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ABSTRACT
The Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) is a powerful model for multi-agent planning un-
der uncertainty, but its applicability is hindered by its high com-
plexity – solving Dec-POMDPs optimally is NEXP-hard. Re-
cently, Kumar et al. introduced the Value Factorization (VF)
framework, which exploits decomposable value functions that can
be factored into subfunctions. This framework has been shown to
be a generalization of several specialized models such as TI-Dec-
MDPs, ND-POMDPs and TD-POMDPs, which leverage different
forms of sparse agent interactions to improve the scalability of
planning. Existing algorithms for these models assume that the
interaction graph of the problem is given. So far, no studies have
addressed the generation of interaction graphs. In this paper, we
address this gap by introducing three algorithms to automatically
generate interaction graphs for models within the VF framework
and establish lower and upper bounds on the expected reward of
an optimal joint policy. We illustrate experimentally the bene-
fits of these techniques for sensor placement in a decentralized
tracking application.

1. INTRODUCTION
Markov Decision Processes (MDPs) and Partially Observ-

able MDPs (POMDPs) have been shown to be popular mod-
els for modeling problems where a single agent needs to
plan under uncertainty. As a result, Decentralized POMDPs
(Dec-POMDPs) [2] have emerged as a natural extension for
modeling problems where a team of agents need to plan un-
der uncertainty. Unfortunately, scalability is an issue for
Dec-POMDP algorithms because not only is finding opti-
mal solutions NEXP-hard [2], but finding constant factor
approximations is also NEXP-hard [13].

In general, researchers have taken two approaches to ad-
dress this issue. The first approach is motivated by the
observation that many multi-agent planning problems, like
our sensor network problem, have sparse agent interactions,
that is, each agent only interacts with a limited number of
other agents. Thus, researchers have introduced specialized
models such as ND-POMDPs [10], TD-POMDPs [17] and
DPCL [16], which exploit the sparsity in these interactions
to increase scalability.

In the second approach, researchers assume that the prob-
lem can be factored into smaller factors. For example,
Oliehoek et al. introduced models where the state space
and reward function are factored into subspaces and sub-
functions [12, 11]. More recently, Kumar et al. introduced
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Figure 1: Example Sensor Network

the Value Factorization (VF) framework, where the value
functions are factored into subfunctions [8]. This framework
is appealing as it has been shown to represent several sparse-
interaction models like TI-Dec-MDPs [1], ND-POMDPs [10],
TD-POMDPs [17]. We thus describe our work in the context
of the VF framework and use ND-POMDPs as one example
model within this framework.

All the value-factored Dec-POMDP algorithms developed
thus far assume that the interaction graph of the problem,
that is, the number of agents and their possible interactions,
is given. However, there have been no studies on the auto-
mated generation of interaction graphs, which is unfortunate
because not only is the interaction graph often unspecified in
many multi-agent applications, but the choice of interaction
graph is often a design decision that needs to be optimized.
For example, the placement of sensors (agents) to form a
sensor network (interaction graph) is often unspecified in
a decentralized tracking application, and the choice of in-
teraction graph can directly affect the expected rewards of
joint policies computed for that problem. Therefore, in this
paper, we introduce three algorithms to automatically gen-
erate interaction graphs, which increase the size and density
of the interaction graph only when the increase is believed
to be beneficial. We also show how one can calculate lower
and upper bounds on the expected reward of an optimal
joint policy across all possible interaction graphs.

2. MOTIVATING EXAMPLE: SENSOR
PLACEMENT

We motivate the work in this paper with sensor network
problems, where multiple sensors need to coordinate with
each other to track non-adversarial targets that are moving
in an area. Examples of such problems include the tracking
of vehicle movements [9] and the tracking of weather phe-



nomena such as tornadoes [5]. We assume that the sensors
are immobile and at least two sensors are required to scan
a potential target location. We also assume that the inter-
action graph, that is, the number of sensors, their locations
and their possible interactions, is not given and, thus, the
generation of the interaction graph is part of the problem.
However, the possible sensor placement locations are given
and each sensor can only interact with its neighboring sensor
to scan the location between them. Lastly, we assume that
we have an insufficient number of sensors to place at every
location. (The interaction graph is otherwise trivial.) The
objective is to place the sensors and find their joint policy
such that the expected reward of that joint policy is maxi-
mized. For example, Figure 1 illustrates a sensor network,
where the crosses denote the 25 possible sensor placement
locations, the circles denote the 8 placed sensor locations
and the lines denote the possible target locations. The cir-
cles and solid lines form nodes and edges of the interaction
graph, respectively.

