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Abstract

Background

Côte d’Ivoire has had 45 years of intervention for onchocerciasis by vector control (from

1975 to 1991), ivermectin mass drug administration (MDA) (from 1992 to 1994) and commu-

nity directed treatment with ivermectin (CDTi) from 1995 to the present. We modeled oncho-

cerciasis endemicity during two time periods that correspond to the scale up of vector

control and ivermectin distribution, respectively. This analysis illustrates progress towards

elimination during these periods, and it has identified potential hotspots areas that are at risk

for ongoing transmission.

Methods and findings

The analysis used Ministry of Health skin snip microfilaria (MF) prevalence and intensity data

collected between 1975 and 2016. Socio-demographic and environmental factors were incorpo-

rated into a predictive, machine learning algorithm to create continuous maps of onchocerciasis

endemicity. Overall predicted mean MF prevalence decreased from 51.8% circa 1991 to 3.9%

circa 2016. The model predicted infection foci with higher prevalence in the southern region of

the country. Predicted mean community MF load (CMFL) decreased from 10.1MF/snip circa

1991 to 0.1MF/snip circa 2016. Again, the model predicts foci with higher Mf densities in the

southern region. For assessing model performance, the root mean squared error and R2 values

were 1.14 and 0.62 respectively for a model trained with data collected prior to 1991, and 1.28

and 0.57 for the model trained with infection survey data collected later, after the introduction of

ivermectin. Finally, our models show that proximity to permanent inland bodies of water and alti-

tude were the most informative variables that correlated with onchocerciasis endemicity.

Conclusion/Significance

This study further documents the significant reduction of onchocerciasis infection following

widespread use of ivermectin for onchocerciasis control in Côte d’Ivoire. Maps produced
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predict areas at risk for ongoing infection and transmission. Onchocerciasis might be elimi-

nated in Côte d’Ivoire in the future with a combination of sustained CDTi with high coverage,

active surveillance, and close monitoring for persistent infection in previously hyper-

endemic areas.

Author summary

Côte d’Ivoire is endemic for onchocerciasis (also known as “river blindness”). This

neglected tropical disease is transmitted by biting black flies that breed in fast flowing riv-

ers. From 1975 to 1991, onchocerciasis control was based on weekly aerial spraying of the

insecticide temephos, on black fly breeding sites. Vector control, however, was mostly

focused on the northern and central parts of the country. From 1992 to present, mass

treatment with ivermectin was implemented in all endemic areas, including forested

regions in the south. Here we present the first geospatial estimates of onchocerciasis

endemicity over time. Using the machine learning algorithm quantile regression forest,

we implemented models to: identify important socio-demographic and environmental

factors that correlate with onchocerciasis infection; predict the prevalence and density of

infection in areas without ground-truth data; delineate remaining infection hotspots. Our

results show that Côte d’Ivoire has made very significant progress in reducing infection

parameters over time, and they may help to inform future interventions to achieve the

goal of onchocerciasis elimination in Côte d’Ivoire.

Introduction

Onchocerciasis (“river blindness”) is a neglected tropical disease (NTD) caused by the filarial

parasite Onchocerca volvulus. It is transmitted through bites of infected black flies of the genus

Simulium. These flies typically breed in fast-flowing waters, because the high oxygen content

of this environment is required for larval development [1]. Infected humans may experience

visual impairment that can progress to total blindness. Onchocerciasis can also cause severe

dermatitis, skin depigmentation, subcutaneous nodules, epilepsy, and excess mortality [2]. The

social consequences of onchocerciasis can be devastating [3].

