αf ·g(n) + h(n) + αe ·E(x̃) ≥ F(x, x̃), where x is the best complete
solution found so far and x̃ is the current explored solution space.

We now describe below a cost-estimate heuristic that can be used in conjunc-
tion with SyncBB to solve I-DCOPs. This heuristic makes use of an estimated
lower bound L on the cost of all constraints f ∈ F . Such a lower bound can
usually be estimated through domain expertise. In the worst case, since all costs
are non-negative, for our running example we set the lower bound (L) to 1.
The more informed the lower bound, the more effective the heuristics will be in
pruning the search space.

Additionally, this heuristic is parameterized by two parameters – a relative
weight w ≥ 1 and an additive weight ε ≥ 0. When using these parameters,
SyncBB will prune a node n if:

w·f(n, x̃) + ε ≥ F(x, x̃) (1)

where x is the best complete solution found so far and x̃ is the current explored
solution space. Users can increase the weights w and ε to prune a larger portion
of the search space and, consequently, reduce the computation time as well as the
number of preferences elicited. However, the downside is that it will also likely
degrade the quality of solutions found. Further, in I-DCOPs where elicitations
are free (i.e., the elicitation costs are all zero), we theoretically show that the
cost of solutions found are guaranteed to be at most w · OPT + ε, where OPT
is the optimal solution cost.

Child’s Ancestors’ Constraints (CAC) Heuristic: This heuristic is defined
recursively from the leaf of the pseudo-chain (i.e., last agent in the variable
ordering) used by SyncBB up to the root of the pseudo-chain (i.e., first agent
in the ordering). Agent xi in the ordering computes a heuristic value h(xi = di)
for each of its values di ∈ Di as follows: h(xi = di) = 0 if xi is the leaf of the
pseudo-chain. Otherwise, h(xi = di) is:

min
dc∈Dc

[
αf ·f̂(xi=di, xc=dc) + αe ·e(xi=di, xc=dc) + h(xc=dc)

]
+

∑
xk∈Anc(xc)\{xi}

min
dk∈Dk

[
αf ·f̂(xc=dc, xk=dk) + αe ·e(xc=dc, xk=dk)

]
(2)
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where xc is the next agent in the ordering (i.e., child of xi in the pseudo-chain),
Anc(xc) is the set of variables higher up in the ordering that xc is constrained

with, and each estimated cost function f̂ corresponds exactly to a partially-
specified function f̃ , except that all the unknown costs ? are replaced with the
lower bound L. Therefore, the estimated cost f̂(x) is guaranteed to be no larger
than the true cost f(x) for any solution x.

For a parent xp of a leaf agent xl, the heuristic value h(xp = dp) is then
the minimal constraint and elicitation cost between the two agents, under the
assumption that the parent takes on value dp, and the sum of the minimal
constraint cost of the leaf agent with its ancestors. As the heuristic of a child
agent is included in the heuristic of the parent agent, this summation of costs is
recursively aggregated up the pseudo-chain.

It is fairly straightforward to see that this heuristic can be computed in a
distributed manner – the leaf agent xl initializes its heuristic values h(xl=dl) = 0
for all its values dl ∈ Dl and computes the latter term in Equation (2):∑

xk∈Anc(xl)

min
dk∈Dk

[
αf ·f̂(xl=dl, xk=dk) + αf ·e(xl=dl, xk=dk)

]
(3)

for each of its values dl ∈ Dl. It then sends these heuristic values and costs
to its parent. Upon receiving this message, the parent agent xp uses the infor-
mation in the message to compute its own heuristic values h(xp = dp) using
Equation (2), computes the latter term similar to Equation (3) above, and sends
these heuristic values and costs to its parent. This process continues until the
root agent computes its own heuristic values, at which point it starts the SyncBB
algorithm.

6 ALS-MGM Cost-Estimate Heuristic

Instead of having each agent in ALS-MGM choose its initial value randomly from
its domains, one can also use cost-estimate heuristics to estimate costs for each
value and have the agent choose the value that minimizes the estimated costs.
Using cost-estimate heuristics helps ALS-MGM to find solutions with smaller
costs faster since it starts with a better initial solution, which is more pronounced
when there is not enough time to let the algorithm run until convergence.