3. SPARSE-INTERACTION MODELS
We now describe the VF framework and ND-POMDP

model, which we use to model the problems in this paper.

3.1 Value Factorization Framework
The Value Factorization (VF) framework assumes that

each joint state s can be factored such that s=(s1, . . . , sm),
which is true in several multi-agent planning models such as
TI-Dec-MDPs [1], ND-POMDPs [10] and TD-POMDPs [17].
Without making further (conditional independence) as-
sumptions on the problem structure, a general Dec-POMDP
requires exact inference in the full corresponding (finite-
time) DBNs, which would be exponential in the number of
state variables and agents. The value factorization approach
relies on a general, simplifying property of agent interaction,
which can be shown to be consistent with many of the exist-
ing multi-agent planning models [8, 18]. We next summarize
key ideas behind this framework.

Given a Dec-(PO)MDP defined by the set of agents N ,
joint states S and joint actions A, a value factor f defines
a subset of agents Nf ⊆ N , joint states Sf ⊆ S, and joint
actions Af ⊆ A. A multi-agent planning problem satisfies
value factorization if the joint-policy value function can be
decomposed into a sum over value factors:

V (s, θ) =
∑
f∈F

Vf (sf , θf ) , (1)

where F is a set of value factors, θf ≡ θNf is the collection
of parameters of the agents of factor f , and sf ≡ sSf is the
collection of state variables of this factor.

Even when the value factorization property holds, plan-
ning in such models is still highly coupled because factors
may overlap. That is, an agent can appear in multiple fac-
tors as can state variables. Therefore, a value factor cannot
be optimized independently. But, it has been shown that
such structured agent interactions lead to tractable plan-
ning algorithms [8]. Such additive value functions have also
been used to solve large factored MDPs [4].

3.2 Networked Distributed POMDPs
For concrete illustrations and evaluation of the results

in this paper, we use Network Distributed POMDPs (ND-
POMDPs) – one of the most commonly used model that

satisfies the value factorization property. Formally, an ND-
POMDP is defined as a tuple 〈S,A,Ω, P,O,R, b,H〉, where

S is the set of joint states. S = ×1≤i≤n Si × Su, where
Si is the set of local states of agent i and Su is the set
of uncontrollable states that are independent of the ac-
tions of the agents. Each joint state s ∈ S is defined by
〈su, s1, . . . , sn〉, where si ∈ Si and su ∈ Su.

A is the set of joint actions. A = ×1≤i≤nAi, where Ai is
the set of actions of agent i. Each joint action a ∈ A is
defined by 〈a1, . . . , an〉, where ai ∈ Ai.

Ω is the set of joint observations. Ω = ×1≤i≤n Ωi, where Ωi
is the set of observations of agent i. Each joint observa-
tion ω ∈ Ω is defined by 〈ω1, . . . , ωn〉, where ωi ∈ Ωi.

P is the set of joint transition probabilities that as-
sume conditional transition independence. P =
×s′∈S,s∈S,a∈A P (s′|s, a), where P (s′|s, a) = Pu(s′u|su) ·
Π1≤i≤n Pi(s

′
i|si, su, ai) is the probability of transitioning

to joint state s′ after taking joint action a in joint state
s.

O is the set of joint observation probabilities
that assume conditional observation indepen-
dence. O = ×ω∈Ω,s∈S,a∈AO(ω|s, a), where
O(ω|s, a) = Π1≤i≤nOi(ωi|si, su, ai) is the probabil-
ity of jointly observing ω after taking joint action a in
joint state s.

R is the set of joint reward functions that are decom-
posable among the agent subgroups e = {e1, . . . , ek}.
R = ×s∈S,a∈AR(s, a), where R(s, a) = ΣeRe(se, su, ae)
is the reward of taking joint action a in joint state s.
Re(se, su, ae) is the reward of taking joint action ae,
which is defined by 〈ae1 , . . . , aek 〉, in joint states se, which
is defined by 〈se1 , . . . , sek 〉, and su. aei and sei is the ac-
tion and state of agent ei ∈ e, respectively.

b is the belief over the initial joint state. b = ×s∈S b(s),
where b(s) = b(su) · Π1≤i≤n b(si) is the belief for joint
state s.