Côte d’Ivoire is endemic for several NTDs [4]. Efforts to reduce the onchocerciasis burden

started in 1975 with vector control activities that were coordinated by the Onchocerciasis Con-

trol Programme (OCP) in West Africa [5,6]. Aerial spraying of insecticides was carried out

mainly in savannah areas in the northern and central parts of the country where blinding

onchocerciasis was prevalent. Since 1992, onchocerciasis control has been largely based on the

strategy of administering ivermectin to eligible populations in endemic communities [6],

although vector control continued beyond 1992 in some river valleys. Ivermectin distribution

was initially piloted by nongovernmental organizations. Between 1995 and 2016 the strategy of

community directed treatment with ivermectin (CDTi) was adopted, with initial villages

receiving this intervention in 1996. This was provided by the Ministry of Health in collabora-

tion with OCP and the African Programme for Onchocerciasis Control (APOC) that sup-

ported ivermectin distribution in countries of Africa that were not covered by OCP. CDTi

uses local volunteers to distribute ivermectin in endemic communities. This approach enabled

control efforts to be extended to areas that were previously excluded from the aerial spraying

programme. APOC coordinated CDTi in some 19 countries that provided an estimated 1
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billion ivermectin treatments and prevented some 2 million cases of blindness [7]. APOC

ended in 2015, and control efforts for onchocerciasis and other NTDs in the AFRO region of

the World Health Organization (WHO) are now coordinated by the Expanded Special Project

for Elimination of Neglected Tropical Diseases (ESPEN) [8].

Thus, Côte d’Ivoire has had 45 years of intervention that started with vector control in

1975–1991 that was mostly replaced by ivermectin MDA/CDTi since 1992 [4]. Years of civil

unrest (2002 to 2007) interrupted public health interventions [9], and this was especially true

in the rebel-held northern regions of the country. However, as onchocerciasis has been elimi-

nated in four countries in the Americas and from several foci in Mali [10], Senegal [10,11],

Nigeria [12], Sudan [13,14], and Uganda [15,16], there is increasing evidence that the interven-

tions for onchocerciasis can lead to elimination in some areas and that elimination targets set

by the WHO are feasible. It is important, therefore, to identify countries and regions where

elimination may be achieved using the current interventions and regions where modified strat-

egies may be needed.

Baseline endemicity is a key determinant that affects the feasibility of onchocerciasis elimi-

nation and the time required for treatment with ivermectin [17]. Community microfilarial

load (CMFL) is widely regarded as an important measure for categorizing onchocerciasis

endemicity [18]. This is a measure of the intensity of infection that is calculated as the geomet-

ric mean number of MF per skin snip in adults aged�20 years within a community. During

early stage of intervention, CMFL is considered a robust measure for determining the true epi-

demiological situation within an endemic population. However, MF (skin snip) prevalence

data is commonly used for classifying endemicity, as only meso- and hyperendemic areas are

considered to have a high risk for blinding disease.

Previous modelling studies suggested that either annual or biannual MDA, depending on

endemicity, coupled with high levels of therapeutic coverage, should be adequate to achieve

the elimination threshold suggested by APOC [19]. Maps that classify infection levels could be

useful for identifying areas with the highest risk of infection. They can also identify areas that

might be more susceptible to recrudescence of infection following local elimination, either

from nearby infection hotspots or from more distant foci within the same transmission zone.

Recent advances in disease prediction provide methods for producing continuous maps with

high resolution spatial scales using various modelling approaches [20–24]. These geostatistical

models are able to predict infection across a large geographical space using a suite of potential dis-

ease drivers such as remotely-sensed climate and environmental data together with relevant

socio-demographic data to improve model predictions. Furthermore, continuous maps have been

published for a variety of helminth infections [24,25] including vector-borne parasites [20,26]

such as lymphatic filariasis [27–30]. O’Hanlon et al recently presented a geostatistical map of the

pre-control prevalence of onchocerciasis in OCP countries in West Africa [25]. Although that

study was a valuable contribution, the ground-truth data used to build the models only considered

data from savannah areas, and that excluded important endemic areas in Côte d’Ivoire. Model

predictions were extrapolated to the forested southern parts of Côte d’Ivoire where there were no

associated survey data. Uncertainty in model predictions increase as one moves farther away from

ground-truth data. In addition, data based on MF prevalence (skin snip) alone was used to deter-

mine onchocerciasis endemicity. Modeling based on CMFL should provide a more complete pic-

ture of the disease burden. Finally, as maps are usually built with high-dimensional satellite data,

these data are usually non-linear. Modelling within a machine learning framework can efficiently

handle complex relationships between predictor and response variables [22,31].

