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Vector Spaces and Norms1

1 The Vector Space RN .

1.1 RN basics.

RN is the N -fold Cartesian product of R. Thus, for example, R2 = R × R. If
x = (x1, . . . , xn, . . . , xN ) ∈ RN , then xn is the value of coordinate n. I write 0 both
for 0 ∈ R and for (0, . . . , 0) ∈ RN .

An element x of RN can be interpreted either as a point in RN or as a vec-
tor (a directed line segment with base at the origin and head at x). I use these
interpretations interchangeably.

I sometimes represent an elements of RN as a matrix. If I do so then the matrix
is a column:

x = (x1, . . . , xN ) =

 x1
...
xN

 .
Associated with RN are two basic operations.

• Vector addition. If x, y ∈ RN then

x+ y = (x1 + y1, . . . , xN + yN ) ∈ RN .

• Scalar multiplication. If a ∈ R and x ∈ RN then

ax = (ax1, . . . , axN ) ∈ RN .

The point a ∈ R is called a scalar.

RN , when combined with vector addition and scalar multiplication, is a vector
space. I define general vector spaces in Section 2. RN is the canonical example of a
vector space.

RN has the following standard partial order. For any x, y ∈ RN , write x ≥ y iff
xn ≥ yn for all n, write x > y iff x ≥ y and x 6= y, and write x � y iff xn > yn
for all n. It bears emphasis that ≥ is not a complete order on RN ; for example,
(2, 1) 6≥ (1, 2) and (1, 2) 6≥ (2, 1). It also bears emphasis that � does not mean
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ShareAlike 4.0 License.
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“much greater than.” We could have x � y even if x were only a tiny bit greater
than y in every coordinate (by whatever standard we are using for tiny).

The set RN
+ = {x ∈ RN : x ≥ 0} (i.e., the set of points in RN where all

coordinates are non-negative) is called the non-negative orthant. RN
+ is the standard

mathematical setting for a number of economic models, including classical consumer
theory with N commodities. The set RN

++ = {x ∈ RN : x� 0} is called the strictly
positive orthant.

Two points x, y ∈ RN , x, y 6= 0, are collinear (lie on the same line through the
origin) iff there is an a ∈ R such that x = ay.

1.2 Inner product.

Definition 1. If x, y ∈ RN ,

x · y =
N∑

n=1

xnyn.

x · y is the inner product of x and y.

Recall that a point x ∈ RN can be represented as a (column) matrix. Recall also
that if x is an N × 1 column matrix then its transpose x′ is a 1×N row matrix:

x′ =
[
x1 · · ·xN

]
.

It then follows, by the standard rules of matrix multiplication, that for any x, y ∈
RN ,

x · y = x′y = y′x.

Remark 1. There is also something called the outer product: the outer product of x
and y is the N ×N matrix xy′. I will not be using outer products. �

As discussed in Remark 3 in Section 1.3, the inner product x ·y is closely related
to the angle between x and y (when x and y are viewed as vectors).

1.3 The Euclidean Norm.

Definition 2. The Euclidean norm of x ∈ RN , written ‖x‖, is

‖x‖ =
√
x · x.

Alternatively,

‖x‖ =

(
N∑

n=1

x2n

)1/2

.

If N = 1, then the Euclidean norm is simply absolute value: ‖x‖ = |x|.
The standard interpretation of the Euclidean norm is that it is a measure of

distance to the origin. In particular, consider (x1, x2) ∈ R2 and the right triangle
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formed by the vertices (0, 0), (x1, 0), and (x1, x2). The side with endpoints (0, 0)
and (x1, 0), call it A, has length x1. The side with endpoints (x1, 0) and (x1, x2), call
it B, has length x2. By the Pythagorean Theorem, the hypotenuse, with endpoints
(0, 0) and (x1, x2), has length equal to the square root of the sum of the squared
lengths of A and B, namely

√
x21 + x22 = ‖x‖. A similar argument applies in higher

dimensions.
The Euclidean norm is named for the Greek mathematician Euclid, who studied

“flat” geometries in which the Pythagorean theorem holds. (The Pythagorean The-
orem does not hold, for example, for triangles inscribed on a sphere.) The vector
space RN with the Euclidean norm is called Euclidean space.

The Euclidean norm in RN has the following properties.

Theorem 1. For any x, y ∈ RN and any a ∈ R the following hold.