H is the horizon of the problem. In this paper, we address
finite-horizon problems.

ND-POMDPs can be represented by the VF framework by
associating each agent subgroup e as a value factor. For our
sensor network problem, each agent subgroup corresponds
to an edge in the graph.

4. AUTOMATED INTERACTION GRAPH
GENERATION

All the value-factored Dec-POMDP algorithms developed
thus far assume that the interaction graph of the problem
is given. However, there have been no studies on the auto-
mated generation of interaction graphs, which is unfortunate
because not only is the interaction graph often unspecified in
many multi-agent applications, but the choice of interaction
graph is often a design decision that needs to be optimized.
For example, when there is an insufficient number of sen-
sors to place in every possible location, the placement of
sensors to form a sensor network can directly affect the ex-
pected rewards of joint policies computed for that problem.
Additionally, the choice of interaction graph can also affect
the time and space complexities of ND-POMDP algorithms.
For example, the time and space complexities of CBDP, a
current state-of-the-art ND-POMDP algorithm, are expo-



nential in the induced width of the interaction graph [7].
Therefore, in this paper, we formalize the problem of finding
an optimal interaction graph and introduce three algorithms
to automatically generate interaction graphs based on con-
tribution estimates of edges to the expected reward: two
greedy algorithms and a mixed integer linear programming-
based algorithm.

4.1 Problem Statement
Given a fixed number of available homogeneous agents and

a set of feasible value factors (which is the set of all feasible
edges in our sensor network) and their transition, observa-
tion and reward functions, a solution is a subset of value
factors (which together define an interaction graph and ac-
companying Dec-POMDP) that satisfy some feasibility con-
straints (e.g., the number of agents involved in the value fac-
tors is no more than the number of available agents). The
quality of a solution is the expected reward of an optimal
Dec-POMDP policy for that solution. An optimal solution
is a solution with the best quality. While our approaches
only apply to problems with homogeneous agents, they can
be extended to work with heterogeneous agents with addi-
tional constraints in the MILPs.

4.2 Greedy Algorithm
Since not all the candidate edges that can be added to the

interaction graph are equally important, a natural starting
point would be to consider a greedy algorithm that generates
an interaction graph by incrementally adding edges based on
their contribution, or estimates of their contributions, to the
expected reward. This idea is similar to how the algorithm
presented in [6] incrementally places sensors based on the
additional information that they provide about the unsensed
locations. We now introduce two variants of this greedy
algorithm.

4.2.1 Naive Greedy Algorithm
This algorithm greedily adds value factors based on their

actual contribution to the expected reward. In each itera-
tion, it repeatedly loops over all candidate value factors, that
is, unchosen value factors that does not require more agents
than available; computes a joint policy with each candidate
value factor when it is added to the interaction graph; and
chooses the value factor with the largest positive gain in ex-
pected reward to be added to the interaction graph. This
process continues until no candidate value factor results in
a positive gain or there are no remaining candidate value
factors to consider.

4.2.2 Heuristic Greedy Algorithm
The computation of the joint policy for each candidate

value factor can be inefficient. For example, the time and
space complexities of a current state-of-the-art ND-POMDP
algorithm is exponential in the induced width of the inter-
action graph [7]. Thus, we also introduce a variant of the
greedy algorithm that uses contribution estimates of each
value factor to the expected reward to greedily select value
factors.

We estimate the contribution of each value factor as the
sum of expected joint rewards gained by agents defined for
that value factor from coordinating with each other across
all time steps. More precisely, we calculate the estimated
contribution wf of each value factor f :

wf =

H∑
t=1

max
~a∈Af

w~a,tf (2)

w~a,tf =
∑
s∈S

b′(s, t) ·Rf (s,~a) (3)

where Af is the set of joint actions for value factor f ; b′(s, t)
is the belief at state s and time step t calculated using MDP-
based sampling starting from the initial belief b [15, 14]; and
Rf (s,~a) is the reward of the value factor f given state s and
joint action ~a. For ND-POMDPs, value factors correspond
to edges. Thus, the equations are:

we =
H∑
t=1

max
~a∈Ae

w~a,te (4)

w~a,te =
∑
s∈S

b′(s, t) ·Re(s,~a) (5)

We expect this version of the greedy algorithm to run
significantly faster since it only needs to compute the joint
policy once at the end of the algorithm instead of each time
it evaluates a candidate value factor.