Neighbors’ Constraints (NHC) Heuristic: Each agent xi computes a heuris-
tic value h(xi = di) for each of its values di ∈ Di as follows:∑

xc∈Nh(xi)

min
dc∈Dc

[
αf ·f̂(xi=di, xc=dc) + αe ·e(xi=di, xc=dc)

]
(4)

where xc is a neighboring variable, Nh(xi) is the set of neighboring variables that

xi is constrained with, and each estimated cost function f̂ corresponds exactly to
a partially-specified function f̃ , except that all the unknown costs ? are replaced
with the lower bound L. Therefore, the estimated cost f̂(x) is guaranteed to be
no larger than the true cost f(x) for any solution x.
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7 Theoretical Results

Theorem 1. The computation of the CAC heuristic requires O(|A|) number of
messages. The computation of the NHC heuristic requires no messages.

Proof. The CAC heuristics is recursively computed starting from the leaf to the
root and will take exactly |A|−1 number of messages. The NHC heuristic is not
computed recursively and does not send any messages to compute its heuristic
cost. �

Lemma 1. When all elicitation costs are zero, the CAC and NHC heuristics
are admissible.

Proof. We only prove the admissibility of the CAC heuristic since the same proof
applies to NHC. We prove that h(n) ≤ F(xn) − αf ·g(n), where xn is the best
complete solution in the subtree rooted at node n, for all nodes n in the search
tree. We prove this by induction from the leaf agent up the pseudo-chain:

• Leaf Agent: For a leaf agent xi, h(xi = di) = 0 for each of its values di ∈ Di.
Therefore, the inequality h(n) = 0 ≤ F(xn)− αf ·g(n) trivially applies for all
nodes n corresponding the agent xi taking on its values di ∈ Di.

• Induction Assumption: Assume that the lemma holds for all agents up to
the (k − 1)-th agent up the pseudo-chain.

• The k-th Agent: For the k-th agent xk from the leaf:

h(xk=dk)

= min
dc∈Dc

[
αf ·f̂(xk=dk, xc=dc) + αe ·e(xk=dk, xc=dc) + h(xc=dc)

]
+

∑
xm∈Anc(xc)\{xk}

min
dm∈Dm

[
αf · f̂(xc=dc, xm=dm) + αe · e(xc=dc, xm=dm)

]
(5)

where xc is the next agent in the ordering (i.e., the (k− 1)-th agent), Anc(xc)
is the set of variables higher up in the ordering that xc is constrained with.
Based on our induction assumption the lemma holds for all agents up to the
(k − 1)-th agent up the pseudo-chain, hence, we have:

h(n) ≤ F(xn)− αf ·g(n), (6)

where node n corresponds to the (k − 1)-th agent in the pseudo-chain, which

we denote it as agent xc. For each estimated cost function f̂ in the CAC
heuristic, it is easy to see:

f̂(xc=dc, xm=dm) ≤ f(xc=dc, xm=dm), (7)

for any pair of agents xc and xm with any of their value combinations since all
unknown costs ? are replaced with the lower bound L on all constraint costs.



Title Suppressed Due to Excessive Length 9

Thus, combined with the premise that elicitation costs are all zero and the
induction assumption, we get:

h(xk=dk)

= min
dc∈Dc

[
αf · f̂(xk=dk, xc=dc) + αe · e(xk=dk, xc=dc) + h(xc=dc)

]
+

∑
xm∈Anc(xc)\{xk}

min
dm∈Dm

[
αf · f̂(xc=dc, xm=dm) + αe · e(xc=dc, xm=dm)

]
(8)

≤ min
dc∈Dc

[
αf · f(xk=dk, xc=dc) + h(xc=dc)

]
+

∑
xm∈Anc(xc)\{xk}

min
dm∈Dm

αf · f(xc=dc, xm=dm) ≤ F(xn)− αf · g(n) (9)

where node n corresponds to the agent xk taking on its value dk ∈ Dk. �

Theorem 2. When all elicitation costs are zero, SyncBB with the CAC heuris-
tic parameterized by a user-defined relative weight w ≥ 1 and a user-defined
additive weight ε ≥ 0 will return an I-DCOP solution whose cost is bounded
from above by w·OPT + ε, where OPT is the optimal solution cost.

