
On the Use of Off-the-Shelf Machine Learning
Techniques to Predict Energy Demands of

Power TAC Consumers

Francisco Natividad, Russell Y. Folk, William Yeoh, and Huiping Cao

Department of Computer Science
New Mexico State University
Las Cruces NM 88003, USA

{fnativid,rfolk,wyeoh,hcao}@cs.nmsu.edu

Abstract. The Power Trading Agent Competition (Power TAC) is a
feature-rich simulation that simulates an energy market in a smart grid,
where software brokers can buy energy in wholesale markets and sell
energy in tariff markets to consumers. Successful brokers can maximize
their profits by buying energy at low prices in the wholesale market and
selling them at high prices to the consumers. However, this requires that
the brokers have accurate predictions of the energy consumption of con-
sumers so that they do not end up having excess energy or insufficient
energy in the marketplace. In this paper, we conduct a preliminary in-
vestigation that uses standard off-the-shelf machine learning techniques
to cluster and predict the consumption of a restricted set of consumers.
Our results show that a combination of the popular k-means, k-medoids,
and DBSCAN clustering algorithm together with an autoregressive lag
model can predict, reasonably accurately, the consumption of consumers.

Keywords: Smart Grid, Artificial Intelligence, Multi-Agent System,
Machine Learning

1 Introduction

With the rise in the production of renewable energy in the residential market
as well as the proliferation of electric vehicles, there is a concerted effort to
transform the conventional power grid into a “smart grid”. A feature of this smart
grid is an energy market, where software agents can buy and sell energy. In this
energy market, transactions can occur with all players in the current energy grid
from conventional energy producers with power plants to conventional energy
consumers in the residential market.

Rich simulations such as the Power Trading Agent Competition (Power
TAC) [11] provide an efficient way for researchers to test different possible char-
acteristics of this market before deployment in the real world. In the Power TAC
smart grid simulation, a software agent acts as a broker to buy energy in bulk
from a wholesale market and sells energy to consumers in a tariff market. The
aim of the broker is to maximize its profits through intelligent bidding strategies

in the wholesale market and intelligent tariff designs in the tariff market. This
game was developed as a scenario for the annual Trading Agent Competition, a
research competition with over a decade of history [18].

For brokers to do well in this competition, one of the key requirements is that
they need to be able to predict the energy demands of consumers in the tariff
market accurately. An accurate prediction will allow the broker to identify the
amount of energy accurately that it needs to purchase in the wholesale market,
which can then translate to effective wholesale bidding strategies to purchase
energy at the low prices, resulting in larger profits when the energy is sold to
the consumers.

In this paper, we report results of our preliminary study, where we use stan-
dard off-the-shelf machine learning techniques to identify classes of consumers
that have predictable energy requirements. The identification of such classes will
allow a broker to design tariffs that specifically target those classes of consumers
and exploit their highly predictable energy demands to maximize overall profits.
Our results show that a combination of the popular k-means, k-medoids, and
DBSCAN clustering algorithm together with an autoregressive lag model can
predict, reasonably accurately, the consumption of consumers.

2 Background: Power TAC

Power Trading Agent Competition (Power TAC) [11] is a feature-rich simulation
suite available to researchers interested in working on the smart grid problem.
Power TAC offers researchers the chance to explore many characteristics of future
smart grids by allowing the creation of agents that operate in several different
energy markets including the wholesale, the tariff, and the load-balancing mar-
kets. The goal of each agent is to acquire energy and sell it at a profit to its
customers. This game was designed as a scenario for the annual Trading Agent
Competition, a research competition with over a decade of history [18].

The wholesale market attempts to simulate existing energy markets such as
the European or North American large energy producer. In Power TAC, the
wholesale market is structured as a “day-ahead market,” where the energy is a
perishable good, which allows brokers to buy and sell quantities of energy for
future delivery. Market structures like this exist across many different types of
perishable goods, so finding effective, robust, automated bidding strategies for
these markets is a significant research challenge.