4.3 MILP-based Algorithm
While the Heuristic Greedy algorithm can efficiently gen-

erate interaction graphs, it uses heuristic values that assume
that an agent involved in multiple VFs can take different ac-
tions for each VF, which is an incorrect assumption. Thus,
we introduce a mixed integer linear program (MILP) that
assumes that each agent must choose the same action for all
VFs that it is involved in. This MILP finds an open loop
joint policy1 that is optimal across all possible interaction
graphs and returns the interaction graph that joint policy is
operating on. Figure 2 shows the MILP, where

B is the maximum number of available agents. It is an
input parameter.

w~a,tf is the normalized estimate of the expected joint rewards
of agents in value factor f taking joint action ~a at time
step t. It is the same input parameter described earlier
in Eq. 3, except that it is now normalized.

ni is a boolean variable indicating if agent i is chosen
for the interaction graph (Line 9). The constraint on
Line 2 ensures that the number of agents chosen does
not exceed the maximum number of available agents.

facf is a boolean variable indicating if value factor f is cho-
sen for the interaction graph (Line 10). The constraint
on Line 3 ensures a value factor is chosen only if all
agents involved in that factor are chosen.

acta,ti is a boolean variable indicating if agent i is taking ac-
tion a at time step t (Line 9). The constraint on Line 4
ensures that an agent can take at most one action in
each time step.

act~a,tf is a boolean variable indicating if all the agents in-
volved in value factor f are taking joint action ~a at
time step t (Line 10). Note that we use the vector
notation to represent joint actions and regular nota-
tions to represent individual actions. The constraint
on Line 5 ensures that the joint action ~a ∈ Af is taken

1An open loop joint policy is a policy that is independent
of agent observations. In other words, the joint policy is a
sequence of H actions for each agent, where H is the horizon
of the problem.



Maximize
∑

t,f,~a∈Af

obj~a,tf (Line 1)

Subject to∑
i

ni≤B (Line 2)

facf ≤ni ∀ f, i ∈ f (Line 3)∑
a∈Ai

acta,ti ≤1 ∀ t, i (Line 4)

act~a,tf ≤ facf ∀ t, f,~a ∈ Af (Line 5)

act~a,tf ≤act
a,t
i ∀ t, f, i ∈ f,

~a ∈ Af , a ∈ Ai ∩ ~a (Line 6)

obj~a,tf ≤act~a,tf ∀ t, f,~a ∈ Af (Line 7)

obj~a,tf ≤w~a,tf ∀ t, f,~a ∈ Af (Line 8)

ni, act
a,t
i ∈{0, 1} ∀ t, i, a ∈ Ai (Line 9)

facf , act
~a,t
f ∈{0, 1} ∀ t, f,~a ∈ Af (Line 10)

obj~a,tf ∈ [0, 1] ∀ t, f,~a ∈ Af (Line 11)

Figure 2: MILP for the VF Framework

only if value factor f is chosen and the constraint on
Line 6 ensures that the joint action ~a is taken only if
all the individual actions a ∈ ~a are taken.

obj~a,tf is the objective variable whose sum is maximized by
the MILP (Lines 1 and 11). The constraints on Lines 7

and 8 ensure that obj~a,tf equals w~a,tf if act~a,tf is 1 and
equals 0 otherwise. Thus, maximizing the objective
variables over all time steps, value factors and joint
actions maximizes the expected reward of the open loop
joint policy.

Once we solve the MILP, the interaction graph is formed
by exactly those agents i and value factors f whose boolean
variables ni and facf , respectively, equals 1. One can then

use it to compute a closed loop joint policy.2

4.3.1 Optimizations for ND-POMDPs
For ND-POMDPs, a positive reward is typically obtained

for only one joint action in each edge (value factor). For
example, in our sensor network problem, a reward is ob-
tained only if two agents sharing an edge coordinates with
each other to scan the area between them (denoted by that
edge). If either agent does not scan that area, then neither
agent gets any reward. As such, one can optimize the gen-
eral MILP for the VF framework to a specialized MILP for
ND-POMDPs by removing the superscripts ~a (since each
edge maps to exactly one useful joint action) resulting in
a significant reduction in the number of variables and con-
straints.

