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Abstract
Most studies investigating models and algorithms for distributed constraint optimiza-

tion problems (DCOPs) assume that messages arrive instantaneously and are never lost.
Specifically, distributed local search DCOP algorithms, have been designed as synchronous
algorithms (i.e., they perform in synchronous iterations in which each agent exchanges
messages with all its neighbors), despite running in asynchronous environments. This is
true also for an anytime mechanism that reports the best solution explored during the run
of synchronous distributed local search algorithms. Thus, when the assumption of perfect
communication is relaxed, the properties that were established for the state-of-the-art local
search algorithms and the anytime mechanism may not necessarily apply.

In this work, we address this limitation by: (1) Proposing a Communication-Aware
DCOP model (CA-DCOP) that can represent scenarios with different communication dis-
turbances; (2) Investigating the performance of existing local search DCOP algorithms,
specifically Distributed Stochastic Algorithm (DSA) and Maximum Gain Messages (MGM),
in the presence of message latency and message loss; (3) Proposing a latency-aware mono-
tonic distributed local search DCOP algorithm; and (4) Proposing an asynchronous anytime
framework for reporting the best solution explored by non-monotonic asynchronous local
search DCOP algorithms. Our empirical results demonstrate that imperfect communica-
tion has a positive effect on distributed local search algorithms due to increased exploration.
Furthermore, the asynchronous anytime framework we proposed allows one to benefit from
algorithms with inherent explorative heuristics.

1. Introduction

Recent advances in computation and communication have resulted in realistic distributed
applications (e.g., IoT applications), in which humans and technology interact and aim
to optimize mutual goals. A well known example for such an application is of a smart
home, where smart devices must coordinate with each other in order to arrive at a good
schedule that satisfies constraints and is guided by users’ preferences (Fioretto, Yeoh, & Pon-
telli, 2017; Rust, Picard, & Ramparany, 2022). A promising multi-agent approach to solve
these types of problems is to model them as Distributed Constraint Optimization Problems
(DCOPs) (Modi, Shen, Tambe, & Yokoo, 2005; Petcu & Faltings, 2005; Fioretto, Pontelli,
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& Yeoh, 2018), where decision makers are modeled as agents that assign values to their
variables. The goal in a DCOP is to optimize a global objective in a decentralized man-
ner. Unfortunately, the communication assumptions of the DCOP model (Yokoo, Ishida,
Durfee, & Kuwabara, 1992) are rather simplistic and may need to be updated to reflect
today’s communication technologies: (1) Messages are never lost; (2) All messages have
very small and bounded delays; and (3) All messages arrive in the order that they were
sent. These assumptions do not reflect real-world characteristics, where messages may be
disproportionately delayed, or dropped, due to congestion and bandwidth limitations.

Because DCOPs are NP-hard (Modi et al., 2005), considerable research effort has been
devoted to developing incomplete algorithms for finding good solutions quickly (Yokoo &
Hirayama, 1996; Maheswaran, Pearce, & Tambe, 2004; Zhang, Wang, Xing, & Wittenberg,
2005; Basharu, Arana, & Ahriz, 2005; Farinelli, Rogers, Petcu, & Jennings, 2008; Smith
& Mailler, 2010; Hoang, Fioretto, Yeoh, Pontelli, & Zivan, 2018; Nguyen, Yeoh, Lau, &
Zivan, 2019). Distributed local search algorithms (e.g., Distributed Stochastic Algorithm
(DSA) (Zhang et al., 2005), and Maximum Gain Messages (MGM) (Maheswaran et al.,
2004)) are simple incomplete algorithms with a naturally distributed structure.

The general design of most state-of-the-art local search algorithms for DCOPs (including
DSA and MGM) is synchronous. However, the general setting in which agents are expected
to perform is asynchronous (Lynch, 1997), since the environment in which they perform in
is distributed and the agents do not hold a mutual clock. Therefore, the synchronization is
achieved by the exchange of messages in each iteration of the algorithm. In each iteration, an
agent receives the messages sent to it from its neighbors in the previous iteration, performs
computation, and sends messages to all its neighbors (Zhang et al., 2005; Zivan, Okamoto,
& Peled, 2014).

Although distributed local search algorithms commonly offer no (or little) quality guar-
antees, they were empirically found to produce high quality solutions (Yokoo & Hirayama,
1996; Maheswaran et al., 2004; Zhang et al., 2005). Some of these algorithms do guarantee
other desirable properties, for example, MGM guarantees monotonicity and convergence to
a 1-opt solution (i.e, a solution that cannot be improved by an action of a single agent (Mah-
eswaran et al., 2004; Pearce & Tambe, 2007)). Another property that can be guaranteed by
distributed local search algorithms is the anytime property (see Section 2.3). This property
can be achieved for any synchronous distributed local search algorithm by using the anytime
framework proposed by Zivan et al. (2014). Unfortunately, such distributed local search
algorithms and the anytime framework take advantage of the common simplistic communica-
tion assumptions discussed above. As a result, the guarantees for achieving these properties
(i.e., monotonicity and anytime properties) may no longer hold when communication is
unreliable.

In fact, imperfect communication has a major effect on the performance of synchronous
distributed local search algorithms. In the presence of message latency, every synchronous
iteration is completed only after all the messages sent in the previous iteration arrive and,
therefore, the advancement of the algorithm from one iteration to the next is dependent on
the longest message delay in that iteration. When messages can be lost, an agent may expect
to receive a message from its neighbor while the neighbor is not aware that the message it
sent did not arrive. Thus, these agents are deadlocked, each waiting for the message from
the other.
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In this paper, we make the following contributions:1

1. We propose Communication-Aware DCOP (CA-DCOP),2 an extension of the DCOP
model in which patterns of communication disturbances (e.g., message latency and
message loss) can be represented.

2. We demonstrate that existing distributed local search DCOP algorithms are not robust
to imperfect communication. Thus, we analyze the performance and properties of
standard local search algorithms after they are adjusted to perform asynchronously in
scenarios that include message latency and message loss.

3. We propose a latency-aware monotonic distributed local search (LAMDLS) algorithm
that is guaranteed to converge to a 1-opt solution (similar to the properties of the
MGM algorithm (Maheswaran et al., 2004)).

4. We propose an asynchronous anytime mechanism that allows any local search algo-
rithm running in an environment with imperfect communication to report the best
solution it was able to generate during its run.

5. We show that the presence of imperfect communication can have a positive impact on
exploitative asynchronous local search algorithms. Our empirical results reveal that
solution quality may improve as the quality of communication degrades (both in terms
of message latency and message loss).

Imperfect communication generates a discrepancy between the knowledge that agents
hold to the actual state of the system. Thus, an agent may perform an action that it
considers to be exploitative with respect to the information it holds, expecting to improve
its own state and the global state as well. However, in reality, it’s action degrades its own
state and possibly the global state, and it unknowingly explored an unexpected part of the
search space. Such explorative actions often exposes the agents to higher quality solutions,
allowing them to converge to those better solutions.

2. Background

In this section, we present background on DCOPs, state-of-the-art distributed local search
algorithms for DCOPs, and the existing anytime mechanism that can be used in conjunction
with distributed local search algorithms to keep track of the best solution found.

2.1 Distributed Constraint Optimization Problems (DCOPs)

Without loss of generality, in the rest of this paper, we will assume that all problems are
minimization problems as is commonly assumed in the DCOP literature (Fioretto et al.,
2018). Thus, we assume that all constraints define costs and not utilities. Our description

1. This work is an extension of our published AAMAS 2021 paper (Rachmut, Zivan, & Yeoh, 2021).
2. When referring to communication awareness, we do not mean that agents are aware of the communication

pattern, but rather that the algorithms were designed such that they can overcome communication
limitations.
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of a DCOP is also consistent with the definitions in many DCOP studies (Modi et al., 2005;
Petcu & Faltings, 2005; Gershman, Meisels, & Zivan, 2009).

A DCOP is a tuple 〈A,X ,D,R〉, where A is a finite set of agents {A1, A2, . . . , An}; X is
a finite set of variables {X1, X2, . . . , Xm}, where each variable is held by a single agent (an
agent may hold more than one variable); D is a set of domains {D1, D2, . . . , Dm}, where each
domain Di contains the finite set of values that can be assigned to variable Xi and we denote
an assignment of value d ∈ Di to Xi by an ordered pair 〈Xi, d〉; and R is a set of constraints
(relations), where each constraint Rj ∈ R defines a non-negative cost for every possible value
combination of a set of variables and is of the form Rj : Dj1×Dj2× . . .×Djk → R+∪{0}.A
binary constraint refers to exactly two variables and is of the form Rij : Di×Dj → R+∪{0}.