The tariff market is where the major portion of energy purchased from the
wholesale market is sold. Energy is sold to consumers (e.g., households, offices,
etc.) through tariffs offered by the brokers. The overall goal of each broker is
to maximize its profit (e.g., by selling energy in the tariff market at a higher
price than the purchase price of the energy in the wholesale market). Because
of this, the broker wishes to offer competitive tariffs that attract a large pool of
consumers.

There are a variety of tariff options available for a broker to publish that
allows for consumer and prosumer (e.g., consumers that have access to renewable

energy such as solar panels) customers. For example, brokers may structure
tariffs that are tiered where energy kept below a given threshold is priced low
but the price increases when more is required. Another option is to price energy
according to the time of the day or day of the week allowing brokers to sell energy
at a higher price during peak hours. Power TAC also models customers with
electric vehicles and allows brokers to issue specific tariffs that are specialized
to their needs or controllable tariffs that can be interrupted if the energy cost is
too great.

Simulated consumers can be broken down into two categories: elemental mod-
els and factored models. Elemental models define a consumer profile using granu-
lar characteristics such as the number of members in the household, the number
of working days of the members, and the number of appliances in the house-
hold. However, defining elemental models in a simulation might not be efficient
in modeling large-population consumers. To alleviate this limitation, factored
models are introduced. Factored models can represent profiles of large consumer
populations such as hospitals, campuses, apartment complexes, office buildings,
etc.

The third major market is the load-balancing market, which functions as an
energy equalizer in the Power TAC simulation. The current constraints of the
simulation allow for an infinite supply of energy; that is, brokers will never be
short on the energy promised to their customers. However, this requires that a
broker that is unable to meet energy demands in other markets purchase the
remaining energy in the load-balancing market at much higher than average
prices. Because of this, it is in a broker’s best interest to accurately predict the
demand that it is required to fulfill.

3 Power TAC Consumer Demand Prediction

We now describe our approach to better understand if consumers have highly
predictable consumption rates that can be exploited in a Power TAC agent. The
high-level idea of our approach is as follows:

(1) We generated data for two sets of experiments. In the first smaller con-
trolled experiment, we focused on household elemental models and vary the
number of members in the household and the number of working days of
the members. In the second larger uncontrolled experiment, we generated
data for both factored and elemental models with their default Power TAC
configurations.

(2) We used dimensionality reduction techniques to reduce the dimensions of
the data points in order to reduce the training time.

(3) We clustered the data using three off-the-shelf clustering algorithms: k-
means++ [5], k-medoids [10], and DBSCAN [7].

(4) We predicted the demand of the clusters using two off-the-shelf prediction
methods [15]: an autoregressive lag model and a 2-week moving average
predictor.

3.1 Data Generation

In Power TAC, a bootstrap file containing bootstrap data is generated as a
unique seed for a new game. The bootstrap data is used as the beginning set of
consumption patterns per consumer that a broker is allowed to analyze before
the start of a game. The bootstrap file contains game parameters and about two
weeks or 360 hours of historical information (e.g., consumer data, weather data,
etc.). Once the game begins, a simulation file containing game data is generated
using a bootstrap file that began the game.

In this paper, we analyzed power consumption patterns using two experi-
ments – a smaller controlled experiment with customized Power TAC config-
urations and a larger uncontrolled experiment with default Power TAC con-
figurations. The first smaller and controlled experiment used 35 different con-
figurations by manipulating two characteristics of a household consumer; the
ranges of members in a household and working days were set between 1 and
5 and between 1 and 7, respectively. Note that a household consumer is repre-
sented virtually by two loads (a base load and controllable load) with four differ-
ent tariff shifting properties (non-shifting, smart-shifting, regularly-shifting, and
randomly-shifting). This resulted in eight different types of virtual consumers.
For each of the 8 types of virtual consumers, there were 35 configurations with
100 distinct bootstrap files generated per configuration. Each game had about
58 days, or 1,399 hours, of energy consumption. In total, this experiment gen-
erated 28,000 data points of consumption information. The second larger and
uncontrolled experiment included all consumers in a default Power TAC game.
A typical Power TAC game includes 28 elemental and factored consumers. This
experiment produced 100 distinct default bootstrap files and associated game
data for a total of 2,800 data points.