Therefore, to delineate remaining infection hotspots in Côte d’Ivoire, we modelled the

CMFL and MF prevalence prior to and during the use of ivermectin MDA/CDTi. We used a

trained quantile regression forest (QRF) model to: i) predict the MF prevalence and intensity
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of onchocerciasis in unsampled locations at 5 × 5km spatial resolution; ii) identify important

socio-demographic and other factors that correlate with onchocerciasis endemicity; and iii)

delineate areas at risk of ongoing transmission and potential infection hotspots.

Methods

Ethics statement

The process of obtaining ethical approvals, informed consent, and arranging logistical proce-

dures for field surveys were handled in-country by the Ministry of Public Health and Hygiene,

Côte d’Ivoire with technical support from WHO. Participants gave verbal informed consent.

Study areas and onchocerciasis survey data

Côte d’Ivoire is divided into four main ecological zones: savannah in the northern region, pre-

forest in the central region, forest in the southern region, and mountainous areas in the west-

central region. Blinding onchocerciasis predominantly occurs in the northern region, and

early intervention (OCPs use of aerial spraying of vector breeding sites) was focused in eight

districts in this region from 1975 to 1991. Following the commencement of mass treatment

with ivermectin from 1992, intervention was extended to villages in 53 districts located in the

pre-forest and forest regions.

Methods used in the onchocerciasis epidemiological surveys have been previously described

[4]. Briefly, proximity to rivers (� 5 km) and population size (less than 2000 people) were key

determinants that informed the selection of survey villages. Two to four villages were selected

for surveys per district depending on accessibility and district size. Selection of survey sites was

mainly based on accessibility, although expert knowledge from local health staff and prior

onchocerciasis endemicity data were also used to spread survey locations to cover as much

geographical space as logistically possible.

For each survey, parasitological examinations included collection of a single skin snip from

each posterior iliac crest using a Holth-type corneoscleral punch according to WHO protocols.

In sentinel villages where more than one survey was conducted, we chose the infection esti-

mates from the latest survey conducted. The MF load for each person was defined as the arith-

metic mean MF count per mg skin.

Figs 1 and 2 show the geographical distribution and endemicity level of survey villages,

grouped by period.

Ivermectin distribution

The National Onchocerciasis Control Programme provided ivermectin MDA in about 1500

villages annually between 1992 and 2002. Residents >5 years of age in eligible communities

(i.e. MF prevalence of�35% or CMFL of� 5MF/snip) were targeted. Pregnant women and

persons with severe illnesses were excluded. Communities located <5 km from a river with

populations of about 2000 were prioritized for treatment. From 1995, APOC’s CDTi approach

was adopted for ivermectin distribution [6]. The coverage goal of the CDTi programme was to

treat 65% of the population in endemic villages. Since 2015, the onchocerciasis CDTi program

has been integrated with MDA that provides ivermectin plus albendazole annually for elimina-

tion of lymphatic filariasis in co-endemic areas.

Socio-demographic, climatic and environmental data

Interpolated climate and remote sensing data used in combination with statistical models to

map the distribution of diseases as well as other health indices has accelerated greatly in the
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past decade. These data layers are created by collating large amounts of point-level data from

weather stations globally. Smoothing algorithms are used to produce continuous maps. We

downloaded climate variables related to temperature from the WorldClim database [32]. Here

climate layers are presented as smooth maps of mean monthly climate data obtained for the

period 1950–2000 from thousands of weather stations globally (data from ~15,000 weather sta-

tions were used to estimate the minimum and maximum temperature variables).

Access to communities was a key determinant for selecting survey sites for onchocerciasis

surveys. In order to account for this in our analysis, we processed data from the WorldPop

repository [33,34] that measures remoteness and proximity to human settlements. Variables

such as travel time to nearest large settlement, proximity to major roads and night-time lights

were considered. Furthermore, gridded population density estimates, Euclidean distance to

permanent inland water bodies and the ocean, terrain slope and altitude were all downloaded

from the WorldPop repository. Vegetation cover types (according to the United Nations land

cover classification system) were extracted from the GlobCover project at the European Space

Fig 1. Location of survey sites in Côte d’Ivoire. Plots on the left and right are MF prevalence surveys from 1975 to 1991, and 1992 to 2016, respectively.

https://doi.org/10.1371/journal.pntd.0009091.g001
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Agency [35]. Here maps are derived by an automatic and regionally-tuned classification of a

300m medium resolution imaging spectrometer (MERIS) sensor on the ENVISAT satellite

mission.