Figure 3 shows this MILP, where subscripts i and j denote
agent IDs and ij denotes the edge between agents i and j.
The constraints on Lines 13 and 14 correspond to those on
Lines 2 and 3, respectively. The constraints on Line 15 are
to ensure symmetry. The constraints on Lines 16 and 17
correspond to those on Lines 4 and 5, and the constraints
on Line 18 correspond to those on Lines 7 and 8.

4.3.2 Complexity Discussions
2A closed loop joint policy is a regular Dec-POMDP joint
policy that is dependent on agent observations.

Maximize
∑
t,i,j

obj tij (Line 12)

Subject to∑
i

ni≤B (Line 13)

facij≤ni facij≤nj (Line 14)

facij= facji acttij=acttji (Line 15)∑
i

acttij≤1 acttij≤ facji (Line 16)

acttij=0 for all i and j that are not neighbors(Line 17)

obj tij≤acttij obj tij≤wtij (Line 18)

ni ∈{0, 1} facij ∈{0, 1} (Line 19)

acttij ∈{0, 1} obj tij ∈ [0, 1] (Line 20)

Figure 3: MILP for ND-POMDPs

The MILP requires O(H · n · ˆ|Ai|) variables and O(H ·
|F | · ˆ|f | · ˆ|Af | · ˆ|Ai|) constraints, where H is the horizon, n

is the number of agents, ˆ|Ai| is the maximum number of

actions per agent, |F | is the number of value factors, ˆ|f |
is the maximum number of agents in a value factor and
|Âf | is the maximum number of joint actions in a value
factor. The dominating terms for the number of variables
and constraints are the number of acta,tf variables and the
constraints on Line 6, respectively.

While the number of constraints might appear intractably
large, bear in mind that one of the main motivations of
sparse-interaction models is that the number of agents and
joint actions in a value factor is small such that they can be
exploited for scalability.

4.4 Lower Bounds
The open loop joint policy found by the MILP can be ex-

tracted from its result by taking the union of all actions a of
agent i at time step t whose boolean variable acta,ti equals
1. One can then evaluate that policy to get an expected
reward, which will form a lower bound on the optimal ex-
pected reward. For ND-POMDPs, evaluating an open loop
joint policy π to get the expected reward V π(b) for the initial
belief b can be done:

V π(b) =
∑
s∈S

b(s) ·
∑
e∈E

V πe (s, 0) (6)

V πe (s, t) = Re(s, π(t)) +
∑
s′∈S

P (s′|s, π(t)) ·
∑
ω∈Ω

O(ω|s′, π(t))

· V πe (s′, t+ 1) (7)

= Re(s, π(t)) +
∑
s′∈S

P (s′|s, π(t)) · V πe (s′, t+ 1) (8)

where E is the set of edges in the interaction graph and π(t)
is the joint action of the agents at time step t according
to joint policy π. Eq. 7 simplifies to Eq. 8 because π is
independent of the observations received.

4.5 Upper Bounds
To obtain an upper bound on the optimal expected re-

ward, one can solve the underlying MDP for each possible
interaction graph and take the largest expected reward. For
ND-POMDPs with a given interaction graph, one can cal-
culate the upper bound V (b) for initial belief b using the
expected rewards V (s) for starting states s:



(a) Random Trajectories
Max Sensors Naive Greedy Heuristic Greedy MILP

5 4.0 4.0 4.0
7 6.0 7.0 6.0
9 8.5 10.0 8.5
11 10.0 13.5 11.0
13 10.0 17.0 11.5
15 11.0 18.5 13.0

(b) Fixed Trajectories
Max Sensors Naive Greedy Heuristic Greedy MILP

5 4.0 4.0 5.0
7 7.0 7.0 8.0
9 9.0 10.0 10.0
11 12.5 12.5 12.0
13 15.5 14.5 14.5
15 16.5 16.0 16.0