Once the data had been generated by the Power TAC games, both the boot-
strap and simulation files were prepared for our clustering and prediction algo-
rithms. A modified version of the Power TAC Log Tool [4] was used to perform
the extraction of data into a comma separated format (CSV).

The CSV files were transformed into a matrix for bootstrap data B and game
data G. B contains about two weeks or 360 hours of historical consumption data
points per consumer:

B =

 c1,0 . . . c1,359
...

...
...

cN,0 . . . cN,359

 (bootstrap consumption for N consumers)

where ci,j is the energy consumption of consumer i at time step j. Also, the
bootstrap data for consumer i is indexed by Bi.

For each bootstrap file, there is an associated simulation file with game data
G, where the game data for consumer i is indexed by Gi.

G =

 c1,360 . . . c1,1758
...

...
...

cN,360 . . . cN,1758

 (simulation consumption for N consumers)

All bootstrap and game data are paired and represented by matrix D.

D =

B1 G1

...
...

BN GN

 (paired consumption data)

The rows in matrix D are then shuffled and split in half into a training dataset
and a test dataset. Training bootstrap data is represented by Btrain and training
game data is represented by Gtrain. Similarly, test bootstrap data is represented
by Btest and test game data is represented by Gtest.

3.2 Dimensionality Reduction

Principal Component Analysis (PCA) is a technique that is widely used for
applications such as dimensionality reduction, lossy data compression, feature
extraction, and data visualization [9]. PCA can be defined as the orthogonal pro-
jection of a dataset onto a lower dimensional linear space, known as the principal
subspace, such that the variance of the projected data is maximized [6]. Princi-
pal components were calculated using Singular Value Decomposition (SVD) on
the covariance matrix of a training bootstrap dataset. SVD creates three ma-
trices: left singular vectors represented as a matrix U, where each column is a
unit vector representing a principal component; a singular values matrix V that
has the variance represented by each principal component; and a right singular
matrix, which was ignored. Using the singular values V, one can select P prin-
cipal components from M dimensions to retain a certain percentage of the total
variance R using the following equation:

R =

∑P
i=1 Vi∑M
i=1 Vi

(1)

Before applying PCA, the training bootstrap dataset Btrain should be stan-
dardized. In other words, the training bootstrap dataset should be rescaled to
have zero mean and unit variance using the z-score normalization in Equa-
tion (2). Calculating the z-score requires the mean E[Btrain] and standard devi-
ation σBtrain [8].

z-score =
Btrain − E[Btrain]

σBtrain

(2)

Once Btrain is standardized, SVD was applied to generate the principal com-
ponents. The principal components were selected by solving Equation (1) with
R ≥ 0.9, representing ninety-percent retained variance. Then, Btrain was pro-
jected onto a lower dimensional subspace defined by the selected principal com-
ponents.

3.3 Clustering

We now describe how we clustered the training bootstrap dataset Btrain. We used
the following off-the-shelf clustering algorithms: k-means++, k-medoids, and

DBSCAN. k-means++ is based on a well known partitioning based algorithm
called k-means [5]. k-means++ adds a heuristic when initializing the cluster
centroids used in k-means, then uses the original k-means algorithm. A known
problem with the k-means algorithm is its weakness with the presence of noise,
which can cause it to fail to converge [8]. Algorithm 1 presents the pseudocode
of k-means++. In the k-means pseudocode, D(x) denotes the shortest distance
from a data point to the closest center we have already chosen [5].

Algorithm 1 k-means++ algorithm

1: procedure k-means++(X, k)
2: arbitrarily choose a data point from X as centroid C1.

3: for each i ∈ {2, . . . , k}, choose a data point from X with probability D(x)2∑
x∈X D(x)2

as centroid Ci.
4: repeat
5: For each i ∈ {1, . . . , k}, set the clusters Ci to be the set of points in X that

are closer to ci than those points that are to cj for all j 6= i.
6: For each i ∈ {1, . . . , k}, set ci to be the center of mass of all points in

Ci : ci = 1
|Ci|

∑
x∈Ci

x.
7: until C no longer changes
8: end procedure

We also explored the partitioning-based algorithm Partitioning Around
Medoids (PAM), a popular approximation algorithm of k-medoids designed by
Kaufman et al. [10]. PAM uses two phases: a build phase, where initial k medoids
are selected arbitrarily, and a swap phase, where the algorithm attempts to find
a substitution for a current medoid with a non-medoid that reduces the within-
cluster distance. PAM is shown in Algorithm 2 and in this paper is referred to
as k-medoids.

