John Nachbar Washington University December 15, 2014

Semi-Continuity¹

1 Definition.

Let (X, d) be a metric space. For a function $f: X \to \mathbb{R}$ and a point $y \in \mathbb{R}$, the upper contour set defined by y is

$$U(y) = f^{-1}([y, \infty)) = \{x \in X : f(x) \ge y\}.$$

The lower contour set defined by y is

$$L(y) = f^{-1}((-\infty, y]) = \{x \in X : f(x) \le y\}.$$

The next result establishes that a number of properties are equivalent.

Theorem 1. Let $f: X \to \mathbb{R}$.

- 1. The following are equivalent.
 - (a) For any $y \in \mathbb{R}$, U(y) is closed.
 - (b) For any $y \in \mathbb{R}$, $f^{-1}((-\infty, y)) = [U(y)]^c$ is open.
 - (c) For any $x \in X$, if the sequence (x_t) in X converges to x, then for any $\varepsilon > 0$ there is a T such that for all t > T, $f(x) > f(x_t) \varepsilon$.
- 2. The following are equivalent.
 - (a) For any $y \in \mathbb{R}$, L(y) is closed.
 - (b) For any $y \in \mathbb{R}$, $f^{-1}((y, \infty)) = [L(y)]^c$ is open.
 - (c) For any $x \in X$, if the sequence (x_t) in X converges to x then for any $\varepsilon > 0$ there is a T such that for all t > T, $f(x) < f(x_t) + \varepsilon$.

Proof. I provide the proof of equivalence for the first set of conditions. The proof for the second set of conditions is analogous.

• 1(a) \Rightarrow 1(b). Almost immediate, since U(y) is closed iff $[U(y)]^c$ is open.

¹**⊚⊕§⊚**. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.

- 1(b) \Rightarrow 1(c). By contraposition. Suppose that there is an $x \in X$ and a sequence (x_t) in X that converges to x such that for for some $\varepsilon > 0$ there are infinitely many t such that $f(x) \leq f(x_t) \varepsilon$. Choose any $y \in (f(x), f(x) + \varepsilon)$. Then there are infinitely many t such that $x_t \in U(y)$. These x_t constitute a sequence in U(y) that converges to x, but $x \notin U(y)$, hence U(y) is not closed, hence $[U(y)]^c$ is not open.
- 1(c) \Rightarrow 1(a). Take any $y \in \mathbb{R}$. If $U(y) = \emptyset$ then I am done. Otherwise, take any convergent sequence (x_t) in U(y) let $x = \lim x_t$. I need to show that $x \in U(y)$. By 1(c), for any $\varepsilon > 0$ there is a T such that for all t > T, $f(x) > f(x_t) \varepsilon$. Since $x_t \in U(y)$, $f(x_t) \geq y$, hence $f(x) > y \varepsilon$. Since this must hold for any $\varepsilon > 0$, $f(x) \geq y$, which implies $x \in U(y)$.

Since conditions listed under 1 and 2 are equivalent, I can choose any pair of them to define upper and lower semicontinuity. To underscore the analogy with continuity, I use the "b" conditions.

Definition 1. Let $f: X \to \mathbb{R}$.

- 1. f is upper semicontinuous (USC) iff for any $y \in \mathbb{R}$, $f^{-1}((-\infty, y))$ is open.
- 2. f is lower semicontinuous (LSC) iff for any $y \in \mathbb{R}$, $f^{-1}((y,\infty))$ is open

Informally, a function is upper semicontinuous if it is continuous or, if not, it only jumps up; a function is lower semicontinuous if it is continuous or, if not, it only jumps down.

Example 1. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1/x & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ -1/x & \text{if } x > 0. \end{cases}$$

Then f is upper semi-continuous. In particular, if $x_t \to 0$, then $f(x_t) \to -\infty < 0 = f(0)$. \square

Theorem 2. f is continuous iff it is both upper and lower semi-continuous.

Proof. Almost immediate form property 1(c) and 2(c), which together are equivalent to requiring that if (x_t) converges to x then for any $\varepsilon > 0$, there is a T such that for all t > T, $f(x_t) \in N_{\varepsilon}(f(x))$, hence $f(x_t)$ converges to f(x).