Table 1: Number of Edges in the Interaction Graphs

V (b) =
∑
s∈S

b(s) · V (s) (9)

V (s) = max
a∈A

{
R(s, a) +

∑
s′∈S

P (s′|s, a) · V (s′)
}

(10)

= max
a∈A

{ ∑
e∈E

Re(s, a)
}

+
∑
s′∈S

P (s′|s) · V (s′) (11)

where E is the set of edges in the given interaction graph.
Eq. 10 simplifies to Eq. 11 because all the states in our prob-
lem are uncontrollable states that are independent of the
action of agents. If not all states are uncontrollable states,
then one can still calculate an upper bound on the expected
reward of an optimal joint policy for the MDP [7] or use
existing techniques to solve factored MDPs [3].

5. EXPERIMENTAL EVALUATION
For our experiments, we compare the greedy and MILP-

based algorithms on a problem with 25 possible sensor place-
ment locations arranged in a 5x5 grid as in Figure 1. We
model the problem as an ND-POMDP as one example model
within the VF framework. We vary the maximum number
of available sensors from 5 to 15 to investigate the scalabil-
ity of the algorithms. We set the number of targets to track
to 2 and experiment with two types of target trajectories –
fixed trajectories, where each target can stay at its current
location with probability 0.1 and move to the next location
in its trajectory with probability 0.9, and random trajecto-
ries, where each target can stay at its current location or
move to any neighboring location with equal probability –
to simulate problems where target trajectories are known
and unknown, respectively.

We use CBDP [7], a state-of-the-art ND-POMDP algo-
rithm, as a subroutine in the greedy and MILP-based al-
gorithms to compute joint policies. We set the horizon to
10 and the number of samples to 5. We conduct our ex-
periments on a quad core machine with 16GB of RAM and
3.1GHz CPU, and set a cut-off time limit of 40 hours. Fig-
ures 4 and 5 show the results for problems with random and
fixed target trajectories, respectively, and Table 1 shows the
size of interaction graphs built.

5.1 Runtime Discussions
The runtimes are similar for both problem types. The

only exception is that the upper bound computations are

one order of magnitude slower on random trajectory prob-
lems than on fixed trajectory problems. This result is to be
expected since there is a larger number of state transitions
with non-zero probabilities in random trajectory problems
and, as such, more computation is necessary.

For both problem types, Naive Greedy runs up to one
order of magnitude longer than the Heuristic Greedy and
MILP-based algorithms. The reason is that Naive Greedy
runs CBDP multiple times each time it adds an edge to the
interaction graph. (It runs CBDP each time it evaluates a
candidate edge.) On the other hand, the Heuristic Greedy
and MILP-based algorithms run CBDP only once to com-
pute the joint policy for its interaction graph.

For random trajectory problems, the MILP-based algo-
rithm is faster than the Heuristic Greedy algorithm except
for problems that are very small (problems with 5 sensors).
The reason for this behavior is the following: In these prob-
lems, there is a large number of edges with non-zero proba-
bilities that a target will be at those edges since the targets
are performing random walks. Additionally, the Heuristic
Greedy algorithm uses heuristic values (in Eq. 4) that as-
sume that the sensors at locations connected by an edge will
coordinate with each other to get the reward at that edge
(since we are taking the maximum over all joint actions in
that edge). Therefore, the algorithm will add a large number
of edges with non-zero probabilities to its interaction graph
as long as adding those edges do not require more sensors
than available.

On the other hand, the MILP-based algorithm takes into
account that sensors can only coordinate with at most one
neighboring sensor at each time step in choosing its edges.
(Each agent must have the same action for all value factors.)
Thus, the number of edges in the MILP interaction graph is
smaller than that in the Greedy Heuristic interaction graph,
as shown in Table 1(a). Thus, the runtime of CBDP on the
MILP interaction graph is also smaller that on the Greedy
Heuristic interaction graph.

For fixed trajectory problems, the Heuristic Greedy algo-
rithm is faster than the MILP-based algorithm. The reason
for this behavior is the following: In these problems, there is
a small number of edges with non-zero probabilities that a
target will be at those edges since the targets are always in
one of the edges in their respective trajectories. Therefore,
the Heuristic Greedy algorithm will add a small number of
edges to its interaction graph. The MILP-based algorithm
is also able to exploit this property and only include a small
number of edges to its interaction graph. Thus, the number
of edges in the MILP interaction graph is similar to that
in the Greedy Heuristic interaction graph, as shown in Ta-
ble 1(b). Thus, the runtime of CBDP on both interaction
graphs are also similar.