A binary DCOP is a DCOP in which all constraints are binary. Agents are neighbors
if they are involved in the same constraint. A partial assignment (PA) is a set of value
assignments to variables, in which each variable appears at most once. vars(PA) is the
set of all variables that appear in partial assignment PA (i.e., vars(PA) = {Xi | ∃d ∈
Di∧〈Xi, d〉 ∈ PA}). A constraint Rj ∈ R of the form Rj : Dj1×Dj2× . . .×Djk → R+∪{0}
is applicable to PA if each of the variables Xj1 , Xj2 , . . . , Xjk is included in vars(PA).

The cost of a partial assignment PA is the sum of all applicable constraints to PA over
the value assignments in PA. A complete assignment (or a solution) is a partial assignment
that includes all the DCOP variables (vars(PA) = X ). An optimal solution is a complete
assignment with minimal cost.

For simplicity, we assume that each agent holds exactly one variable (i.e., n = m) and we
focus on binary DCOPs. These assumptions are common in DCOP literature (e.g., (Petcu
& Faltings, 2005; Yeoh, Felner, & Koenig, 2010)). We also assume that for every binary
constraint, both agents involved in the constraint are aware of the content of the domains
of both variables held by them, and that they incur the same cost from each combination
of assignments to these two variables (i.e., that the problems are symmetric).

2.2 Distributed Local Search for DCOPs

Well-known algorithms that use this general framework are the Distributed Stochastic Al-
gorithm (DSA) (Zhang et al., 2005), DSA-Slope Dependent Probability (DSA_SDP) (Zivan
et al., 2014), and theMaximum Gain Messages (MGM) algorithm (Maheswaran et al., 2004).
In the three algorithms, after an initial step in which agents select a value assignment for
their variable (randomly according to Zhang et al. (2005)), agents perform a sequence of
steps until some termination condition is met. In each step, an agent sends its value as-
signment to its neighbors in the constraint graph and receives the value assignments of its
neighbors. The algorithms differ in the way that the agents decide on whether to replace
their value assignments.

In DSA, this decision is made stochastically and has a large effect on the performance
of the algorithm. According to Zhang et al. (2005), if an agent in DSA cannot improve
its current state by replacing its current value assignment, it does not replace it. If it can
improve (or keep the same cost, depending on the version used), it decides whether to replace
its value using a stochastic strategy (see the work by Zhang et al. (2005) for details on the
possible strategies and the differences in the resulting performance).
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DSA_SDP is a variant of DSA, where agents use a more exploratory strategy. An agent
may possibly change assignments, even if a non-deteriorating alternative assignment does
not exist, to a random value after a given amount of iterations. The explorative strategy is
monitored by correlating an agent’s probability of assignment change with the potential for
improvement caused by the replacement.

In MGM, a second iteration is performed in which agents share with their neighbors
the maximal possible gain they can achieve by replacing their value assignment. An agent
replaces its assignment, only if its gain is larger than all its neighbors (ties are broken
deterministically using agents’ indices). As a result, in MGM, neighboring agents cannot
replace assignments concurrently and, thus, its improvement of the general cost is (weakly)
monotonic when applied to symmetric DCOPs. This is in contrast to DSA where, when
neighboring agents change assignments concurrently, the result may be an increase in the
overall cost of the current solution. Moreover, when MGM converges, each agent has a
chance to replace its assignment, but cannot find an alternative assignment that reduces its
local cost (and with it the overall cost). Thus, it converges to a 1-opt solution (a solution
that cannot be improved by the actions of a single agent) (Maheswaran et al., 2004).

2.3 Anytime Distributed Local Search (ALS)

During the execution of a distributed local search algorithm, each agent is aware of the cost of
its current assignment, but no agent is aware of the global cost of the current solution. Thus,
in order to report the best solution that was explored by the algorithm, Zivan et al. (2014)
proposed a mechanism (or framework) that can be used with any local search algorithm,
which guarantees that it will report the best solution found by the local search algorithm.
The framework includes a Breadth-First Search (BFS) spanning tree of the constraint graph,
which the agents use in order to aggregate the costs they incur in each iteration, such that
a single agent (the root of the BFS tree) can decide which solution was best. Zivan et al.
(2014) proved that the overhead in time, memory, communication and privacy is relatively
small.

In more detail, following every iteration k, a leaf agent in the spanning tree includes
in the message it sends to its parent in the tree its local cost. In the following iteration
k + 1, the parent will sum the costs received from its children, add its own cost, and send
the resulting sum of costs to its parent. Thus, after a number of iterations equal to the
height h of the tree, the root agent will be able to compare the cost of the solution that
agents held in iteration k, with the cost of the best solution found so far. If indeed the
solution in iteration k is better (i.e., its cost is smaller), it sends this information down the
tree. Hence, following iteration k + 2h, all agents are aware that the current best solution
is the one they held in iteration k. Each agent must use a memory of size at most 2h to
store the relevant costs and assignments that will allow this process. In terms of runtime, in
order to report the best among m iterations, the mechanism must run for m+ 4h iterations,
including the generation of the BFS tree. The communication overhead is negligible, since
all that is required is a constant addition of information to messages, which are sent by the
algorithm on tree edges. The height h is expected to be small, since the mechanism uses a
BFS tree (see analysis by Zivan et al. (2014)).
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3. Related Work

Most of the studies that investigated the performance of distributed search algorithms in the
presence of imperfect communication considered algorithms for solving distributed constraint
satisfaction problems (DisCSPs) (Zivan & Meisels, 2006; Samadidana & Mailler, 2017).
Zivan and Meisels (2006) proposed a distributed asynchronous simulator that allows to
evaluate the performance of asynchronous complete search algorithms for solving DisCSPs.
The simulator included a designated mailer agent that all messages that were sent from one
agent to another in the system were sent through it. The mailer agent could simulate any
desired communication pattern. We use the same approach in our experimental evaluation.
The evaluation performed by Zivan and Meisels (2006) revealed a clear hierarchy in the
favor of concurrent search algorithms (e.g., (Zivan & Meisels, 2006)) in comparison with
synchronous and asynchronous backtracking algorithms (Yokoo & Hirayama, 2000).

In the work by Samadidana and Mailler (2017) and Samadidana (2021), the performance
of distributed local search algorithms are evaluated when solving problems in scenarios
including message latency and message loss. While the motivation for these studies is
similar to ours in this paper, which is to evaluate the performance of distributed local search
algorithms in the presence of imperfect communication, there are two major differences in
the experimental setup. First, the experiments in the prior work are on DisCSPs (instead of
DCOPs in this paper) with low constraint tightness (i.e., for every binary constraint, most
of the assignments are allowed; in DCOP terms, they incur no cost). Second, the simulator
in the prior work is synchronous and the agents performed in cycles (i.e., in each cycle of
the algorithm, each of the agents in its turn performed computation and sent out messages,
even if it did not receive any messages). In contrast, our evaluations are on an asynchronous
simulator, in which agents act only when they receive a message.

We present in this section existing work on message latency in distributed constraint
reasoning studies. There is a very limited amount of work on the study of message latency
or loss in the context of DCOPs. Researchers have investigated the importance of message
latency in evaluations of DCOP algorithms (Cruz, Gutierrez, & Meseguer, 2014; Tabakhi,
Tourani, Natividad, Yeoh, & Misra, 2017; Tabakhi, Yeoh, Tourani, Natividad, & Misra,
2018). For example, Cruz et al. (2014) conducted experiments where agents are located
physically apart in different machines connected by LAN. They observed that communi-
cation times are orders of magnitude larger than what is typically assumed in the DCOP
community, thereby issuing a call of action to better investigate this area. Our research, in
a large part, is in response to this call. Another thread of relevant research is the work done
by Tabakhi et al. (2017, 2018). In their work, they used realistic network simulators, such
as ns-2 (McCanne & Floyd, 2011), to simulate the wireless communication times between
agents. There are three key differences between these related works and ours: (1) Our em-
pirical evaluations systematically varied the different degrees of message latency and losses
while evaluations of Cruz et al. (2014) were for a fixed setting only; the reason is that their
evaluations are on actual physical hardware while ours are on simulations; (2) We focus on
incomplete local search DCOP search algorithms in this paper while both Cruz et al. (2014)
and Tabakhi et al. (2017, 2018) focused on complete DCOP search algorithms; (3) Finally,
we proposed new variants of DCOP algorithms that are more robust to message delays in
this paper while they focused only on evaluating existing algorithms.
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In the neighboring area of Distributed Constraint Satisfaction Problems (DisCSPs), re-
searchers have investigated the impact of message latency and message loss as well. For
example, Zivan and Meisels (2006) proposed a method for simulating any type of message
delays in which all messages sent by agents are first delivered to an additional mailing agent.
This agent decides on the delay of each message and delivers the messages only after the
selected delay time has passed. Time was counted in terms of logical steps of the algorithm
(e.g., constraint checks or iterations of the algorithm). Our simulator for DCOPs can be
seen as an extension of their simulator for DisCSPs.