Because onchocerciasis is known to be endemic in agricultural communities, we considered

covariates such as designated croplands and areas with established irrigation infrastructure.

These data layers were downloaded from the Global Map of Irrigation Areas of Food and Agri-

cultural Organization (FAO) [36]. Here, a digital map of irrigation areas was developed by col-

lating over 10,000 sub-national irrigation records from census surveys and reports available to

the FAO and World Bank to create geo-spatial layer for irrigation density (defined as continu-

ous grid-cells that are equipped for irrigation) [37]. Finally, data for household wealth and

maternal education were downloaded from the Socioeconomic Data and Applications Center,

Columbia University [38], and data on housing type were obtained from the Malaria Atlas

Project, University of Oxford [39]. Here housing type was categorized as either being built

with finished materials (e.g. cement, bricks, or tiles) or built with natural or unfinished

Fig 2. Location of survey sites in Côte d’Ivoire. Plots on the left and right are CMFL surveys from 1975 to 1991, and 1992 to 2016, respectively.

https://doi.org/10.1371/journal.pntd.0009091.g002
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materials (e.g. earth, sand, or palm flooring) [23]. These variables were considered as proxies

for wealth.

Changes in the covariates over time were assumed to be negligible for this analysis. For

example, the WorldClim dataset uses interpolated data averaged over a 50-year period.

Although this dataset pre-dates some of the epidemiological surveys in our study, we assumed

that changes that may have occurred in this covariate have been negligible and that it accu-

rately reflects climatic conditions during the study period. Other covariates considered in our

model were modelled estimates, and we treated any temporal trends that may exist as negligi-

ble. Table 1 shows a list of the covariates and their sources.

All input grids were resampled to a common spatial resolution using the nearest-neighbor

algorithm [40] and then clipped to align to the geographical boundaries of Côte d’Ivoire. Ras-

ter manipulation and processing were done using the raster package in R [41].

Building the model

Selection of socio-demographic and environmental covariates. In preparing our dataset

for analysis, we extracted values of the covariate raster layers that corresponded with survey

locations in Côte d’Ivoire. We considered an initial set of 16 covariates. It is standard practice,

however, to account for as much variation in the covariates as possible before building a spatial

model. Therefore, within a non-spatial framework, we explored a two-step procedure for

covariate selection.

First, to assess for the presence of multicollinearity in our set of covariates, we computed

the variance inflation factor (VIF) [43]. Excluding covariates with high VIF values ensures that

retained covariates are statistically independent, and reduce variance in models. We set the

VIF value as 10, which is a generally accepted threshold [43]. From this selection stage, six

covariates (proximity to major roads, night-time lights, cropland, irrigation, maternal educa-

tion and slope of terrain) were excluded from further analyses. As observed MF prevalence

and CMFL values in our dataset were highly correlated (Pearson’s correlation = 0.872), for the

Table 1. Environmental variables used in analysis and their sources.

Variables Source

Distance to permanent inland water bodies (rivers and

streams)

WorldPop [33]

Distance to coastline

Distance to major roads

Night-time lights

Population density

Slope of terrain

Altitude

Travel time to cities Malaria Atlas Project [23,39]

Housing type

Cropland Food and Agriculture Organization of the United Nations

[36,42]

Irrigation

Vegetation cover European Space Agency [35]

Household wealth Socioeconomic Data and Applications Center [38]

Maternal education

Average minimum temperature WorldClim [32]

Average maximum temperature

https://doi.org/10.1371/journal.pntd.0009091.t001

PLOS NEGLECTED TROPICAL DISEASES Geospatial modelling of the impacts of onchocerciasis intervention in Côte d’Ivoire
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purposes of identifying the relationship between predictor and response variable, we defined

our response variable (infection status) as binomial.