1. ‖x‖ ≥ 0. ‖x‖ = 0 iff x = 0.

2. ‖ax‖ = |a|‖x‖.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The third property is called the triangle inequality.

The motivation for the name “triangle inequality” is the following. Consider
vectors x and y, x, y 6= 0, and suppose that x and y are not collinear. Then the
points 0, x, and x + y form a triangle with sides given by the line segment from 0
to x, the line segment from x to x + y, and the line segment from 0 to x + y. The
triangle inequality says that the sum of the lengths of two sides of this triangle is
greater than the length of the third side.

The difficult step in proving Theorem 1 is proving the triangle inequality. As an
intermediate step, I first prove Theorem 2, called the Cauchy-Schwartz Inequality,
which is of independent interest.

Theorem 2 (Cauchy-Schwartz Inequality). If x, y ∈ RN then

|x · y| ≤ ‖x‖ ‖y‖.

Moreover, for x, y 6= 0, this weak inequality holds with equality iff x and y are
collinear.

Proof. If x · y = 0 then the inequality holds, since ‖x‖, ‖y‖ ≥ 0. Therefore, assume
x · y 6= 0. Note that this implies x 6= 0.

For any λ ∈ R, since a sum of squares is always non-negative,

0 ≤ (x− λy) · (x− λy)

= ‖x‖2 − 2λ(x · y) + λ2‖y‖2.
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Set

λ =
‖x‖2

x · y
,

which is well defined since x · y 6= 0. Therefore,

0 ≤ ‖x‖2 − 2
‖x‖2

(x · y)
(x · y) +

‖x‖4

(x · y)2
‖y‖2.

Collecting terms and rearranging yields,

‖x‖2(x · y)2 ≤ ‖x‖4‖y‖2.

Since ‖x‖ > 0 (‖x‖ = 0 iff x = 0), one can divide both sides by ‖x‖2 to get

(x · y)2 ≤ ‖x‖2‖y‖2.

Taking the square root of both sides yields the desired weak inequality.
Finally, assume x, y 6= 0. If x and y are collinear then there is a λ ∈ R such that

x = λy. It is easy to verify that the inequality holds with equality. Conversely, if x
and y are not collinear then for any λ, in particular for λ = ‖x‖2/(x ·y), x−λy 6= 0,
hence 0 < (x−λy)·(x−λy), and the above argument then implies |x·y| < ‖x‖ ‖y‖. �

Proof of Theorem 1. The first two properties are almost immediate. As for the
third, the triangle inequality, the argument is as follows. By the Cauchy-Schwartz
inequality, x · y ≤ |x · y| ≤ ‖x‖ ‖y‖. Therefore,

‖x+ y‖2 = (x+ y) · (x+ y)

= x · x+ 2x · y + y · y
≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

Taking the square root of both sides yields the desired inequality. �

Remark 2. A stronger version of the triangle inequality holds for the Euclidean
norm. Assume throughout that x, y 6= 0. Say that x, y are positively collinear iff
there is an α ∈ R, α > 0, such that x = αy. Viewed as directed line segments,
positively collinear vectors point in the same direction. I claim that

‖x+ y‖ = ‖x‖+ ‖y‖

iff x and y are positively collinear.
Suppose x, y 6= 0. If x, y are positively collinear, with x = αy, then x · y > 0,

since x ·y = α‖y‖2 > 0. Hence x ·y = |x ·y| = ‖x‖‖y‖, with the last equality coming
from the Cauchy-Schwartz Inequality. It then follows from the proof of Theorem
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1 that the desired weak inequality holds with equality. If x, y are collinear but
not positively collinear (i.e., α < 0), then x · y < 0, hence x · y < |x · y| and the
desired weak inequality holds strictly. Finally, by the Cauchy-Schwartz inequality,
the desired weak inequality holds strictly if x and y are not collinear. �

Remark 3. Suppose x, y 6= 0 and label x and y so that the angle, call it θ, between x
and y is non-negative. Assume further that θ lies strictly between 0 and 90 degrees.
Let t be the scalar such that the line segment from 0 to tx is at right angles to the
line segment from tx to y.

y

x
θ

t x

Then the points 0, tx, and y form a right triangle, with hypotenuse given by the
line segment from 0 to y. By the Pythagorean Theorem, ‖y‖2 = ‖tx‖2 + ‖y − tx‖2.
Hence y · y = t2(x · x) + (y − tx) · (y − tx) = t2(x · x) + y · y − 2t(x · y) + t2(x · x).
Cancelling the y · y and collecting terms yields

t =
x · y
x · x

.