Algorithm 2 k-medoids PAM algorithm

1: procedure k-medoids(X, k)
2: arbitrarily choose k data points from X as the initial medoids.
3: repeat
4: for each non-medoid data point, (re)assign it to the cluster with the nearest

medoid.
5: select a non-medoid data point, swap with a current medoid that reduces

the total within-cluster distance.
6: until no change
7: end procedure

To define the number of clusters k for k-means and k-medoids, we used two
methods. The first is through hierarchical clustering, which creates a hierarchy

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Data Points

D
is

ta
n
c
e

Fig. 1. Dendrogram of our dataset

that can be presented as a dendrogram. Figure 1 shows an example of a den-
drogram. The dendrogram represents related data, and each successive relation
creates the hierarchy. Therefore, it provides a visual tradeoff between the num-
ber of clusters and the size of each cluster. The larger the distance value for
which a cut is made, the fewer the number of clusters and the larger the size
of the clusters. For example, if we chose to cut at distance = 100, we will have
k = 9 clusters, which are about equal size.

The second method to choose k is the elbow method, which is based on
increasing the number of clusters to help reduce the sum of within-cluster dis-
tances of each data point to its cluster representative. We first select a small k

and then slowly increment it until
√

N
2 [8], where N is the number of data points

in the dataset. Figure 2 shows an example of the total within-cluster distance as
a function of the number of clusters k for the k-means algorithm. The goal is to
choose k at the “elbow,” which is when increasing k does not significantly reduce
the within-cluster distances. A reasonable “elbow” for our figure is at k = 12,
which is indicated by an arrow.

Finally, Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) is a density-based clustering algorithm that uses a similarity heuristic
to find groups that contain a defined minimum number of data points δ within
a defined ε-distance. The algorithm selects a data point at random and greedily
adds data points that reside within ε of the start data point. Once the mini-

Number of clusters (k)
0 10 20 30 40 50 60

T
o

ta
l
w

it
h

in
-c

lu
s
te

r
d

is
ta

n
c
e

×10
6

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Fig. 2. Tradeoff between within-cluster
distance and number of clusters k

4th nearest neighbor per data point
0 1000 2000 3000 4000 5000 6000 7000

D
is

ta
n

c
e

0

10

20

30

40

50

60

70

80

90

Fig. 3. Tradeoff between distance ε and
number of data points whose 4th nearest
neighbor is within ε

mum number of data points is obtained, it will attempt to expand the cluster
by continuously clustering more data points within ε from any data point in the
cluster. Algorithm 3 shows the pseudocode of DBSCAN.

DBSCAN is different from k-means and k-medoids in that it requires a min-
imum number of data points δ to define a cluster and a maximum distance ε
to associate dense neighbors. These parameters can be estimated using methods
devised by Ester et al. [7]. For example, in Figure 3, δ = 4 and ε = 22.49.

3.4 Prediction

We now describe how we learn the parameters of prediction methods using the
game training datasets Gtrain. We used two off-the-shelf methods to predict the
energy consumption of consumers. The first is a moving average with a two week
or 336 hour window defined by:

xt = E[xt−336 + · · ·+ xt−1] (3)

which takes two weeks of the known consumption in the past and averaging for
an estimated next consumption value, xt, at consumption hour t.