The impact of communication delays on DisCSP algorithms was also studied by Fernàn-
dez, Béjar, Krishnamachari, and Gomes (2002). Similar to our findings, they found that ran-
dom delays can actually improve the performance and robustness of AWC (an asynchronous
complete algorithm for DisCSPs). Wahbi and Brown (2014) decoupled the communication
graph from the underlying constraint graph of the problem and studied the effect of different
communication graph topologies on ABT and AFC-ng. In this work, the communication
load was measured by the number of transmission messages during the algorithm execution
and the computation effort that takes the message delay into account, which was measured
by the average of the equivalent non-concurrent constraint checks (Chechetka & Sycara,
2006). Finally, Samadidana and Mailler (2017) and Samadidana (2021) studied the impact
of both message latency and message loss on distributed local search algorithms. The main
difference with our work is that all of the work discussed above focused on DisCSP algo-
rithms while we focused on DCOP algorithms. Further, the simulator used by Samadidana
and Mailler (2017) and Samadidana (2021) is synchronous and the agents performed in cy-
cles (i.e., in each cycle of the algorithm, each of the agents in its turn performed computation
and sent out messages, even if it did not receive any messages). In contrast, our evaluations
are on an asynchronous simulator, in which agents act only when they receive a message.
As a result, we were able to make the interesting observation that the quality of solutions
found may improve as the quality of communication degrades, both in terms of message
latency and message loss.

4. Local Search in the Presence of Imperfect Communication

The first relevant observation one must make when analyzing the effect of imperfect com-
munication on distributed local search algorithms is that local search algorithms for DCOP
are by design synchronous since each agent sends messages to all its neighbors and waits
to receive messages from all of them in each iteration (Zhang et al., 2005; Maheswaran
et al., 2004; Zivan et al., 2014). Therefore, the presence of imperfect communication may
cause major limitations. Message latency can postpone the iterative advancement of the
algorithm and message loss may cause a deadlock as a result of an agent perpetually waiting
for a message that is lost and never resent.

In order to overcome this limitation, agents can perform asynchronously (i.e., avoid wait-
ing for all the messages from neighboring agents to arrive before performing the computation
phase of the iteration). Instead, in the asynchronous versions of the algorithms, agents per-
form computation whenever they receive a message. Then, following each computation,
they read the messages that were received during the computation and compute again. If
an agent does not receive any message during computation, it returns to a waiting mode. In
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any computation phase, agents consider the information received in the message that was
last received from each of their neighbors (Arshad & Silaghi, 2004).3

However, in the presence of imperfect communication, the asynchronous approach may
also suffer consequences on the quality of solutions the algorithm explores:

1. An agent may take into consideration obsolete assignments of its neighbors when se-
lecting alternative value assignments since the information regarding their replacement
was sent but not yet received.

2. When messages can be delayed, messages may be received in a different order than
they were sent (i.e., a message sent at time t from an agent Ai to agent Aj can arrive
before a message sent at time t′ > t from Ai to Aj).

3. Algorithms such as MGM, which are weakly monotonic when performing syn-
chronously, will not maintain this property. An agent may perform actions that indeed
deteriorate the overall solution because it is not aware of the current assignment of its
neighbors.

4. The anytime mechanism proposed by Zivan et al. (2014) is not applicable in such
settings since it is dependent on the ability of agents to evaluate the cost of their
state (their value assignments and the value assignments of their neighbors) in each
iteration.

We address the first issue mentioned above in our empirical evaluation (Section 5),
where we present the quality of the solution as a function of the magnitude of latency and
the probability for a message to be lost.

The second issue above can be addressed using a timestamp mechanism in which every
agent Ai sending a message to its neighbor Aj would add the number of previous messages
it sent to Aj to the message. Thus, Aj could reconstruct the order in which the messages
were sent and it can ignore outdated messages (Lamport, 1978).

In order to overcome the third issue, we present in this section, Latency-Aware Monotonic
Distributed Local Search (LAMDLS), a monotonic algorithm robust to message latency.
While this algorithm addresses scenarios in which messages are delayed and not lost, we
discuss the conditions for it to apply to situations that include message losses. Finally, for
the fourth issue, we additionally present an Asynchronous Anytime Mechanism (AAM) that
agents can use in an asynchronous environment in which messages may be delayed or lost.

4.1 Communication-Aware DCOP

In order to extend the DCOP model to represent communication disturbances, we designed
a Constrained Communication Graph (CCG), that represents the uncertainty in the com-
munication between agents.

To represent the communication limitations, in a CCG, every link of communication
between agents (the vertexes) is represented by an edge and the constraint on each edge

3. The use of the asynchronous version of DSA and MGM is not a novel contribution of this paper; however,
the analysis of their performance in the presence of message latency and message loss is novel.
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defines the latency and probability of a message loss with respect to the communication
exchanged on the link of communication represented by the edge.

Formally, for every edge e in the CCG, tde is the function that represents the delay on e
(i.e., it calculates the time between when a message is sent and when it is received via edge e).
In addition, ple ∈ [0, 1) is the probability that a message sent through the communication
link represented by e is lost. Having defined the CCG graph, we use it to extend existing
multi agent optimization models such as DCOP. The result would be a communication-aware
model, that is, a Communication-Aware DCOP (CA-DCOP) that includes all the elements
of a DCOP: A,X ,D,R, and G, which represents a CCG. An instance of a CCG defines the
message patterns on the communication links between agents, as described above.

4.2 Latency-Aware Monotonic Distributed Local Search (LAMDLS)

We now describe the LAMDLS algorithm, which assumes that messages can be delayed but
are never lost. We briefly discuss how one can extend LAMDLS to handle message losses in
Section 4.2.1.

The basic idea behind the design of the LAMDLS algorithm is that neighboring agents
will not be allowed to perform calculations and decide whether to replace their value as-
signments concurrently. Towards this end, we use an ordered graph coloring structure, in
which agents are divided into subsets. Agents that belong to the same subset hold the same
color while agents from different subsets hold different colors. The set of subsets is ordered
(i.e., there is a mapping from colors to the natural numbers from 1 to NC, where NC is
the number of colors). The neighbors of each agent must hold a different color than its own,
and the agent must know which of them are ordered before it and which after.

In order to generate this structure, the agents perform a Distributed Ordered Color
Selection (DOCS) algorithm, a simple distributed algorithm, inspired by Barenboim and
Elkin (2014):4 Every agent whose index5 is smaller than the indices of all of its neighbors
selects the color 1 and sends it to its neighbors. When an agent receives the color from one
of its neighbor, it stores that information. When an agent receives the colors of all of its
smaller indexed neighbors, it selects a color with the smallest number, which is not selected
by one of its smaller index neighbors, and sends it to its neighbors. Eventually, every agent
will have selected a color that is different from the color of its neighbors.

We demonstrate the execution of DOCS by considering the constraint graph depicted in
Figure 1, where nodes correspond to agents, and the colors of the agents are shown under
the nodes. Agents A1 and A2 have no neighbors with smaller indices. Thus, they select
the color 1 (blue) and send this information in messages to their neighbors. Among these
neighbors, agents A3, A4, and A7 have no other neighbor with smaller indices. Thus, they
select the color 2 (red) and send this information in messages to their neighbors. Finally,
agents A5 and A6 select the colors 1 (blue) and 3 (green), respectively, before sending that
information to their neighbors.

We now describe the theoretical properties of this algorithm and examine its properties
in the presence of message latency.

4. We do not present this algorithm in a formal pseudocode because of its simplicity and since it is not a
novel contribution.

5. We assume that each agent has a unique index.
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Figure 1: A numerical graph color partition.

Let n denote the number of agents in the graph; colori denote the color selected by agent
Ai; ∆ denote the maximal number of neighbors an agent can have; δ denote the maximal
time a message is delayed; and t denote the maximal iteration (computation step) time,
which is O(∆).

Proposition 1 When DOCS converges, each agent Ai ∈ A has selected a color and stored
the colors of all its neighbors.

Proof: Assume that DOCS converged and there exists an agent Ai, where all of its neighbors
with smaller indices have selected a color, and it did not. According to the algorithm,
when it receives the color informing messages from all its smaller index neighbors, it will
select a color. If the agent does not have smaller indexed neighbors, then it selects a color
immediately, contradicting the assumption. If it does have smaller indexed neighbors, since
messages are never lost, these messages will arrive, and agent Ai will select a color, which
contradicts the assumption that the algorithm has converged. �

Proposition 2 DOCS will converge after at most n iterations and, therefore, the time for
convergence is at most n(t+ δ).

Proof: The worst case is when there is no concurrent selection of colors, resulting in the
largest number of iterations needed by the algorithm. This happens, for example, in the
case of a chain constraint graph, where agents are ordered according to their indices. Any
other order that allows agents to select colors concurrently will speed up the process. In
such a chain, there are n − 1 sequential messages, plus a message by the last agent in the
chain informing its neighbors of its color. Thus, there are n sequential iterations, which each
of them takes at most time t, and n sequential messages, where each of them takes at most
time δ. �

It is important to mention that in practice, as we demonstrate empirically, the conver-
gence is much faster.