However, on the computational effort in generating the
interaction graph, the Heuristic Greedy algorithm is more
efficient than the MILP-based algorithm – Heuristic Greedy
takes approximately 0.5 seconds while the MILP-based al-
gorithm takes approximately 25 seconds. Therefore, this
difference is more noticeable when the problems are small
(as the runtimes of CBDP are small) and diminishes as the
problems become larger.

5.2 Expected Reward Discussions
The expected rewards of joint policies found for random

trajectory problems are smaller than those found for fixed
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Figure 4: Results for Random Trajectories
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Figure 5: Results for Fixed Trajectories

trajectory problems, which is to be expected since there is
a larger entropy in the random trajectory problems.

For both problem types, all three algorithms find com-
parable joint policies except for problems with 5 maximum
available sensors. In these problems, both greedy algorithms
found joint policies with expected rewards that are about
20% smaller than the expected rewards of joint policies
found by the MILP-based algorithm. The reason is that
the first two edges chosen by the greedy algorithm typically
correspond to the starting edges (locations) of the two tar-
gets. These edges are typically disjoint, and four sensors
are thus placed just to track the targets along these two
edges. On the other hand, the MILP-based algorithm typi-
cally places the first four sensors more efficiently by placing
them in a square, and they can thus track targets along
the four edges of the square. Thus, the joint policies found
by the MILP-based algorithm have larger expected rewards
than those found by the greedy algorithm. Table 1(b) shows
this behavior, where the MILP interaction graph has 25%
more edges than the Naive Greedy and Heuristic Greedy
interaction graphs on problems with 5 sensors.

For both problem types, the lower bounds are at most
20% smaller than the expected rewards of the joint poli-
cies found by the MILP-based algorithm, which are at most
35% smaller than the upper bounds. The lower bounds have
smaller expected rewards since they are expected rewards of
open loop joint policies. The upper bounds have larger ex-
pected rewards since they are expected rewards of joint poli-
cies on fully observable problems. These bounds are tighter

in fixed trajectory problems than in random trajectory prob-
lems since fixed trajectory problems are simpler.

Lastly, we also exhaustively enumerated all possible inter-
action graphs for small problems where it is possible to do so,
and in all of those cases, both the optimal and MILP-based
graphs are very similar.

In summary, our experimental results show that the
Heuristic Greedy and MILP-based algorithms are good ways
to automatically generate interaction graphs and find joint
policies that are within reasonable error bounds. The
Heuristic Greedy algorithm is better suited for problems
with little transition uncertainty and the MILP-based al-
gorithm is better suited for problems with more transition
uncertainty. Furthermore, one can use the open loop joint
policies if there is an insufficient amount of time to compute
better closed loop joint policies.

6. CONCLUSIONS
The VF framework has been shown to be a general frame-

work that subsumes many sparse-interaction Dec-POMDP
models including ND-POMDPs. Existing algorithms for
these models assume that the interaction graph of the prob-
lem is given. However, there have been no studies on the
automated generation of interaction graphs. In this paper,
we introduced two greedy algorithms and a MILP-based al-
gorithm to automatically generate interaction graphs and
establish lower and upper bounds on the expected reward
of an optimal joint policy. The greedy algorithms greedily
adds value factors (or edges) to the interaction graph based



on their actual or estimated contribution to the expected
reward. The MILP-based algorithm generates an interac-
tion graph by choosing value factors to form an interaction
graph such that an optimal open loop joint policy on that
interaction graph is optimal across all possible interaction
graphs.

Our experimental results show that they find reasonable
joint policies (their expected rewards are at least 65% of
a loose upper bound). The Heuristic Greedy algorithm is
faster than the MILP-based algorithm in problems with less
transition uncertainty and vice versa in problems with more
transition uncertainty. In conclusion, we examined the chal-
lenge of automatically generating interaction graphs and of-
fered several general methods that performed well in a sensor
network coordination testbed. These methods offer a foun-
dation for further exploration of this area.
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