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Semi-Continuity1

1 Definition.

Let (X, d) be a metric space. For a function f : X → R and a point y ∈ R, the
upper contour set defined by y is

U(y) = f−1([y,∞)) = {x ∈ X : f(x) ≥ y}.

The lower contour set defined by y is

L(y) = f−1((−∞, y]) = {x ∈ X : f(x) ≤ y}.

The next result establishes that a number of properties are equivalent.

Theorem 1. Let f : X → R.

1. The following are equivalent.

(a) For any y ∈ R, U(y) is closed.

(b) For any y ∈ R, f−1((−∞, y)) = [U(y)]c is open.

(c) For any x ∈ X, if the sequence (xt) in X converges to x, then for any
ε > 0 there is a T such that for all t > T , f(x) > f(xt)− ε.

2. The following are equivalent.

(a) For any y ∈ R, L(y) is closed.

(b) For any y ∈ R, f−1((y,∞)) = [L(y)]c is open.

(c) For any x ∈ X, if the sequence (xt) in X converges to x then for any
ε > 0 there is a T such that for all t > T , f(x) < f(xt) + ε.

Proof. I provide the proof of equivalence for the first set of conditions. The proof
for the second set of conditions is analogous.

• 1(a) ⇒ 1(b). Almost immediate, since U(y) is closed iff [U(y)]c is open.
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• 1(b) ⇒ 1(c). By contraposition. Suppose that there is an x ∈ X and a
sequence (xt) in X that converges to x such that for for some ε > 0 there are
infinitely many t such that f(x) ≤ f(xt)− ε. Choose any y ∈ (f(x), f(x) + ε).
Then there are infinitely many t such that xt ∈ U(y). These xt constitute a
sequence in U(y) that converges to x, but x /∈ U(y), hence U(y) is not closed,
hence [U(y)]c is not open.

• 1(c)⇒ 1(a). Take any y ∈ R. If U(y) = ∅ then I am done. Otherwise, take any
convergent sequence (xt) in U(y) let x = limxt. I need to show that x ∈ U(y).
By 1(c), for any ε > 0 there is a T such that for all t > T , f(x) > f(xt) − ε.
Since xt ∈ U(y), f(xt) ≥ y, hence f(x) > y − ε. Since this must hold for any
ε > 0, f(x) ≥ y, which implies x ∈ U(y).

�

Since conditions listed under 1 and 2 are equivalent, I can choose any pair of
them to define upper and lower semicontinuity. To underscore the analogy with
continuity, I use the “b” conditions.

Definition 1. Let f : X → R.

1. f is upper semicontinuous (USC) iff for any y ∈ R, f−1((−∞, y)) is open.

2. f is lower semicontinuous (LSC) iff for any y ∈ R, f−1((y,∞)) is open

Informally, a function is upper semicontinuous if it is continuous or, if not, it
only jumps up; a function is lower semicontinuous if it is continuous or, if not, it
only jumps down.

Example 1. Define f : R→ R by

f(x) =


1/x if x < 0,

0 if x = 0,

−1/x if x > 0.

Then f is upper semi-continuous. In particular, if xt → 0, then f(xt)→ −∞ < 0 =
f(0). �

Theorem 2. f is continuous iff it is both upper and lower semi-continuous.

Proof. Almost immediate form property 1(c) and 2(c), which together are equiv-
alent to requiring that if (xt) converges to x then for any ε > 0, there is a T such
that for all t > T , f(xt) ∈ Nε(f(x)), hence f(xt) converges to f(x). �
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