Lemma 1 When DOCS converges, the color selected by each agent Ai ∈ A is different from
the colors selected by all its neighbors.

Proof: Assume that DOCS converged and Ai chose an identical color to the one selected
by its neighbor Aj ∈ N(i) (i.e., colori = colorj). Since indices are unique, assume
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without loss of generality that i < j. Thus, Aj selects a color only after receiving the
message that updates it with the selection of Ai, and the color it selects must be dif-
ferent than Ai. Since agents to not change their selection, this contradicts our assumption.�

Proposition 3 below was proven for a number of algorithms presented by Barenboim and
Elkin (2014). Nevertheless, we provide a proof to ensure that our version preserves this
property as well.

Proposition 3 Upon the convergence of DOCS, the maximal number of colors selected by
agents is ∆ + 1.

Proof: We prove by induction on the number of agents n. When n = 1, ∆ = 0 and the
number of colors is one. Assume inductively that the proposition holds for any number of
agents n = k. We now provide the proof for n = k + 1: We remove the agent Ai with the
largest index, and solve the problem using DOCS. According to our induction assumption,
the number of colors selected by the agents is at most ∆ + 1. Further, the neighbors of
agent Ai can hold no more than ∆ colors since the agent has at most ∆ neighbors and each
agent can hold exactly one color. Thus, when agent Ai selects a color, it would select the
one color among the ∆ + 1 existing colors that are not held by its neighbors. �

The ordered coloring division achieved by DOCS is used by LAMDLS as follows: Each
agent holds a designated data structure in which it counts the number of computation steps
performed by its neighbors. After each computation step, in which the agent considers to
replace its value assignment, it informs its neighbors with its selection and they update their
local data structure. An agent performs the k-th iteration when the number of iterations
performed by each of its neighbors with a smaller color index than its own is equal to k and
all of its neighbors with larger indices than its own have performed k − 1 iterations.

In more detail, each agent Ai holds a vector of natural numbers vN(i), one number for
each of its neighbors. In addition, it holds a step counter sci for counting the steps of
computation it performs. At the beginning, all numbers in vN(i) are initialized to zero and
sci is initialized to one. After each computation step in which the agent considers to replace
its value assignment, it increments sci by one. Furthermore, the agent includes its counter
sci in each message that it sends. When an agent receives a message from a neighbor Aj , it
updates the relevant entry in vN(i).

Algorithm 1 presents the pseudocode of LAMDLS, which can be executed after each
agent selects its numerated color with DOCS. In LAMDLS, each agent Ai holds its set of
neighbors N(i), divided into two disjoint sets: One holding neighbors that have colors with
smaller indices than its own PC(i) and one holding the colors with larger indices FC(i),
such that PC(i) ∪ FC(i) = N(i) and PC(i) ∩ FC(i) = ∅. After initiating the local counter
sci and the vector of numbers vN(i) (lines 1 – 2), the agent selects a value for its variable
and sends it along with sci to all its neighbors (lines 3 – 4). Then, as long as the algorithm
has not terminated, the agent reacts to messages it receives. Each message from a neighbor
Aj includes a value assignment and the neighbor’s counter scj (line 6). Next, the agent
updates its local_view and vN(i) with valuej and scj (line 7). Then the agent checks if sci
and vN(i) are consistent, if so, it increments sci by one, selects its value assignment, and
sends a message including both to all of its neighbors (lines 8 – 11).
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Algorithm 1: Latency-Aware Monotonic Distributed Local Search (LAMDLS)
input : N(i), // neighbors

PC(i), // neighbors with larger color index
FC(i) // neighbors with smaller color index

output: valuei
1 sci ← 1 // local counter
2 vN(i) ← {0, 0, . . . , 0} // initialize neighbors’ counters
3 valuei ← select_value // assign its variable
4 send(valuei, sci) to N(i)
5 while stop condition not met do
6 when received (valuej , scj) from Aj
7 update local_view and vN(i)

8 if consistent(vN(i), sci, PC(i), FC(i)) then
9 valuei ← select_value // assign its variable

10 sci ← sci + 1
11 send(valuei,sci) to N(i)

The value assignment selected is always the one minimizing the local constraint costs. In
addition, sci is consistent with vN(i) if and only if, for each agent Aj ∈ N(i), if Aj ∈ PC(i),
then scj = sci + 1 and, if Aj ∈ FC(i), then scj = sci. Notice that while PC(i) and FC(i)
are not used in the pseudocode, they are used for the consistency check. This is also true for
the counters sci that are exchanged by the agents. Intuitively, this consistency check ensures
that (1) neighboring agents do not replace assignments concurrently and (2) following each
computation step of an agent, all of its neighbors will have an opportunity to perform a
computation step before it performs its next computation step. Formally, we prove the
following two propositions.

Proposition 4 LAMDLS is weakly monotonic (i.e., each assignment replacement improves
the global cost of the complete assignment held by the agents).

Proof: Following Lemma 1, for each pair of neighboring agents, the order on which they
can replace their assignments is well defined. Thus, neighboring agents cannot replace
assignments concurrently. Moreover, they can only replace assignments after receiving the
current assignments of their neighbors. Thus, since the problem is symmetric, the overall
sum of constraints must not increase when the local cost following an assignment replacement
does not increase. �

Proposition 5 LAMDLS converges to a 1-opt solution.

Proof: Each agent will get a chance to consider change its value after each message that it
receives. Thus, if the algorithm has converged, it means that none of the agents decided to
change their values, implying that none of the agents can improve their local costs. �

In the following paragraphs, we describe the start of a high-level trace for LAMDLS
operating on the constraint graph presented in Figure 1. After the agents have selected

648



Communication-Aware Local Search for DCOPs

their colors, the algorithm is initialized. At this time, for each agent Ai, its sci equals 1
and the scj counters that it stores in vN(i) all equal 0. For example, A1 has one neighbor,
hence, vN(1) = [〈A4:0〉]. On the other hand, agent A4 has three neighbors and vN(4) =
[〈A1:0〉, 〈A5:0〉, 〈A6:0〉]. Moreover, PC(1) = ∅ and FC(1) = [A4]. Similarly, PC(4) =
[A1, A5] and FC(4) = [A6].

After exchanging random assignments (that can be included in the colors selection mes-
sages) the agents wait for their state to indicate that it is their turn to perform computation
steps. Agents A1, A2, and A5 can perform their first computation step concurrently since
their PC set is empty and the counters of the neighbors in their FC sets are equal to their
own (after receiving the messages of their neighbors the counters all equal 1). Agent A7

can perform its computation step when it receives the message from A1. At that time, its
own counter will be 1, while the counter it holds for A1 equals 2. Agent A5 on the other
hand must wait for a message from both agents A3 and A4 before it can perform its second
computation step (i.e., wait until vN(5) = {〈A3:2〉, 〈A4:2〉}). In order to perform the second
computation step, A2 must wait for messages indicating that agents A3, A6, and A7 per-
formed their first computation step. Agent A1, on the other hand, has to wait only for the
message from A4 in order to perform its second computation step.

LAMDLS is a synchronous incomplete search based algorithm (according to the taxon-
omy of Fioretto et al. (2018)). While it traverses the solution space, each agent maintains a
solution candidate, and it is guaranteed to converge to a 1-opt solution as shown in Propo-
sition 5. The agents replace their assignments in a specific order, which allows them to
converge faster than the order used by MGM in the presence of message latency.

The algorithm’s runtime complexity in a single computation step is t = O(∆d), where d
is the largest domain size and, as mentioned above, ∆ is the maximal number of neighbors
of an agent. Since selection of a value assignment aims to minimize the local constraint cost,
an agent is required to check the cost of every value in its domain with the value assignments
of all its neighbors (similar to DSA). In addition, a consistency check requires a runtime
complexity of O(∆), as an agent compares sci with each variable in vN(i). Thus, the runtime
of the actions performed by an agent after each message it receives is t = O(∆d + ∆) =
O(∆(1 + d)) = O(∆d).

The memory complexity required by LAMDLS is O(∆) per agent since each agent needs
to hold for each of its neighbors two constants. In term of communication characteristics, the
message size is O(1) and the number of messages is determined by the number of predefined
communication steps.

4.2.1 Handling Message Loss

LAMDLS is monotonic and converges to a 1-opt solution. In contrast to asynchronous
MGM, these properties are guaranteed by LAMDLS in the presence of message latency
(Propositions 4 and 5). However, there may exist scenarios where messages may be lost
and, as a result, LAMDLS may encounter a deadlock. Consider that a message sent by
agent Aj to agent Ai does not reach its destination. In this case sci remains inconsistent
with vN(i) and, thus, Ai continues to sit idle and the algorithm will not converge to a 1-opt
solution.
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In the general case, when no assumptions can be made on message arrivals, it is im-
possible to establish the properties of the algorithm. However, in many realistic cases, the
probability that a number of consecutive messages sent from one agent to the other will not
reach their destination tends to zero. Thus, in such situations, it is reasonable to assume
that at least a single message sent by Aj will be delivered to Ai after k attempts.