Second, we assessed the relative importance of the covariates to the response variable. For

this, we modelled using a boosted regression tree (BRT) algorithm [44]. The BRT produces an

additive regression model in which trees are fitted in a forward, stepwise fashion [44]. To com-

pute the relative importance of the covariates to the response variable, the frequency of the

selection of covariates for splitting, weighted by the squared improvements to the model and

averaged over all trees are calculated. Higher variable relative importance values, computed as

percentages, indicate greater contribution to the model. Variables with no substantial contri-

bution (relative importance threshold set as 10%) were excluded from further analysis. Vegeta-

tion cover and population density variables were dropped at this stage. The remaining eight

covariates: proximity to permanent rivers and streams, altitude, proximity to coastline, house-

hold wealth, average minimum and maximum temperature, housing type, and travel time to

major cities, were included in the final analysis. Covariate selection was performed using the

vif and gbm packages in R [41].

Quantile regression forest (QRF) algorithm. The QRF is an ensemble learning algorithm

for classification and regression based on the construction of decision trees. It efficiently han-

dles large, complex and multi-dimensional satellite data [45]. Studies have shown that this

algorithm outperforms traditional regression models under similar modelling scenarios

[31,46].

Briefly, trees are grown through recursive binary splits from a primary root node which

contains all response and explanatory data. For each split, a new root node is grown using a

random subset of approximately one-third of the data. Therefore, each partition contains a

random bootstrapped sample of two-thirds of the dataset. The bootstrapped dataset uses a pro-

cess known as ‘bagging’, whereby resampling is done with replacement, and that prevents

model overfitting. Unlike random forest (RF) models that consider mean values of the sample

of response variable at each splitting node, the QRF model considers the complete range of val-

ues in the response variable for splitting. This process enables a more rigorous measure of

uncertainty and quantile determination [45]. The splitting process is repeated until a terminal

node is reached. The average of all the trees is then computed and used to make predictions.

During the splitting process, variables that were not selected, known as ‘out-of-bag’ cases, are

used to conduct internal cross-validation to assess the predictive performance of the model

and to generate estimates of the relative importance of explanatory variables.

Model implementation and performance measures. We performed a variogram analysis

in order to explore the spatial autocorrelation in observed data. This is an exploratory tool

widely used in geostatistics [47]. It gives a measure of the variability between pairs of geo-refer-

enced outcome data points (in this study MF prevalence and CMFL). A variable importance

analysis was computed to identify the most relevant predictors for onchocerciasis infection.

These predictors are ranked in order of contribution to the model for predicting infection in

unsampled locations [48]. To explore the relationship between the suite of predictors used in

the model building and observed onchocerciasis infection data, we produced marginal effects

plots.

We then used a QRF model [45] to map MF prevalence and intensity of onchocerciasis for

Côte d’Ivoire for two time periods, namely the vector control period (1975 to 1991) and iver-

mectin MDA/CDTi period (1992 to 2016). We first fitted an RF model to tune parameters for

use in the QRF model. This process informs the optimum number of explanatory variables to

be considered at each recursive node split in the QRF model. In building the QRF model, for

each directly modelled response variable (MF prevalence and CMFL), data were partitioned to

retain a random subset of 30% of data points for validation, while the model was trained on
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the remaining 70%. A 10-fold internal cross-validation on out-of-bag data was computed and

repeated five times. Model evaluation for each response variable was presented as the root

mean squared error (RMSE) and R-squared (R2) values. Variable importance, estimated using

the out-of-bag data from the internal cross-validation, was presented as percentage increase in

mean square error. The Pearson’s correlation coefficient was calculated between pairs of

observed and predicted values. Final model predictions were presented as mean values pro-

jected at a spatial resolution of 5 × 5 km2. Uncertainty estimates were presented as standard

deviations.

As the QRF algorithm is not a spatially explicit model, we included the geographical coordi-

nates of the observed data to account for the effects of spatial heterogeneity of survey locations in

our model predictions [49] in addition to the spatial structure of covariates,. The RF and QRF

models were implemented using the randomForest and quantregForest packages in R [41]. Raster

maps of predictions and uncertainty were exported into ArcGIS [50] for final visualization.