By the assumption that θ lies strictly between 0 and 90 degrees, t is positive.
By the definition of cosine (length of the side adjacent to the angle divided by

the length of the hypotenuse):

cos(θ) =
‖tx‖
‖y‖

=
x · y
x · x

(x · x)
1
2

‖y‖
=

x · y
‖x‖‖y‖

.

Rewriting,
x · y = ‖x‖‖y‖ cos(θ).

In particular, if ‖x‖ = ‖y‖ = 1 (so that both x and y lie on the unit circle centered
on the origin), then x · y = cos(θ).

This implies the Cauchy-Schwartz inequality. Specifically, for θ strictly between
0 and 90 degrees, 0 < cos(θ) < 1, hence 0 < x · y < ‖x‖‖y‖.

One can extend this argument to θ in other ranges. In particular, x · y = 0 iff x
and y are orthogonal (are 90 degrees apart). �

2 General Vector Spaces.

A general vector space consists of a non-empty set X together with the following.
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• There is a binary operation on X, vector addition, and an element 0 ∈ X such
that for any x, x̂ ∈ X, x + x̂ ∈ X (closure), x + x̂ = x̂ + x (commutativity),
and x + 0 = x (0 is the additive identity). In addition, for any x ∈ X, one
requires that there exists an element −x such that x + (−x) = 0; −x is the
additive inverse of x.

• There is a field F (recall that Q and R are fields) and a binary operation,
scalar multiplication, mapping from F × X to X such that for any a, b ∈ F
and any x, x̂ ∈ X

1. a(x+ x̂) = ax+ ax̂

2. (a+ b)x = ax+ bx

3. a(bx) = (ab)x

4. 1x = x, where 1 ∈ F is the multiplicative identity for the field F .

Note that for any x ∈ X, if 0 is the zero element (additive identify) of F , then
0x = (1 − 1)x = x + (−x) = 0. Once again, I am using 0 in two different
senses, both as the zero element of F and as the zero element of X.

For nearly all applications in economics, the field F is taken to be R, in which
case the vector space is said to be over the reals. In what follows, I assume in every
case that the vector field is over the reals and I omit writing “over the reals”.

If X is a vector space and A ⊆ X is a vector space with the same definition of
vector multiplication and scalar multiplication as for X, then A is a vector subspace
of X.

Example 1. For any w ∈ RN , the line through w and the origin is a vector subspace
of RN . In this case X = {x ∈ RN : ∃a ∈ R s.t. x = aw}. In particular, the xn axis
is a vector subspace of RN for any n. �

Example 2. RN
+ is not a vector subspace of RN . In particular, no point in RN

+ other
than the origin has an additive inverse. �

3 General Norms.

Definition 3. A function f : X → R is a norm on X iff for any x, y ∈ X and any
a ∈ R,

1. f(x) ≥ 0 and f(x) = 0 iff x = 0,

2. f(ax) = |a|f(x),

3. f(x+ y) ≤ f(x) + f(y). This property is called the triangle inequality.
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For RN , I have already discussed one norm, the Euclidean norm. There are
other possible norms for RN , infinitely many in fact, but the Euclidean norm is the
default: unless specified explicitly otherwise, the norm in RN is understood to be
the Euclidean norm. In other vector spaces, there is often no default norm, and one
has to be explicit as to which norm one is using.

Remark 4. If X is a vector space, say that a function f : X → R is convex iff for
any x, y ∈ X, and any a ∈ [0, 1], f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y). A simple
example of a convex function is the standard norm on R, namely absolute value:
f : R→ R given by f(x) = |x|.

More generally, any norm is convex: for any x, y ∈ X, and any a ∈ [0, 1], if f is
a norm then f(ax+ (1− a)y) ≤ f(ax) + f((1− a)y) = af(x) + (1− a)f(y), where
the inequality is from the third property of norms (the triangle inequality) and the
equality is from the second property of norms. �

If X is a normed vector space and A is a vector subspace of X, then, unless
I state explicitly otherwise, I assume that A inherits the norm of X, with domain
restricted to A. A is then a normed vector subspace of X.

4 Examples.

4.1 The max norm on RN .

For any x ∈ RN , define
‖x‖max = max

n
|xn|.