The second is a variant of the classical autoregressive model (AR) [15] defined
as:

xt = w1 · xt−h + w0 (4)

where xt is the predicted future energy consumption; w1 and w0 are weights and
the model uses the value from a fixed “lag” in the past xt−h; where h is the lag
value. This variant equation is used because it performed well with the periodic
consumption behavior of the household consumers. To determine the best lag
value, we attempted to find consumption patterns that may exist in the time

Algorithm 3 DBSCAN algorithm

1: procedure DBSCAN(X, ε, δ)
2: mark all data points in X as unvisited
3: repeat
4: randomly select an unvisited object x;
5: mark x as visited;
6: if the ε-neighborhood of x has at least δ points then
7: create a new cluster C and add x to C;
8: set Π as the set of points in the ε-neighborhood of x;
9: for each point x′ in Π do

10: if x′ is unvisited then
11: mark x′ as visited
12: if ε-neighborhood of x′ has at least δ points then
13: add those points to Π
14: end if
15: end if
16: if x′ is not yet a member of any cluster then
17: add x′ to C
18: end if
19: end for
20: output C
21: else
22: mark x as noise
23: end if
24: until no object is unvisited
25: end procedure

series data. Using the equation:

γ̂(h) =
1

m

m−h∑
i=1

(xi+h − x̄)(xi − x̄) (5)

we found the sample autocovariance of the time series data [15], where h is the
lag and m is the number of time steps in the time series. Then, using the equation
below:

ρ̂(h) =
γ̂(h)

γ̂(0)
(6)

we can compute the sample autocorrelation with the sample autocovariance of
the original time series shifted by h hours γ̂(h) over the sample autocovariance of
the original time series γ̂(0). Figure 4 plots an example sample autocorrelation
and one can visualize that there is a peak correlation at 24-hour intervals.

Therefore, the variant autoregression lag model in equation (4) uses the lag
value of 24 simulated hours in the past.

Fig. 4. Sample autocorrelation as a function of the lag

4 Experimental Results

Recall that we have controlled and uncontrolled experiments. We ran our experi-
ments with the three clustering algorithms described in Section 3.3 and used the
two prediction algorithms described in Section 3.4 to understand the advantages
of clustering. To evaluate our algorithms on the test datasets, we associate the
test bootstrap data for each consumer to the most similar cluster and used the
prediction model of that cluster to predict the consumption in the test game
data associated to that test bootstrap data.

We used k = {6, 10} for the controlled experiments of base and controllable
loads defined by the hierarchical clustering and elbow methods for the k-means
and k-medoids clustering algorithms, and we set δ = 4 and ε = {11.77, 16.34} for
base and controllable loads, respectively, for the DBSCAN algorithm. Similarly,
we used k = 2 for the uncontrolled experiments of mixed both load types, and
we set δ = 4 and ε = 0.75 for the mixed load types. We also used the lower and
upper limits of k being 1 cluster and N clusters, a cluster per training bootstrap
data point. This provided us an idea of a possible lower and upper bound for
predictive error using partitioning based algorithms k-means and k-medoids.

Note, in our experiments we found k-means++ and k-medoids to have very
similar results during prediction. Hence, we only discuss k-means++ because it
had a slightly better result than k-medoids. We used the Mean Squared Error
(MSE) to analyze the prediction error of both prediction methods. The MSE

Table 1. Controlled Experiment Prediction MSE with k-means++

k Load Type Moving Average Autoregressive Lag Model

1 Base 1.4148e-05 kWh 5.8561e-06 kWh

6 Base 1.4148e-05 kWh 5.8545e-06 kWh

10 Base 1.4148e-05 kWh 5.8425e-06 kWh

7000 Base 1.4148e-05 kWh 5.9506e-06 kWh

1 Controllable 1.8476e-05 kWh 1.8691e-05 kWh

6 Controllable 1.8476e-05 kWh 1.8229e-05 kWh

10 Controllable 1.8476e-05 kWh 1.8201e-05 kWh

7000 Controllable 1.8476e-05 kWh 1.7819e-05 kWh

Table 2. Controlled Experiment Prediction MSE with DBSCAN

ε Load Type Moving Average Autoregressive Lag Model

11.77 Base 1.4148e-05 kWh 5.8536e-06 kWh

16.34 Controllable 1.8476e-05 kWh 1.8685e-05 kWh

was computed using:

MSE =
1

n ·m

n∑
i=1

m∑
j=1

(ĉi,j − ci,j)2 (7)

where ĉi,j is predicted energy consumption of consumer i during hour j, ci,j is
the actual energy consumption of consumer i during hour j, n is the number of
consumers in the test dataset, and m is the number of time steps in the time
series.