Results

Variogram analysis

Fig 3 shows that there is significant spatial autocorrelation in the observed MF prevalence

data, although spatial autocorrelation starts to decay beyond 250 km. In contrast, there was

limited spatial autocorrelation for CMFL, even at shorter distances.

Fig 3. Variogram plot showing the spatial autocorrelation in observed onchocerciasis infection data. A. MF prevalence B. CMFL. The empirical variogram is

represented by the black dots; the theoretical variogram is represented by the solid black line.

https://doi.org/10.1371/journal.pntd.0009091.g003

PLOS NEGLECTED TROPICAL DISEASES Geospatial modelling of the impacts of onchocerciasis intervention in Côte d’Ivoire
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Variable importance analysis

Fig 4 is a plot of the percentage increment in mean square error computed for the final

suite of variables included in the trained QRF model. The most important predictors were

proximity to permanent rivers and streams, proximity to the coast, altitude and household

wealth.

Marginal effects plots of covariates included in the model

Fig 5 indicate that the probability of onchocerciasis infections decreases with increasing

distance from rivers and streams and the coast. Also, higher household wealth and better

housing type (houses built with modern materials) were positively correlated with

onchocerciasis infection. Travel time to major cities had little effect on onchocerciasis

infection.

Fig 4. Variable importance for onchocerciasis infection in the trained quantile regression forest (QRF) model.

https://doi.org/10.1371/journal.pntd.0009091.g004
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MF prevalence and CMFL circa 1991 and 2016

The overall mean observed MF prevalence decreased from 43.2% circa 1991 to 7.6% circa

2016, and the observed mean CMFL decreased from 13.8 MF/snip circa 1991 to 0.6 MF/snip

circa 2016. The relatively greater decrease in CMFL means that ivermectin had a greater effect

on infection intensity than on prevalence.

Maps presented in Fig 6 show predicted MF prevalence circa 1991 and circa 2016. These

maps indicate that prior to mass treatment with ivermectin, all regions in Côte d’Ivoire were

endemic for onchocerciasis, although areas in the north were hypo-endemic and south were

generally meso- to hyper-endemic. Following the use of ivermectin, endemicity levels

decreased significantly throughout the country. However, infection persists in focal areas in

the south and central regions. The overall predicted mean MF prevalence decreased from

51.8% circa 1991 to 3.9% circa 2016. The mean Pearson’s correlation between observed and

Fig 5. Marginal effects plots for covariates included in the QRF model. The Y-axis is the response (probability of onchocerciasis infection) and the X-axis is the

covariate values.

https://doi.org/10.1371/journal.pntd.0009091.g005
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009091 February 10, 2021 11 / 19

https://doi.org/10.1371/journal.pntd.0009091.g005
https://doi.org/10.1371/journal.pntd.0009091


predicted MF prevalence was 0.687 for model trained with surveys conducted from 1975 to

1991and 0.632 for model trained with surveys conducted from 1992 to 2016.

Predicted CMFL data shown in Fig 7 also indicate that onchocerciasis infection was wide-

spread in Côte d’Ivoire in the pre-ivermectin, although values were higher in the northern and

southern regions of the country. The overall predicted mean CMFL was 10.1 MF/snip circa

1991. This decreased dramatically following the use of ivermectin to 0.1 MF/snip circa 2016,

when CMFL predictions show no infection in most pixels in the map, although ongoing infec-

tions were predicted in areas in the south and west-central regions. The mean Pearson’s corre-

lation between observed and predicted CMFL in surveys conducted prior to ivermectin MDA/

CDTi was 0.664, and 0.583 for surveys conducted during CDTi.

The RMSE and R2 values for the trained QRF model were 1.14 and 0.62 respectively for the

model trained with onchocerciasis data from 1975 to 1991. The RMSE and R2 values for the

model trained with infection data collected from 1992 to 2016 was 1.28 and 0.57, respectively.