Thus, for example, if x = (2,−7) then ‖x‖max = 7.

Theorem 3. ‖ · ‖max is a norm on RN .

Proof. Of the three norm properties, only the triangle inequality is non-trivial.
Consider any x, y ∈ RN . For each n, |xn + yn| ≤ |xn| + |yn| (this is just the
Euclidean triangle inequality for N = 1). And, for each n, |xn| ≤ maxm |xm|
(where I’ve changed the index on the right from n to m to avoid confusion) and
|yn| ≤ maxm |ym|. Thus, for all n, |xn + yn| ≤ maxm |xm| + maxm |ym|. Hence
maxn |xn + yn| ≤ maxm |xm|+ maxm |ym|, from which the result follows. �

Given any norm f , one can form a new norm g by multiplying by a constant
c > 0: g(x) = cf(x). This amounts to a change in units (e.g., yards versus meters).
There are an infinity of norms that differ in this trivial sense.

The Euclidean norm and the max norm are different in a more substantive
sense. Consider the points x = (100, 0) and y = (90, 90). Then ‖x‖max = 100 >
‖y‖max = 90. But under the Euclidean norm, ‖x‖ = 100 < ‖y‖ = 90

√
2 ≈ 127.

Thus, the Euclidean norm and the max norm give different answers to the question,
“which point is closer to the origin, x or y?” The Euclidean and max norms are,
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however, nevertheless similar in another sense, discussed below in the section on
norm equivalence.

Remark 5. The min function f : RN → R, f(x) = minn |xn|, is not a norm. For
example if x = (1, 0) and y = (0, 1) then f(x) = f(y) = 0 but f(x+ y) = 1. �

4.2 The sup norm on `∞.

Recall that Rω is the set of elements of the form (x1, x2, . . . ), with xn ∈ R for all n.2

As discussed in the Set Theory notes, I can construct Rω formally by identifying it
with the set of functions from {1, 2, . . . } to R: if g is such a function, then x1 = g(1),
x2 = g(2) and so forth. Make Rω a vector space by defining vector addition and
scalar multiplication for Rω as for RN .

For Rω, the natural analog of the max norm is the sup norm. A problem,
however, is that sup is not defined (or is defined to be infinite) for points such as
x = (1, 2, 3, . . . ). For this reason, restrict attention to the set of x in Rω that are
bounded in the sense that all coordinates of x have absolute values less than some
real number M , where M is allowed to vary with x. This subset of Rω is called `∞.
Formally,

`∞ = {x ∈ Rω : ∃M ∈ R s.t. ∀n, |xn| < M}.

Thus (x1, 0, . . . ) ∈ `∞ no matter how large x1 is (just takeM > x1) but (1, 2, 3, . . . ) /∈
`∞.

`∞ is a vector subspace of Rω. Although this may be obvious, in infinite di-
mensional settings such as this it can be important to check vector space properties
explicitly. In particular, then, note that `∞ is closed under vector addition (i.e., if
x, y ∈ `∞ then x + y ∈ `∞) since if Mx is a bound for x and My is a bound for y
then for any n, |xn + yn| ≤ |xn|+ |yn| < Mx +My, and hence Mx +My is a bound
for x+ y. Similarly, `∞ is closed under scalar multiplication.

By the LUB property, for any x ∈ `∞,

‖x‖sup = sup
n
|xn|

is well defined. For example, if x = (3, 3.1, 3.14, . . . ) then ‖x‖sup = π. ‖ · ‖sup is
called the sup norm.

Theorem 4. ‖ · ‖sup is a norm on `∞.

Proof. Of the three norm properties, only the triangle inequality is non-trivial.
The proof is almost the same as the proof for ‖ · ‖max. Consider any x, y ∈ `∞.
For each n, |xn + yn| ≤ |xn| + |yn| (this is just the Euclidean triangle inequality
for N = 1). And, for each n, |xn| ≤ supm |xm| (where I’ve changed the index on

2R∞ might seem to be more natural notation, but R∞ is standard notation for a different vector
space, namely the vector subspace of Rω consisting of points that are zero in all but a finite number
of coordinates. R∞ can be thought of as the union of all possible RN .
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the right from n to m to avoid confusion) and |yn| ≤ supm |ym|. Thus, for all n,
|xn + yn| ≤ supm |xm| + supm |ym|. Hence supn |xn + yn| ≤ supm |xm| + supm |ym|,
from which the result follows. �

4.3 Other examples.

There are many other important examples of vector spaces and norms. I discuss
two briefly, to give a flavor of what is possible.