In the smaller controlled experiments, Tables 1 and 2 tabulate the prediction
MSE for k-means and DBSCAN, respectively. For both clustering algorithms, the
autoregressive lag model outperformed the moving average for base loads. The
reason is that it has a more predictable consumption pattern. On the other hand,
the autoregressive lag model and the moving average model performed similarly
for controllable loads. The reason is that the consumption of controllable loads is
more erratic. A more granular view of per-cluster MSE is presented in Figures 5
to 8.

In the larger uncontrolled experiments, Tables 3 and 4 tabulate the prediction
MSE for k-means and DBSCAN, respectively. In both clustering algorithms, the
autoregressive model also outperformed the moving average. The per-cluster
view is presented in Figures 9 and 10, where the y-axis is in log scale.

Autoregressive Lag Model Moving Average

Cluster ID

1 2 3 4 5 6

M
S

E

×10
-5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
k-means++ MSE

Fig. 5. Prediction MSE: Base Load in
Controlled Experiment with k-means++
(k = 6)

Cluster ID

1 2 3 4 5

M
S

E

×10
-5

0

0.5

1

1.5

2

2.5

3
DBSCAN MSE

Fig. 6. Prediction MSE: Base Load in
Controlled Experiment with DBSCAN

Cluster ID

1 2 3 4 5 6

M
S

E

×10
-5

0

0.5

1

1.5

2

2.5

3

3.5
k-means++ MSE

Fig. 7. Prediction MSE: Controllable
Load in Controlled Experiment with k-
means++ (k = 6)

Cluster ID

1 2 3 4

M
S

E

×10
-5

0

1

2

3

4

5

6

7

8

9
DBSCAN MSE

Fig. 8. Prediction MSE: Controllable
Load in Controlled Experiment with DB-
SCAN

Cluster ID
1 2

L
o

g
(M

S
E

)

10
-1

10
0

10
1

10
2

k-means++ MSE

Fig. 9. Prediction MSE: Uncontrolled
Experiment with k-means++ (k = 2)

Cluster ID
1 2 3 4 5 6 7

L
o

g
(M

S
E

)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

DBSCAN MSE

Fig. 10. Prediction MSE: Uncontrolled
Experiment with DBSCAN

Table 3. Uncontrolled Experiment Prediction MSE with k-means++

k Load Type Moving Average Autoregressive Lag Model

1 Both 1.9750 kWh 0.5161 kWh

2 Both 1.9750 kWh 0.4999 kWh

1400 Both 1.9750 kWh 0.4928 kWh

Table 4. Uncontrolled Experiment Prediction MSE with DBSCAN

ε Load Type Moving Average Autoregressive Lag Model

0.75 Both 1.9750 kWh 0.4925 kWh

5 Related Work

While there is a large number of Power TAC brokers that have competed in the
past Power TAC competitions including AgentUDE15 [1], Maxon15 [2], Merta-
cor [3], COLDPower [14], TacTex14 [16], and CWIBroker14 [12], many of the
approaches used by the brokers are not published publicly. As such, it is difficult
to accurately identify the types of learning approaches taken by the agents. We
describe below a sample of brokers that do publish their approaches and describe
how we differ from them in our learning methods.

Parra Jr and Kiekintveld [13] investigated the use of a large number of algo-
rithms including linear regressions, decision trees, and k-nearest neighbors, all
implemented on WEKA, to predict customer energy usage patterns in Power
TAC. Their analysis used weather and energy consumption to perform analysis
on different types of consumers in a Power TAC simulation. The main difference
between their work and ours is that we used dimensionality reduction techniques
as well as clustering prior to using prediction algorithms. Unfortunately, their
results show that their techniques were not successful in finding a good model
without a high error.

Urieli and Stone [16] also uses learning algorithms in their TacTex14 broker,
where they cluster consumers not by their energy usage but by their type. For
example, office complex consumers are all clustered together independent of the
number of occupants in the office complex, which is not known to the broker.
They then use a locally weighted linear regression model to predict the energy
consumption of those clustered consumers.