A straightforward approach to avoid a deadlock in such a scenario is to send k messages
on each edge in each step of the algorithm. Since one of these k messages is guaranteed
to arrive at its destination, the necessary information required for the algorithm to proceed
is guaranteed to be delivered. The down side of this approach is the increase in the use
of communication. In future research, we plan to overcome this shortcoming by proposing
methods in which the algorithm is guaranteed to converge to a 1-opt solution with a reduction
in the use of the communication network (e.g., through the use of handshaking protocols
similar to the TCP/IP protocol).

4.3 Asynchronous Anytime Mechanism (AAM)

The Anytime Framework for Distributed Local Search Algorithms (ALS) (Zivan et al., 2014)
enables the agents to report the best solution traversed by any synchronous algorithm (i.e., an
algorithm where, at each iteration, agents receive messages sent to them by all their neigh-
bors in the previous iteration, and send messages to all their neighbors, which will be received
in the next iteration). The framework proposed requires a very low overhead in terms of
runtime, memory, communication, and privacy (as mentioned in Section 2.3). However, its
dependency on the synchronous structure is inherent and, therefore, it is not applicable for
asynchronous algorithms. In more detail, each anytime message in ALS carries the iteration
number, used to identify the costs related to the same state of the algorithm, to generate
solution costs and to notify agents of the best solution found. These are not available when
performing asynchronous algorithms.

The standard motivation for enhancing local search algorithms with an anytime frame-
work is the ability to perform exploration operations that will improve the anytime global
solution without the risk of reporting a low-quality solution as might happen if such ex-
ploration operations are used when the solution held by agents at the end of the run is
reported.

We propose an Asynchronous Anytime Mechanism (AAM), which uses a spanning tree as
used in the synchronous anytime framework proposed by Zivan et al. (2014). Algorithm 2
presents the pseudocode for the actions of agents within AAM. It is important to note
that, unlike the pseudocode presented in Algorithm 1, which describes all actions of agents
within a distributed search algorithm, here, we describe the actions related to the anytime
mechanism, which are interleaved with any asynchronous local search algorithm that it is
operating in conjunction with. To this end, the mechanism distinguishes between two types
of messages: algorithm message (line 7) and AAM message (line 17).

Each agent Ai maintains a data structure, which we call contexti in which it stores
its own value assignment, the value assignments received from its neighbors, and the value
assignments of all the agents in the subtree that it is the root of. For a leaf agent, the
context includes only its own assignment and the assignment of its neighbors. A change in
contexti can be generated either by actions of the algorithm (lines 8 – 9) or by the reception
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Algorithm 2: Asynchronous Anytime Mechanism (AAM)
input : P (i), // Ai’s parents in the tree

C(i) // Ai’s children in the tree
output: best_solution // context with smallest cost found

1 is_leafi ← C(i) is empty // checks if Ai is a leaf
2 CS(i)← ∅ // context storage
3 best_solution← ∅
4 best_cost←∞
5 while algorithm’s stop condition not met do
6 when received message from Aj
7 if receive algorithm message then
8 update contexti in CS(i)
9 if is_leafi AND cost(contexti) < best_cost then

10 send (contexti, cost(contexti)) to P (i) // the agent is a leaf and
it reports a context with the best cost to its parents

11 else
12 new_context = get_context(CS(i), contexti) // the agent is not

a leaf and it tries to generate a new context that is
consistent with the contexts in storage

13 if new_context 6= ∅ then
14 if cost(new_context) < best_cost then
15 send (new_context, cost(new_context)) to P (i) // if it

successfully generated a new consistent context
and the new context has the best cost, it reports
that context to its parents

16 if receive AAM message then
17 if receive contextj from Aj ∈ Ci then
18 add contextj to CS(i) // save context in storage
19 new_context = get_context(CS(i),contextj) // try to generate

a new context that is consistent with the contexts in
storage

20 if new_context 6= ∅ then
21 if P (i) 6= ∅ then
22 send (new_context, cost(new_context)) to P (i)
23 else if cost(new_context) < best_cost then
24 best_solution← new_context
25 best_cost← cost(new_context)
26 send (best_solution,best_cost) to C(i)

27 if receive (best_solutionP (i), best_costP (i)) from P (i) then
28 best_solution← best_solutionP (i) // if a context was received

from pseudo-parent, then it is the best solution found
29 best_cost← best_costP (i)

30 remove contexts with cost ≥ best_cost
31 send (best_solution,best_cost) to C(i)
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of a context message from one of the children in the tree(line 18 – 19), and the anytime
mechanism reacts to such changes.

After an update of contexti, if the the agent is a leaf in the spanning tree, it calculates
its local cost (cost(contexti)), and examines whether the cost of the context generated does
not exceed the best cost found for a solution. If the condition mentioned is met, the agent
sends to its parent both its contexti and cost(contexti) (lines 10 – 11). Such a change in
contexti or in cost(contexti) can be triggered either by an algorithmic message received
from a neighbor or by a local decision an agent makes to replace its value assignment.

When a non-leaf agent Ai receives an AAM message from a child in the tree, it stores
the context included in the message in its context storage CS(i) (lines 18 – 19). Following
any such message and after each context change, agent Ai seeks to generate a context that
is consistent with all the contexts that it received from all of its children C(i) (line 13 and
line 20). If it is able to generate a consistent context, including assignments to all variables
in the contexts sent to it by its children, and if the cost of this context is smaller than the
best cost found so far, it sends the consistent context along with the corresponding cost to
its parent (lines 14 – 16 and 21 – 23).

When the root agent generates a consistent context of all the variables in the problem,
it checks whether its cost is the smallest found so far. If so, it stores it as the current best
solution and sends it down the tree along with its cost (lines 24 – 27). Non-root agents,
which receive a best solution message including the best cost, store them, filter out contexts
with larger cost than the best cost, and pass the message on to their children in the tree
(lines 28 and 32).

Proposition 6 The solution reported by AAM will be a solution with the minimal cost
among all the solutions that can be composed of all contexts that were sent to parents in the
tree during the algorithm execution.

Proof: Since all contexts received by agents from their children in the spanning tree are
stored and all the consistent combinations (which do not exceed the cost of the best solution
found) and their costs are sent up the tree, the root agent will consider all possible solutions
that have a chance to have a smaller cost than the best solution found thus far. Thus, a
solution with the minimal cost must be considered as well. �

Proposition 7 There can be a solution held by agents at some time during the algorithm
that is not considered by AAM.

Proof: Consider a problem with two neighboring agents A1 and A2, each holding a single
variable with two possible values a and b in its domain. Initially, both agents assign a to
their respective variables. At some point later, A1 replaces its assignment to b and sends
that information in a message to A2. Before A2 receives the message from A1, indicating
that it replaced its assignment, it also replaces its assignment to b. Thus, one of the contexts
that A1 held included an assignment 〈A1, b〉, 〈A2, a〉, which indeed was the state after A1

replaced its assignment and before A2 replaced its value. Nevertheless, A2 did not hold such
a context and, therefore, it will not report a cost for it to its parent. �

We demonstrate in our results that, indeed, an omniscient anytime mechanism with
an access to a bird-eye view of the global cost finds better solutions than AAM. However,
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this mechanism is implemented in a centralized manner. In a distributed environment with
message latency, it is not feasible. In our empirical evaluation, we show that the results
achieved with AAM are better than the results of the assignments that agents hold in the
final iteration of the algorithm.

Proposition 8 The maximal time6 for an agent Ai to check if a new context can be gen-
erated is (θiγi)

|C(i)|+1, where γi = maxAj∈C(i){|contexti|, |contextj |} with |contexti| and
|contextj | denoting the number of agent-value assignments stored in the context and θi is the
largest number of stored contexts received from a child agent or produced and stored by Ai.

Proof: This is the exhaustive result of checking the compatibility of each context received
from a child agent with each other and the contexts produced and stored by the agent. �

A corollary from Proposition 8 is that we prefer a tree with a small branching factor
(e.g., a pseudo tree as we used in Section 5), in contrast to ALS, where a BFS tree with the
smallest height is preferred.

While AAM guarantees to report the best solution explored by the asynchronous local
search algorithm used, it requires the use of exponential memory for storing all contexts
sent up the tree, and it requires exponential time for producing consistent contexts, while
taking into consideration all contexts stored. This, of course, is not acceptable because the
main reason for using a local search algorithm is to avoid exponential runtime and memory
usage. Thus, in our experimental evaluation, we investigate the effect of limited space for
storing contexts on the quality of the solution reported.