1. Let `2 be the subset of Rω that is square summable: if x ∈ Rω then x ∈ `2
iff the infinite sum

∑∞
n=1 x

2
n is finite.3 For example, (1, 1/2, 1/3, . . . ) ∈ `2 but

(1, 1, 1, . . . ) /∈ `2. It should be evident, in particular, that `2 is a proper subset
of `∞.

One can show that `2 is a vector space. One can also show that for any
x, y ∈ `2 there is a well-defined inner product given by

x · y =
∞∑
n=1

xnyn.

Finally, one can then define the `2 norm by

‖x‖2 =
√
x · x.

The proof that the `2 norm is indeed a norm is identical to the proof that the
Euclidean norm is a norm.

The vector space `2 with the `2 norm is an infinite dimensional analog of RN

with the Euclidean norm. Note that the `2 norm is not well defined for `∞.
For example, the `2 norm of the point (1, 1, 1, . . . ) is undefined (or infinite, if
you prefer). There is no natural analog of the Euclidean norm on `∞.

2. Let C[0, 1] be the set of continuous functions from [0, 1] to R. I define con-
tinuity formally later in the course; here I assume that you have an informal
understanding of what continuity means. For f, g ∈ C[0, 1], define h = f + g
to be h(x) = f(x) + g(x) for all x ∈ [0, 1]. For f ∈ C[0, 1] and a ∈ R, define
h = af to be h(x) = af(x) for all x ∈ [0, 1]. Then one can show that C[0, 1] is a
vector space (for example, one can prove that the sum of continuous functions
is continuous).

3I have not defined what it means for an infinite sum to be finite. For present purposes, the
following suffices. Since x2

n ≥ 0, the partial sum SN =
∑N

n=1 x
2
n is weakly increasing in N . If there

is an M such that SN < M for all N , then by the LUB property, supN{SN} is well defined. In
this case,

∑∞
n=1 x

2
n is said to be finite and equals supN{SN}. Otherwise the infinite sum is either

undefined or said to be infinite.
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One obvious norm for C[0, 1] is the sup norm: ‖f‖sup = supx |f(x)|. This
(candidate) norm is well defined thanks to a basic fact, proved later in the
course, that any continuous function defined on [0, 1] is bounded. The proof
that ‖ · ‖sup is indeed a norm is then almost the same as for `∞.

5 Finite-Dimensional Vector Spaces.

Let X be a vector space. Given a finite set Z ⊆ X, the span of Z is the set A
such that for every x ∈ A there are numbers λz ∈ R, one for each z ∈ Z, such that
x =

∑
z∈Z λzz: x is a weighted sum of elements of Z. Z is said to span A. It is easy

to verify that if Z ⊆ X spans A then A is a vector subspace of X.
A ⊆ X is finite dimensional iff it can be spanned by a finite subset of X. In

particular, X is finite dimensional iff it can be spanned by a finite set of its vectors.
If X is not finite dimensional then it is infinite dimensional. `∞ is an example of an
infinite dimensional vector space.

Suppose that a vector space X is spanned by the finite set Z. Z is a basis for X
iff no set with lower cardinality spans X. If Z = {z1, . . . , zN} is a basis for X then
the dimension of X is said to be N and, for any x ∈ X, the representation

x =
N∑

n=1

λnz
n

is unique. To see the latter, I argue by contraposition. Suppose that for some x ∈ X,

x =

N∑
n=1

λnz
n =

N∑
n=1

λ̂nz
n.

with λ = (λ1, . . . , λN ) ∈ RN not equal to λ̂ = (λ̂1, . . . , λ̂N ) ∈ RN . Then,

0 =

N∑
n=1

(λn − λ̂n)zn.

If λ 6= λ̂ then λn−λ̂n 6= 0 for at least one n; for notational convenience (alternatively,
by reindexing the zn), suppose this occurs for n = 1. Then,

z1 = −
N∑

n=2

λn − λ̂n
λ1 − λ̂1

zn.

This implies Z \ {z1} spans X, so that Z was not a basis.
A finite-dimensional vector space with dimension greater than 1 will have an

infinity of bases (for one thing, if Z = {z1, . . . , zN} is a basis, then {2z1, . . . , 2zN}
is also a basis) and there is, in general, no default or standard basis. But RN does
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have a standard basis, with typical element zn = (0, . . . , 0, 1, 0, . . . , 0), where the 1
appears in coordinate n.