Proof. The proof is similar to the proofs of similar properties [37] for other
DCOP search algorithms that also use heuristics. The key assumption in the
proofs is that the heuristics employed are admissible heuristics – and the CAC
heuristic is admissible according to Lemma 1. �

8 Related Work

As our work lies in the intersection of constraint-based models, preference elici-
tation, and heuristic search, we will first focus on related work in this intersec-
tion before covering the three broader areas. Aside from the work proposed by
Tabakhi et al. [29] discussed in Section 1, the body of work that is most related
to ours is the work on Incomplete Weighted CSPs (IWCSPs) [9, 32, 10]. IWCSPs
can be seen as centralized versions of I-DCOPs. Researchers have proposed a
family of algorithms based on depth-first branch-and-bound and local search to
solve IWCSPs including heuristics that can be parameterized like ours. Aside
from IWCSPs, similar centralized constraint-based models include Incomplete
Fuzzy CSPs and Incomplete Soft Constraint Satisfaction Problems.

In the context of the broader constraint-based models where constraints may
not be fully specified, there are a number of such models, including Uncertain
CSPs [38], where the outcomes of constraints are parameterized; Open CSPs
[4], where the domains of variables and constraints are incrementally discovered;
Dynamic CSPs [3], where the CSP can change over time; as well as distributed
variants of these models [23, 17].
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(a) SyncBB Without Heuristic

|A| # unk. Without Elicitation Costs With Elicitation Costs
costs #elic. runtime const. cost #exp. nodes #elic. runtime total cost const. cost elic. cost #exp. nodes

10 43 39.92 7.55E-01 51.88 1.65E+03 18.08 5.60E-02 189.28 60.20 129.08 6.70E+01

12 62 58.80 2.59E+00 75.48 6.76E+03 25.52 9.28E-02 264.88 87.16 177.72 1.25E+02

14 86 81.88 9.18E+00 107.40 2.40E+04 35.16 7.68E-02 363.80 123.36 240.44 9.24E+01

16 115 110.92 3.58E+01 145.40 9.51E+04 48.56 1.13E-01 485.40 163.80 321.60 1.60E+02

18 146 139.80 1.24E+02 184.44 3.54E+05 60.76 1.29E-01 621.04 206.68 414.36 3.08E+02

20 182 175.56 5.52E+02 231.64 1.36E+06 72.84 1.63E-01 741.76 252.88 488.88 2.79E+02

(b) SyncBB with CAC Heuristic

10 43 37.96 3.63E-01 51.88 7.73E+02 12.96 2.15E-02 173.88 61.64 112.24 2.21E+01

12 62 57.32 1.22E+00 75.48 2.97E+03 18.32 1.82E-02 242.12 88.72 153.40 2.99E+01

14 86 80.32 3.58E+00 107.40 9.50E+03 26.08 3.69E-02 350.48 125.48 225.00 3.90E+01

16 115 110.80 1.61E+01 145.40 4.26E+04 35.56 3.03E-02 464.16 165.24 298.92 4.83E+01

18 146 139.12 4.16E+01 184.44 1.21E+05 44.84 4.75E-02 590.20 206.64 383.56 6.11E+01

20 182 164.76 3.67E+02 231.64 4.09E+05 54.52 6.29E-02 722.68 258.28 464.40 5.06E+01

Table 1: Varying Number of Agents |A|

In the context of the broader preference elicitation area, there is a very large
body of work [11], and we focus on techniques that are most closely related to
our approach. They include techniques that ask users a number of preset ques-
tions [33, 29, 28] as well as send alerts and notification messages to interact with
users [2], techniques that ask users to rank alternative options or user-provided
option improvements to learn a (possibly approximately) user preference func-
tion [1],and techniques that associate costs to eliciting preferences and takes
these costs into account when identifying which preference to elicit as well as
when to stop eliciting preferences [34, 16]. The key difference between all these
approaches and ours is that they identify preferences to elicit a priori before the
search while we embed the preference elicitation in the underlying DCOP search
algorithm.

Finally, in the context of the broader heuristic search area, starting with
Weighted A* [26], researchers have long used weighted heuristics to speed up
the search process in general search problems. Researchers have also investigated
the use of dynamically-changing weights [27]; using weighted heuristic with other
heuristic search algorithms like DFBnB [8], RBFS [15], and AND/OR search [20];
as well as extending them to provide anytime characteristics [12].