5. Experimental Evaluation

In this section, we first describe the design of our experiments before presenting the ex-
perimental results in Sections 5.2 to 5.5. Sections 5.2 and 5.3 describes the performance
of asynchronous local search algorithms in the presence of message latency and loss, re-
spectively. Section 5.4 presents the performance of LAMDLS in comparison to synchronous
MGM. Finally, in Section 5.5, we evaluate AAM’s ability to report high quality solutions.

5.1 Experimental Design

We investigate the performance of the CA-DCOP local search algorithms that were presented
in the previous sections, using an asynchronous simulator, which was designed according to
the guidelines by Zivan and Meisels (2006). Agents in our asynchronous simulator were
implemented using Java threads. This simulator allows the implementation of any type of
message delay pattern or any rate of message loss.7 Other existing simulators for simulating
message delays, such as ns-3 (Mayuga-Marcillo, Urquiza-Aguiar, & Paredes-Paredes, 2018;
Amewuda, Katsriku, & Abdulai, 2018), offer a limited number of communication patterns
from which one can select.

To evaluate the performance of distributed algorithms performing in a distributed envi-
ronment, there is a need to establish which of the operations performed by agents could not

6. Throughout this paper, time is measured in non-concurrent logic operations (NCLOs) (Netzer, Grub-
shtein, & Meisels, 2012). We elaborate on this choice in Section 5.

7. The simulation’s code is available at https://github.com/benrachmut/CADCOP_2022_new
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have been performed concurrently and, thus, the runtime performance of the algorithm is the
longest non-concurrent sequence of operations that the algorithm performed. In Zivan and
Meisels (2006), DisCSP algorithms were evaluated, which their basic logic operations were
constraint checks (CCs), thus, the performance was measured in terms of non-concurrent
constraint checks (NCCCs). In Netzer et al. (2012), search based complete algorithms
were compared with inference algorithms, thus, algorithms that perform different atomic
logic operations (i.e., constraint checks and compatibility checks) were compared, and the
results were reported in terms of non-concurrent logic operations (NCLOs). This approach
is the one we adopt in this study, since we evaluate the quality of the solutions of the al-
gorithms, as a function of the asynchronous advancement of the algorithm, when agents
perform computation concurrently.

In each experiment, we randomly generated 100 different problem instances with 50
agents and we report the average over these instances. To demonstrate the convergence of
the algorithms, we present the sum of costs of the constraints involved in the assignment
that would have been selected by each algorithm every 100 NCLOs. We performed t-tests
to evaluate the statistical significance of differences between all presented results.

In our simulator, message delays were simulated by passing all messages sent by agents
to an abstract mailing agent. This abstract agent decides when to deliver the messages to
their target agents, according to the selected pattern. The delay is selected in terms of
the number of NCLO. Then, each agent has the opportunity to perform logic operations
according to the algorithm instructions. In our implementation, each atomic logic operation
was an evaluation of the cost of a combination of two value assignments (i.e., a constraint
check).

In all the experiments we performed, we used three types of communication scenarios:
(1) Perfect communication; (2) Message latency selected from a uniform distribution tde ∼
U(0, UB) NCLOs, where UB is a parameter denoting the maximum latency; and (3) Message
loss determined by p ∼ U(0, 1) such that a message is not delivered if p < ple, where ple
is a parameter denoting the probability for message loss. Using the model described in
Section 4.1, for each experimental scenario, an instance of a CCG was initiated, where
tde and ple remain similar for all edges in the graph. The magnitude of communication
degradation was monitored through the parameters UB and ple.

We evaluated our algorithms on four different problem types. The first three problem
types are commonly used in the DCOP literature and the last problem type is an Overlapped
Solar Systems problem, which we describe later:

• Uniform Random Problems : These problems are random constraint graph topolo-
gies with density p1 = {0.2, 0.7}. Each variable has 10 values in its domain. The
constraint costs were selected uniformly between 1 and 100.

• Graph Coloring Problems: These problems are random constraint graph topologies
in which each variable has three values (i.e., colors), and all constraints are “not-equal”
cost functions, where an equal assignment of neighbors in the graph incurs a random
cost between 10 and 100 and non-equal value assignments incur zero cost. We set the
density p1 = 0.05 similar to Zhang et al. (2005) and Farinelli et al. (2008).

• Scale-free Network Problems: These problems are generated using the Barabasi-
Albert model (Barabási & Albert, 1999). An initial set of 10 agents was randomly
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selected and connected. Additional agents were sequentially added and connected to 3
other agents with a probability proportional to the number of edges that the existing
agents already had. The constraint costs were selected uniformly between 1 and 100.
Each variable has 10 values in its domain. Similar problems were previously used to
evaluate DCOP algorithms by Kiekintveld, Yin, Kumar, and Tambe (2010).

In addition to the problem types presented above, we also explored Overlapped Solar Sys-
tems problems. Overlapped solar systems is a realistic problem, inspired by the Constant
Speed Propagation Delay Model, implemented in the ns-3 simulator (Mayuga-Marcillo et al.,
2018; Amewuda et al., 2018). One characteristic that differentiates this problem in com-
parison to the three commonly used problems described above is an additional attribute of
geographical locations of agents. The geographical locations allow us to model a dependency
between the communication quality and the Euclidean distance between two agents. There-
fore, instead of setting the tde and ple to random values in the communication scenarios, we
set them differently for this problem. Specifically, the tde is drawn from a Poisson distribu-
tion d ∼ Pois(Γ · distanceij), where Γ is a constant and distanceij determine the latency
magnitude. This is also in contrast to the constant speed propagation delay model imple-
mented in ns-3, where the delays that were calculated as a function of the distance between
the geographic locations of the nodes were fixed and never changes (Mayuga-Marcillo et al.,
2018; Amewuda et al., 2018). Regarding message loss, we define the probability ple that a
message sent on edge e between agents Ai and Aj is delivered as follows: ple =

distanceij
maxDistanceij

,
where maxDistanceij determines the distance of the furthest agents from Ai or Aj .

The formation of connections between the agents in overlapped solar systems problems is
location dependent. Five agents are randomly selected to be the centers of the solar systems
and they are connected. Each of these agents Aci is assigned two coordinates that are drawn
from a continuous uniform distribution: xci ∼ U(0, 1) and yci ∼ U(0, 1). All other agents
(i.e., stars in the solar systems) are randomly assigned to one of the solar systems. The
index c represents the solar system in which the agent is assigned to, and it is equal to the
index of the center agent of the solar system (i.e., if Aci is the center of a solar system, then
i = c). The coordinates for an assigned agent (Acj where j 6= c) are drawn from a Normal
distribution as follows: xcj ∼ N(µ = xci , σ = 0.05) and ycj ∼ N(µ = yci , σ = 0.05) based on
the location of the center of the solar system that it was attached to. The probability that
two arbitrary agents Ai and Aj will be neighbors is defined by pij = (1 − distanceij

maxDistancei
)β ,

where distanceij is the Euclidean distance between agents Ai and Aj , maxDistancei is the
Euclidean distance between agent Ai to the farthest agent, and β expresses the changes in
the probability that both agents will be neighbors as a function of their distance (in our
experiments we used β = 3). For each pair of agents, a random probability pr ∈ [0, 1] was
generated, and two agents are considered as neighbors if pr < pij . The constraint costs were
selected uniformly between 1 and 100.

5.2 Asynchronous Local Search in the Presence of Message Latency

Figure 2 presents the average quality of solutions produced by the synchronous (labeled
SY) and asynchronous versions of DSA.8 In the synchronous version, in each iteration, an

8. We used DSA-B with p = 0.7, to avoid assignment replacement in cases where an agent’s local cost is
zero.
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Figure 2: Costs of solutions for both synchronous and asynchronous DSA with different
lengths of message delays sampled from a uniform distribution (Subgraphs 1-4) and Poisson
distribution (Subgraph 5). Figure 14 in the appendix shows the corresponding color-blind
friendly figure.

agent remains idle until the messages from all its neighbors are received. In contrast, in the
asynchronous version, an agent initiates a computation step whenever it receives a message.
We evaluated two asynchronous versions of the algorithm, one using timestamps (labeled
ASY_TS) as suggested by Lamport (1978) (see Section 4 for more details) and one without
timestamps (labeled ASY).

Each graph in the figure displays the results of the algorithm solving a different problem.
The rows represent correspond to different magnitudes of latency – UB = {0, 2000, 5000} for
uniform random, graph coloring, and scale-free networks problems; Γ = {0, 2000, 5000} for
solar system problems. When UB or Γ equals 0, there is no latency. The results presented
are the average global cost after each agent completed the number of NCLOs specified on
the x-axis.

The different latency patterns affect the synchronous versions of DSA, where they con-
verge slower for larger delays, but they converge to solutions of similar qualities. When
the algorithms perform asynchronously, they generally converge faster and their differences
with their synchronous counterparts increase with increasing magnitude of latency. In terms
of solution quality, when there is no latency, both synchronous and asynchronous versions
converge to similar solutions. However, when there is latency, the message delays have a
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Figure 3: Costs of solutions for both synchronous and asynchronous MGM with different
lengths of message delays sampled from a uniform distribution (Subgraphs 1-4) and Poisson
distribution (Subgraph 5). Figure 15 in the appendix shows the corresponding color-blind
friendly figure.

positive exploration effect on the asynchronous versions, allowing them to converge to better
solutions.