For a general finite-dimensional vector space X with basis Z, on can define the
max norm as before, with

‖x‖max = max
n
|λn|

where x =
∑

n λnz
n. The proof that the max norm is a norm is the same as in the

earlier proof that the max norm on RN is a norm (Theorem 3), so I won’t provide
it as a separate theorem.

The following is a simple example of a finite-dimensional vector space that is not
RN or some vector subspace of RN .

Example 3. Let X be the set of polynomials on R with degree at most N − 1: an
element P ∈ X is a function P : R→ R defined by,

P (b) = λ1 + λ2b+ · · ·+ λNb
N−1,

where λn ∈ R for each n. It is easy to verify that X is a vector space and that a
basis for X is the set of the first N monomials zn : R → R given by, for b ∈ R,
zn(b) = bn; I include here the trivial monomial z0 given by z0(b) = 1. With this
basis, any P ∈ X is characterized by the associated vector (λ1, . . . , λN ) ∈ RN . �

As noted in this last example, if X is the vector space of polynomials on R with
degree at most N − 1, then, using the first N monomials as a basis, any element of
X is uniquely identified with an element of RN , namely the element of RN giving
the polynomial weights, and vice versa. Moreover, if we endow both X and RN

with the max norm, then norm is preserved: for any P ∈ X, if λ ∈ RN is the
associated vector of polynomial weights, then ‖P‖max = ‖λ‖max, and vice versa for
any λ ∈ RN . We say that X and RN , both with the max norm, are isometrically
isomorphic. At an abstract level, there isn’t really any difference between X and
RN : they are just two different interpretations of the same underlying mathematical
object. This can easily be shown to be general, although I won’t do so explicitly; in
particular, any finite-dimensional vector space of dimension N with the max norm
is isometrically isomorphic to RN .

6 Equivalent Norms.

Definition 4. Let X be a vector space. Two norms, f and g, are equivalent iff
there are 0 < a ≤ b such that, for any x ∈ X,

ag(x) ≤ f(x) ≤ bg(x).

For any norm f and any r ∈ R, r > 0, consider the set of points with norm less
than or equal to r. In R3 with the Euclidean norm, this set is a solid ball, centered
at the origin, of radius r. Call this set a closed f -norm ball of radius r.
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If f and g are equivalent then the closed f - and g-norm balls are nested, like
matryoshka dolls. In particular, for any r > 0, a closed g-norm ball of radius r/b is
contained inside a closed f -norm ball of radius r, which is contained inside a closed
g-norm ball of radius r/a.

Theorem 5. In RN , the max norm and the Euclidean norm are equivalent.

Proof. For any x ∈ X, ‖x‖2 =
∑

n x
2
n ≥ maxn x

2
n, hence ‖x‖ ≥ maxn |xn| = ‖x‖max.

On the other hand, for any x ∈ X,

‖x‖ =

√∑
n

x2n

≤
√
N max

n
x2n

=
√
N max

n
|xn|

=
√
N‖x‖max.

Combining, for any x ∈ X,

‖x‖max ≤ ‖x‖ ≤
√
N‖x‖max,

which shows that the max norm and the Euclidean norm are equivalent. (In the
definition of equivalence, let f be the Euclidean norm, g be the max norm, and let
a = 1 and b =

√
N .) �

Theorem 5 is a special case of the fact, proved in the notes on Existence of
Optima, that in any finite-dimensional vector space, all norms are equivalent.

In infinite-dimensional vectors spaces, on the other hand, norms need not be
equivalent.

Example 4. For `∞, consider the norm pw∗ defined by

‖x‖pw∗ = sup
n

|xn|
n
.

(This norm has no standard name. I am calling it pw∗ because it is a variation on
another bit of mathematical machinery that I will be introducing later and that I
will call the pw metric.)

It is not hard to verify that the pw∗ norm is defined for all x ∈ `∞ and satisfies
the norm properties.

The pw∗ and sup norms are not equivalent. In particular, consider points of the
form (1, 0, 0, . . . ), (0, 2, 0, 0, . . . ), (0, 0, 3, 0, 0, . . . ), and so on. These points are all
contained in the pw∗-norm ball of radius 2. But no sup-norm ball of any radius, no
matter how large, contains all of these points. �
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