Finally, the approach taken by Wang et al. [17] is the most similar to ours,
where they too cluster customers according to their energy usage using the k-
means algorithm. However, their prediction methods are different, where they
propose two methods. The first predicts the future consumption based on a
weighted sum of the current consumption and the historical consumption and
the second uses logistic regression based on historical usage data and weather
data. As they also discussed the strategies of their broker for the other parts of

the competition (i.e., the wholesale, imbalance, and tariff markets), they show
empirical results on how their broker performed overall. As such, it is not known
how effective their prediction algorithms are. In contrast, we show that our
autoregressive lag model, which is significantly simpler and computationally ef-
ficient, has a small error and illustrate the underlying reason for this behavior,
which is the high correlation in energy consumption in 24-hour intervals.

6 Conclusions and Future Work

In this preliminary study, we show that off-the-shelf clustering and prediction
algorithms can be effectively used to classify consumers based on the predictabil-
ity of their energy consumptions. We show that the k-means, k-medoids, and
DBSCAN clustering algorithms coupled with an autoregressive lag model can
predict energy consumption of consumers with reasonable accuracy. These re-
sults show that there is a strong temporal structure to the energy consumptions.
Finally, we also plan to exploit the strong temporal correlations and integrate
the clustering and prediction algorithms into an actual Power TAC broker agent
for the competition.

Acknowledgments

This research is partially supported by NSF grant 1345232. The views and con-
clusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or the U.S. government.

Bibliography

[1] AgentUDE broker for 2015. http://www.powertac.org/wiki/index.php/AgentUDE15
(2015)

[2] Maxon broker for 2015. http://www.powertac.org/wiki/index.php/Maxon15
(2015)

[3] Mertacor broker for 2015. http://www.powertac.org/wiki/index.php/Mertacor2015
(2015)

[4] Powertac tools. https://github.com/powertac/powertac-tools (2015)

[5] Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding.
In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. pp.
1027–1035 (2007)

[6] Bishop, C.: Pattern Recognition and Machine Learning. Information science
and statistics, Springer (2013)

[7] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings
of the Conference on Knowledge Discovery and Data Mining. pp. 226–231
(1996)

[8] Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. The
Morgan Kaufmann Series in Data Management Systems, Elsevier Science
(2011)

[9] Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics,
Springer (2002)

[10] Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. North-
Holland (1987)

[11] Ketter, W., Peters, M., Collins, J.: Autonomous agents in future energy
markets: the 2012 power trading agent competition. In: Proceedings of the
AAAI Conference on Artificial Intelligence. pp. 1298–1304 (2013)

[12] Liefers, B., Hoogland, J., La Poutr, H.: A successful broker agent for power
tac. In: Ceppi, S., David, E., Podobnik, V., Robu, V., Shehory, O., Stein,
S., Vetsikas, I.A. (eds.) Agent-Mediated Electronic Commerce. Designing
Trading Strategies and Mechanisms for Electronic Markets, Lecture Notes
in Business Information Processing, vol. 187, pp. 99–113. Springer Interna-
tional Publishing (2014)

[13] Parra Jr, J., Kiekintveld, C.: Initial exploration of machine learning to pre-
dict customer demand in an energy market simulation. In: Proceedings of
Workshop on Trading Agent Design and Analysis (2013)

[14] Serrano, J., de Cote, E.M., Rodŕıguez, A.Y.: Fixing energy tariff prices
through reinforcement learning. In: Proceedings of the International Work-
shop on Agent based Complex Automated Negotiations (2015)

[15] Shumway, R., Stoffer, D.: Time Series Analysis and Its Applications: With
R Examples. Springer Texts in Statistics, Springer (2010)

[16] Urieli, D., Stone, P.: Tactex’13: a champion adaptive power trading agent.
In: Proceedings of the International Conference on Autonomous Agents and
Multi-agent Systems. pp. 1447–1448 (2014)

[17] Wang, X., Zhang, M., Ren, F., Ito, T.: Gongbroker: A broker model for
power trading in smart grid markets. In: International Conference on Web
Intelligence and Intelligent Agent Technology. pp. 21–24 (2015)

[18] Wellman, M.P., Greenwald, A., Stone, P., Wurman, P.R.: The 2001 trading
agent competition. Electronic Markets 13(1), 4–12 (2003)