Similar results are presented in Figure 3 for the experiments with MGM instead of
DSA. In an asynchronous version of MGM, an agent perform computations each time it
receives a new message. When it receives a value assignment message, it calculates its
local reduction in cost and sends a cost reduction message to each of its neighbors. When
the agent receives a cost reduction message, it checks whether it should change its value
assignment by checking if its possible local reduction is the largest among the most recent
local reduction messages that arrived from its neighbors. If it is the largest, then the agent
changes its value assignment and sends value messages to all neighbors.

The results reveal that when messages are delayed, both asynchronous versions of MGM
are not guaranteed to maintain their monotonic property. This is because agents can perform
calculation and select value assignments while considering obsolete assignments of their
neighbors (assignments that have been replaced). Nevertheless, losing monotonicity has a
positive explorative effect in that they converge the better solutions than their synchronous
counterpart.
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One may expect the use of a timestamp to reduce inconsistent computation and improve
the performance of the algorithms in the presence of message latency. However, the results
show that the opposite happens – the use of timestamps reduces the explorative effect and
the algorithm converges to worse solutions than without the timestamps. In contrast to
the positive effect that the asynchronous versions have in the presence of message latency,
in some of the cases, when messages are delivered instantly, the asynchronous algorithms
have slower convergence rates. For MGM, it is most apparent that the version without
timestamps converges slower, especially on graph coloring and scale-free networks. This
is likely due to the two stage structure of MGM. In the asynchronous version, some of the
agents may report inconsistent local reductions, before they were informed of their neighbors’
assignments. Later, when there are fewer positive local reductions, this effect is reduced and
the algorithm converges. For DSA, this phenomena is less apparent and is notable only
when solving scale-free networks. A reasonable explanation for this is that in scale-free
networks, there is a large difference between the computation of the hub agents and the
computation performed by non-hub agents in each step of the algorithm. Overall, while the
use of timestamps can improve the convergence rate, the difference in the convergence time
is not significant compared to the improvement in solution quality when no timestamps are
used.

To better evaluate the positive explorative effect due to message latency for asynchronous
DSA, we ran an additional experiment where we sampled delays from a Poisson distribution.
In Figure 4, we present the global cost of solutions found by asynchronous DSA, solving
sparse uniform random problems, where each subfigure presents a different delay length
(i.e., different values of λ, where tde ∼ Pois(λ)). The different curves present the different
values of the parameter p used by the agents in DSA to determine whether to replace
their value assignments. This parameter is used in DSA to determine the probability of
simultaneous value assignment changes by neighbors and, thus, balance between exploration
and exploitation (Zhang et al., 2005). In order to observe the differences between the
performance of synchronous and asynchronous DSA, we also present the results of standard
synchronous DSA with p = 0.7 (labeled 0.7_SY).

It is clear that the p value has a substantial effect on the performance of asynchronous
DSA. When the delay is sampled from a Poisson distribution, for large delays, the perfor-
mance improves with smaller values of p. The algorithm’s convergence rate is faster with
decreasing values of p in the presence of latency. The difference between the performance
of the different versions is more apparent as the delay grows. For larger delays, the versions
with the smaller p perform best.

Interestingly, when message delays are sampled from a Poisson distribution, the best
results are achieved when asynchronous DSA uses low values of p (in contrast to the case
where delays are sampled from a uniform distribution as depicted in Figure 2). This can be
explained by the different level of exploration (in comparison to the case where delays are
selected from a uniform distribution) that is correlated with the probability for a situation in
which neighboring agents replace assignments concurrently. In standard synchronous DSA,
an agent Aj sends a single message containing its value assignment to its neighbor Ai in each
iteration. Thus, in cases where both agents have an improving alternative assignment, the
probability that both agents replaced assignments concurrently is p2. In asynchronous DSA,
Aj may replace its value assignment following each message it receives. Thus, if it receives
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Figure 4: Solution cost of asynchronous DSA without timestamp, using different p val-
ues, when solving sparse uniform random problems, with delays sampled from a Poisson
distribution. Figure 16 in the appendix shows the corresponding color-blind friendly figure.

a number of consecutive messages in a short time period, there is a much larger chance that
it will perform the assignment replacement. In more detail, if neighboring agents Aj and Ai
both have improving alternative value assignments, and they received kj and ki consecutive
messages in a short time interval, respectively, then the probability that they both replaced
their value assignment in this time interval is (1− (1− p)kj )(1− (1− p)ki).

In order to highlight the relationship between message latency and exploration, we
present in Figure 5 the local cost of a single agent during the run of asynchronous DSA
when solving sparse uniform random problems. We depict both the agent’s view, which
takes into consideration the assignments included in the messages it received, and the actual
cost considering the assignments of the neighboring agents at that time. The gap between
the curves can be explained by the agents’ asynchronous performance in the presence of
imperfect communication, where an agent takes into consideration obsolete assignments of
their neighbors when selecting alternative value assignments since the information regarding
their replacement was sent but not yet received. Notice that in the beginning of the run (on
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Figure 5: Local costs of a single agent performing asynchronous DSA, solving sparse uniform
random problems. Figure 17 in the appendix shows the corresponding color-blind friendly
figure.

the left of the subfigures), before the agents receive the assignments of their neighbors for
the first time, they are not aware that they are violating constraints.

When the latency increases, the difference between the two disparate views increases
and, thus, the agents perform actions that exploit obsolete information, which result in an
increase in the cost. In essence, they are performing exploration despite thinking that they
are performing exploitation.

5.3 Asynchronous Local Search Algorithms in the Presence of Message Loss

In the next set of experiments, we examined the effect of message loss on asynchronous
versions of DSA and MGM without timestamps. Figure 6 presents the results of the two
algorithms when solving the different benchmark problems for different probability ple values
that a message will be lost. In the scenarios examined, messages that are not lost arrive
at their destination instantly. Thus, the timestamp is insignificant. The mechanism avoids
instances there messages are received in an order that is different than the one they were
sent.

The effect of message loss on the algorithms when solving dense uniform random prob-
lems and solar systems problems was positive, similar to the effect of message latency. On
the other hand, when solving sparse uniform random problems, the effect of message loss
on the performance of the algorithms was negligible. For scale-free networks, asynchronous
MGM finds better solutions when the messages have a high probability (ple = 0.7) to be
lost. For graph coloring problems, which are less dense than other problems, the solution
quality deteriorates as the probability of message loss increases.

5.4 Evaluation of Latency-Aware Monotonic Distributed Local Search
(LAMDLS)

Figure 7 presents a comparison between the results of the proposed LAMDLS algorithm
and the results of synchronous MGM (the only two monotonic and 1-opt algorithms among
the ones we discussed) on uniform random problems. When there are no message delays,
LAMDLS finds its first solution after MGM because LAMDLS does not search for solu-
tions during the color selection phase. As expected, independent of message latency, each
algorithm converges to the same result in terms of solution quality.
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Figure 6: Solution quality of Asynchronous DSA and Asynchronous MGM, as a function
of NCLOs. Experiments including various probabilities for message loss. Figure 18 in the
appendix shows the corresponding color-blind friendly figure.
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Figure 7: Solution quality of LAMDLS and synchronous MGM, as a function of NCLOs,
solving sparse (left) and dense (right) uniform random problems. Figure 19 in the appendix
shows the corresponding color-blind friendly figure.

Both algorithms converge faster on sparse problems than on dense problems. This is ex-
pected because both algorithms enforce that neighboring agents do not replace assignments
concurrently and, thus, there is less concurrency in dense problems. Moreover, LAMDLS
converged faster than MGM on sparse problems, but not on dense problems. The reason is
that the ordered coloring method is less effective in generating concurrency in dense prob-
lems. Further, the density of problems affects the number of colors needed in the graph. The
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Figure 8: Solution quality of LAMDLS and synchronous MGM, as a function of NCLOs,
solving Graph Coloring (left), Scale-Free Networks (middle) and Solar System (right) prob-
lems. Figure 20 in the appendix shows the corresponding color-blind friendly figure.

Graph Topology Paired t-test
p-value

Shapiro-Wilk
LAMDLS
p-value

Shapiro-Wilk
MGM_SY
p-value

Sparse Random 0.1300 0.4335 0.6558
Dense Random 0.0470 0.6534 0.2896
Graph Coloring 1.50 x 10−9 2.20 x 10−16 2.04 x 10−9

Scale-Free Network 0.0059 0.5157 0.5002
Overlapped Solar System 0.4600 0.0031 0.0010

Table 1: Paired t-test p-value and Shapiro-Wilk normality test of solution quality for syn-
chronous MGM and LAMDLS

average number of colors needed for sparse and dense problems was 7.04 and 17.83, respec-
tively. While MGM had an advantage over LAMDLS on sparse problems, this advantage is
not significant (results of the significance tests we performed are presented below).