9 Empirical Evaluations

We evaluate SyncBB using the CAC heuristic and ALS-MGM using the NHC
heuristic against their baselines without heuristics on I-DCOPs with and without
elicitation costs. We evaluate them on random graphs where we measure the
various costs of the solutions found – the cumulative constraint costs (i.e., const.
cost), cumulative elicitation costs (i.e., elic. cost), and their aggregated total
costs (i.e., total cost) – the number of unknown costs elicited (i.e., # elic.), the
number of nodes expanded after SyncBB terminates (i.e., # exp. nodes), and
the runtimes of the algorithms (in sec). In all experiments we set αf = αe = 0.5.
Data points are averaged over 25 instances.We generate 25 random (binary)
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graphs, where we vary the number of agents/variables |A| from 10 to 180; the
user-defined relative weight w from 1 to 10; and the user-defined additive weight
ε from 0 to 50. The constraint density p1 is set to 0.4, the tightness p2 is set to
0; the fraction of unknown costs in the problem is set to 0.6. In our experiments
below, we only vary one parameter at a time, setting the rest at their default
values: |A| = 10, |Di| = 2, w = 1, and ε = 0. All constraint costs are randomly
sampled from [2, 5] and all elicitation costs are randomly sampled from [0, 20].
As mentioned earlier, in the ALS-MGM algorithm, the number of steps that the
algorithm needs to run before termination is equal to m + H, where m is the
number of steps that a regular MGM algorithm would run and H is the height
of the BFS tree. Since the ALS framework requires that m ≥ H, we vary m from
H to H + 240.

Table 1 tabulates our empirical results, where we vary the number of agents
|A|. Figure 2(b) plots the convergence rate of ALS-MGM when elicitation is free.
We make the following observations:

• As expected, the runtimes and number of unknown costs elicited by all algo-
rithms increase with increasing the number of agents |A|. The reason is that
the size of the problem, in terms of the number of constraints in the problem,
increases with increasing |A|.
• On problems without elicitation costs, SyncBB with CAC is faster than with-

out CAC. The reason is the following: The CAC heuristic value includes es-
timates of not only all constraints between its descendant agents, but also
constraints between any of its descendant agents with any of its ancestor
agents. The CAC heuristic is thus likely to be more informed and provide
better estimates.

• On problems with elicitation costs, SyncBB with CAC is still faster than
without CAC. The reason is that the number of nodes expanded is significantly
smaller with CAC than without CAC.

• Overall, the use of heuristics in conjunction with SyncBB reduces the number
of unknown costs elicited by up to 22% and the runtime by up to 57% when
elicitation is not free. Therefore, these results highlight the strengths of using
our proposed heuristics for solving I-DCOPs.

Figure 2(a) plots our empirical results, where we vary the user-defined addi-
tive bound (weight) ε for the problems when elicitation is free (i.e., all elicitation
costs are zero). Additive weights increase from right to left on the top axis of
the Figure. Each data point in the figures thus shows the result for one of the
algorithms with one of the values of ε. Data points for smaller values of ε are in
the bottom right of the figures and data points for larger values are in the top left
of the figures. We plot the tradeoffs between total cost (= cumulative constraint
and elicitation costs) and number of elicited costs. As expected, as the additive
bound ε increases, the number of elicitations decreases. However, this comes at
the cost of larger total costs. Between the two algorithms, SyncBB with CAC is
the best. We omit plots of results where we vary the relative weight w as their
trends are similar to those shown here, and we also omit plots of results with
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Fig. 2: Evaluation of ALS-MGM and SyncBB on Random Graphs

elicitation costs as their trends are similar to those without elicitation costs for
both additive and relative weights.

Figure 2(b) clearly shows that the difference in the quality of solutions is
largest at the start of the algorithm and decreases as the algorithm runs more
steps. Therefore, the heuristic is ideally suited for time-sensitive applications
with short deadlines, where there is not enough time to let ALS-MGM run for
a long time until convergence.

10 Conclusions

Distributed Constraint Optimization Problems (DCOPs) have been used to model
a variety of cooperative multi-agent problems. However, they assume that all con-
straints are fully specified, which may not hold in applications where constraints
encode preferences of human users. To overcome this limitation, we proposed
Incomplete DCOPs (I-DCOPs), which extends DCOPs by allowing some con-
straints to be partially specified and the elicitation of unknown costs in such
constraints incurs elicitation costs. To solve I-DCOPs, we adapted SyncBB and
ALS-MGM as well as proposed new heuristics that can be used in conjunction
with those algorithms to improve their runtimes or quality of solutions found
as well as trade off solution quality for faster runtimes and fewer elicitations.
They also provide theoretical quality guarantees when used by SyncBB when
elicitations are free. In conclusion, our new model, adapted algorithms, and new
heuristics improve the practical applicability of DCOPs as they are now better
suited to model multi-agent applications with user preferences.
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