Fig 6. Predicted mean MF prevalence. Plot on the left and right are predictions for onchocerciasis endemicity for circa 1991 and circa 2016, respectively.

https://doi.org/10.1371/journal.pntd.0009091.g006
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Discussion

In this study, we have produced continuous maps of onchocerciasis MF prevalence and CMFL

in Côte d’Ivoire circa 1991 and 2016. We have also identified important socio-economic and

environmental variables that correlate with onchocerciasis infection. Our maps illustrate sig-

nificant reductions in both MF prevalence and CMFL that occurred after the introduction of

ivermectin in 1992. We have also identified potential remaining infection hotspots, mainly in

the southern region of Côte d’Ivoire. We believe that the data presented in this study are useful

for understanding changes in the spatial distribution of onchocerciasis in Côte d’Ivoire over

time.

The predictive accuracy of machine learning models is usually assessed by exploring the

ability of models to correctly predict results for an independent dataset [51]. As there was no

independent dataset available, we trained the QRF model on a random sample of 70% of the

total data and predicted results for the held-out 30%. Predictive accuracy was presented as R2,

Fig 7. Predicted mean CMFL. Plot on the left and right are predictions for onchocerciasis endemicity for circa 1991 and circa 2016, respectively.

https://doi.org/10.1371/journal.pntd.0009091.g007
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which is the percentage of variation explained by the covariates in our model. The model

trained with data collected before and during the ivermectin era had R2 values of 62% and

57%, respectively. Although these values are reasonably high compared to those presented in

other modelling exercises [28], we believe that our model would have performed even better if

we had been able to incorporate more detailed information on onchocerciasis morbidity and

interventions (vector control and ivermectin treatment) as predictors in our model. This is

also shown in our uncertainty maps, presented as standard deviations around per-grid square

predictions (S1 Fig). Where standard deviations are high, confidence in model predictions is

lower than in locations where the standard deviation is low. Here the contrasting uncertainty

maps in the two periods studied may reflect missing intervention data; vector control (mostly

in the northern and central regions from 1975 to 1991) and ivermectin treatment in the south-

ern region that started in 1992.

Migration of humans and the drifting of black flies by monsoon winds from far distant hot-

spots with ongoing infection can also lead to resurgence of infection in areas previously cleared

[52–55]. Our variogram analysis shows that the spatial autocorrelation in the observed MF

prevalence data has a range of ~250 km (Fig 3A). This is consistent with previous findings [25]

and with reports that black flies can travel and infect humans several hundred kilometers from

their breeding sites [55–57], although biting density drops to 10% of its highest levels in areas

that are more than 5 km from breeding sites [58]. However, if infections levels in humans are

reduced to elimination thresholds due to effective intervention measures, resurgence is

unlikely regardless of local increases in vector populations.

Although machine learning algorithms are increasingly being used for spatial modelling,

they sometimes fail to account for the spatial structure of the outcome of interest. In order to

correct for this, in addition to using spatially referenced predictors, we included the geographi-

cal coordinates of survey villages in our dataset as covariates in our final model. This adds spa-

tial structure and improves model predictions, as previously reported [49]. We extended the

methods of Eneanya et al. [27] to carry out a robust, step-wise selection procedure to identify

the best suite of uncorrelated explanatory variables. Multicollinearity often arises in statistical

models, and it can lead to unstable estimates of the variance of regression coefficients [43].

Remotely-sensed covariates that are associated with the modeled outcome aid in defining

the natural geographical limits of the prediction. This improves the ability of the model to

explain the variability in predicted outcomes and to account for further spatial structure dur-

ing the modelling process. We considered land areas designated as cropland, the presence of

irrigation infrastructure, type of housing, and household wealth as covariates for infection.

These have not been used as predictors in previous spatial models for onchocerciasis. How-

ever, we view these as key determinants of the potential distribution of onchocerciasis for the

following reasons; i) Agricultural communities are historically known to be highly endemic

for onchocerciasis. Farms in these communities are often situated near rivers that provide

water for crops. As black flies bite outdoors, farmers and others working outdoors have an

increased risk of infection. ii) Wealthier households are more likely to have land for farming.