Figure 8 presents the results of both algorithms solving structured problems, i.e., prob-
lems that either their topology (as in the case of scale-free nets) or their constraints (as in
the case of graph coloring) have a predefined structure. On all these problems, LAMDLS
converged faster than MGM. The graph coloring problems are sparser than the uniform
random problems and, thus, these results are consistent with the ones presented above. The
scale-free networks and the solar system problems are characterized by few hubs with many
neighbors and most agents have a small number of neighbors. The color scheme structure
of LAMDLS enables the non-hub agents to exchange value assignments concurrently. To
support this claim, we checked the average number of colors that the algorithm used. The
result was that the average number of colors was similar to the number of hubs – 10.3 and
12.85 for scale-free network and solar system problems, respectively.

In terms of solution quality, as expected, regardless of the magnitude of the message
delays or type of problem, each algorithm converged to the same result. On all structured
problems, LAMDLS find solutions with smaller costs than MGM. However, the significance
of the results was problem dependent. The results of the statistical significance analysis (t-
tests) of all the experiments presented in Figures 7 and 8 are presented in Table 1. Figure 9

662



Communication-Aware Local Search for DCOPs

Random 0.2

AMDLS MGM_SY

7000

7050

7100

Algorithm

C
os

t

Random 0.7

AMDLS MGM_SY

32300

32400

32500

Algorithm

C
os

t

Graph Coloring

AMDLS MGM_SY

10

20

30

Algorithm

C
os

t

Scale−Free

AMDLS MGM_SY

4320

4350

4380

4410

Algorithm

C
os

t
Solar

AMDLS MGM_SY
13600

13700

13800

13900

14000

Algorithm
C

os
t

Figure 9: Average solution quality with standard error bars of LAMDLS and synchronous
MGM at termination.

presents the average solution quality with error bars at termination.9 They demonstrate that
the significant differences between the two algorithms were observed on scale-free networks,
and dense uniform random problems, in favor of LAMDLS.

5.5 Evaluation of Asynchronous Anytime Mechanism (AAM)

In order to demonstrate the effectiveness of AAM, we selected a highly explorative local
search algorithm, DSA_SDP (Zivan et al., 2014), and implemented it in combination with
AAM. Notice that anytime mechanisms do not contribute to monotonic algorithms such as
synchronous MGM and LAMDLS and, therefore, DSA_SDP was introduced as an extremely
explorative algorithm that ALS can use to improve the quality of solutions found (Zivan
et al., 2014).

Figure 10 presents the results of an asynchronous version of DSA_SDP without memory
limitations (left) and with memory limitations (right). We present the cost per iteration
and the anytime cost, both from a global view, as well as the anytime cost of the solutions
reported by AAM. As expected, following Proposition 8 and its corollary, the results reported
by AAM are with larger costs than the global view anytime results, but they improve on

9. The experiments presented in figure 9 are with no message latency. Solution quality at termination is
consistent with different message latencies due to the algorithms’ 1-opt solution property. Thus, the
algorithms’ average costs in figure 9 are independent from the pattern of the message latency present.
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Figure 10: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving sparse uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Messages were delivered
with no delay. Figure 21 in the appendix shows the corresponding color-blind friendly figure.
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Figure 11: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving sparse uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Message delays were
sampled from a uniform distribution. Figure 22 in the appendix shows the corresponding
color-blind friendly figure.

the results per iteration. Surprisingly, the differences between the results of the solutions
found by the agents without memory limitations to the ones with memory limitations were
not significant.

Figure 11 presents similar results in experiments in which message delays were selected
from a uniform distribution with UB = 1500. In these experiments, AAM with memory
limitations report solutions with smaller costs faster than AAM without memory limitations.
The reason is that the context comparison computations are much faster when the number
of contexts is limited.

Figures 12 and 13 present the results of similar experiments to the ones presented in
Figures 10 and 11, except that this is on dense uniform random problems. The average
costs reported by AAM are much closer to the global view anytime results. The reason is
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Figure 12: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving dense uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Messages were delivered
with no delay. Figure 23 in the appendix shows the corresponding color-blind friendly figure.
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Figure 13: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving dense uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Message delays were
sampled from a Uniform distribution. Figure 24 in the appendix shows the corresponding
color-blind friendly figure.

that the pseudo-tree used by the algorithm has fewer splits and therefore there are fewer
context unifying operations. Again, the results with memory limitations are better than the
results without memory limitations.

6. Conclusions

We investigated the implications of message latency and message loss on the performance of
distributed local search algorithms for solving DCOPs. The synchronous structure of these
algorithms imply that applying them in environments with message latency would result in
a delay in execution, equal to the message with the largest delay sent in each iteration. The

665



Rachmut, Zivan, & Yeoh

implications of using these synchronous algorithms in the presence of message loss may be
more severe, since agents might deadlock while waiting for a message that will not arrive.

To avoid exhibiting such a halt or delay of execution in environments with message la-
tency or loss, we examined the performance of asynchronous versions of DSA and MGM,
where agents perform a computation step and send messages following each message they
receive. Surprisingly, this approach had a positive explorative effect on these algorithms.
This phenomenon did not repeat itself when more explorative local search algorithms
(e.g., DSA_SDP) were used to solve similar problems in environments with message la-
tency and loss.

Some of the guaranteed theoretical properties of distributed local search algorithms are
not preserved when using the asynchronous versions of the algorithms. The asynchronous
version of MGM is not monotonic and the anytime mechanism proposed by Zivan et al.
(2014) is not applicable to asynchronous distributed local search algorithms. Thus, we pro-
posed a latency-aware monotonic distributed local search (LAMDLS) algorithm and an asyn-
chronous anytime mechanism (AAM). As in the case of synchronous algorithms, LAMDLS
was found to produce similar results to MGM (or better), only faster. AAM was found to
report better results than the global view for an explorative distributed local search algo-
rithm. These contributions thus fill an important gap in the literature on DCOPs operating
in applications with imperfect communication.

While all the benchmarks used in our experimental study include binary DCOPs (and
do not include problems with constraints of higher arity), we believe that this is appropriate
since a message is sent from one agent to another and, therefore, the effect of a message
delay or loss is binary.

In future work, we intend to investigate other types of constrained communication graphs
and generate CA-DCOPs that are inspired by real-world problems, such as those with lim-
ited bandwidth and specific network topologies. For instance, in the smart home problem
presented by Rust et al. (2022), algorithms aim to minimize the communication cost be-
tween agents. In such scenarios, an asynchronous approach may cause severe drawbacks.
We also note that our solution for handling message loss is dependent on an assumption that
may be considered oversimplistic. Therefore, we intend to propose methods for overcoming
message loss in scenarios where the number of consecutive messages that are lost cannot
be bounded. In addition, we intend to investigate the performance of other multi-agent
optimization models and algorithms in the presence of imperfect communication, such as
designated algorithms for solving distributed task allocation problems (Nelke & Zivan, 2017;
Nelke, Okamoto, & Zivan, 2020).
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Figure 14: Costs of solutions for both synchronous and asynchronous DSA with different
lengths of message delays sampled from a uniform distribution (Subgraphs 1-4) and Poisson
distribution (Subgraph 5).
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Figure 15: Costs of solutions for both synchronous and asynchronous MGM with different
lengths of message delays sampled from a uniform distribution (Subgraphs 1-4) and Poisson
distribution (Subgraph 5).
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Figure 16: Solution cost of asynchronous DSA without timestamp, using different p val-
ues, when solving sparse uniform random problems, with delays sampled from a Poisson
distribution.
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Figure 17: Local costs of a single agent performing asynchronous DSA, solving sparse uni-
form random problems.
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Figure 18: Solution quality of Asynchronous DSA and Asynchronous MGM, as a function
of NCLOs. Experiments including various probabilities for message loss.
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Figure 19: Solution quality of LAMDLS and synchronous MGM, as a function of NCLOs,
solving sparse (left) and dense (right) uniform random problems.
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Figure 20: Solution quality of LAMDLS and synchronous MGM, as a function of NCLOs,
solving Graph Coloring (left), Scale-Free Networks (middle) and Solar System (right) prob-
lems.
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Figure 21: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving sparse uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Messages were delivered
with no delay.
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Figure 22: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving sparse uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Message delays were
sampled from a uniform distribution.
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Figure 23: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving dense uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Messages were delivered
with no delay.
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Figure 24: Global view solution cost, global view anytime cost and the anytime cost reported
by AAM, of DSA_SDP solving dense uniform random problems, without memory limitation
(left) and with memory limitation to 100 contexts per agent (right). Message delays were
sampled from a Uniform distribution.
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