Our model predicts meso- to hyperendemic hotspots in areas of northern Côte d’Ivoire

prior to ivermectin treatment. Previous predictions for these areas [25] were generally higher

than ours. In their work, O’Hanlon et al. only considered villages in the OCP region that were

intervention naïve, whereas villages in our dataset for this area in Côte d’Ivoire had received

multiple years of intervention by vector control. Our model also predicted high-level endemic-

ity in the southern part of the country, and those predictions are consistent with results from

studies such as that of Dadzie et al. [59]. The authors documented high onchocerciasis preva-

lence in 11 first-line villages in the lower areas near the rivers Bandama and Comoe. Similarly,
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known hyperendemicity in the Cavally River valley in the western region [60] was also cap-

tured in our model.

Our study confirmed that onchocerciasis infection is negatively associated with increasing

distance from rivers. Elevation and proximity to breeding sites were reported to be important

predictors of onchocerciasis endemicity and severity in Cameroon [61] and Venezuela [62].

Temperature, an important predictor in our model, is linked to development of the black fly

vector and to development of parasite larvae in the vector [63]. Proximity to major cities was

the least important variable in our model, perhaps due to the extensive geographical coverage

of the survey dataset used to construct the models.

Our study predicted high onchocerciasis prevalence for much of southern Côte d’Ivoire.

The native vegetation type in this area is rain forest, and high prevalences have been observed

for forest-type onchocerciasis in Côte d’Ivoire [64] and elsewhere [65]. Furthermore, data pre-

sented by Adjami et al. suggest that the savanna-dwelling species S. damnosum s.s. appear to

thrive in areas along the middle Bandama river leading to an expansion of savanna type O. vol-
vulus [66]. This may be as a result of climatic and anthropogenic changes that have resulted in

large scale deforestation in West Africa.

Ground-truth data for villages to the east and west of Abidjan indicated meso- or hyperen-

demic. A recent meta-analysis of onchocerciasis-induced epilepsy in West Africa recorded

cases in the south of Côte d’Ivoire [67], in keeping with our model predictions for this area. As

there are no ground-truth data for greater Abidjan city, our model made predictions based on

these nearby villages and corresponding environmental limits of the covariates. This explains

why our maps predict that areas in greater Abidjan were hyperendemic prior to treatment

with ivermectin. Therefore, our model may be missing some important covariates that are

peculiar to the commercial capital city of Abidjan. As it is known that onchocerciasis is not

endemic in Abidjan, we have excluded Abidjan from our final prediction maps. However, it

might be useful to perform field surveys to verify the absence of onchocerciasis infection and

onchocerciasis-induced epilepsy in the Greater Abidjan area.

Data used to build our predictive spatial models were from surveys conducted by the

National Onchocerciasis Control Programme. One limitation of these data is that surveys were

not conducted at random; thus, villages surveyed may be skewed towards areas with known

high endemicity. In addition, the original programme areas were selected using entomological

knowledge about vector breeding sites and information on the distribution of clinical oncho-

cerciasis in villages. Despite these limitations, data from the National OCP comprises an exten-

sive source of standardized parasitological survey data that cover large areas within Côte

d’Ivoire.

In conclusion, despite the disruption of CDTi due to civil unrest (especially between 2002

and 2007), our results clearly show significant reductions in onchocerciasis prevalence in Côte

d’Ivoire after the scale up of mass treatment with ivermectin. Our identification of potential

foci with ongoing infection may help control programmes target intervention with ivermectin

(with or without vector control) or more frequent ivermectin distribution in areas where infec-

tion persists despite adequate ivermectin coverage. Such focused efforts are likely to be very

important in the late stages of the country’s onchocerciasis elimination programme. Although

this study focused on Côte d’Ivoire, this approach may be useful for identifying endemic areas

and targeting interventions to eliminate onchocerciasis in other African countries.

Supporting information

S1 Fig. Uncertainty maps shown as standard deviation at a resolution of 5km x 5 km. Plot

on the left and right are standard deviation of model trained with data from 1975 to 1991 and
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1992 to 2016, respectively.

(TIF)
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