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Semi-Continuity!

1 Definition.

Let (X,d) be a metric space. For a function f : X — R and a point y € R, the
upper contour set defined by vy is

Uy) = f([y.00)) = {z € X : f(z) 2 y}.

The lower contour set defined by y is

L(y) = [~ ((~00,9]) = {z € X : f(2) <y}
The next result establishes that a number of properties are equivalent.
Theorem 1. Let f: X — R.
1. The following are equivalent.

(a) For anyy € R, U(y) is closed.
() For anyy € R, [~ ((~00,9)) = [Uw)]° is open.

(¢) For any x € X, if the sequence (x;) in X converges to x, then for any
e >0 there is a T such that for allt > T, f(x) > f(x) —e.

2. The following are equivalent.

(a) For anyy € R, L(y) is closed.
(b) For anyy € R, f~1((y,o0)) = [L(y)]® is open.

(c) For any x € X, if the sequence (z;) in X converges to x then for any
e > 0 there is a T such that for allt > T, f(z) < f(x) + €.

Proof. I provide the proof of equivalence for the first set of conditions. The proof
for the second set of conditions is analogous.

e 1(a) = 1(b). Almost immediate, since U(y) is closed iff [U(y)]¢ is open.
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e 1(b) = 1(c). By contraposition. Suppose that there is an x € X and a
sequence (z;) in X that converges to = such that for for some € > 0 there are
infinitely many ¢ such that f(z) < f(z¢) —e. Choose any y € (f(z), f(x) +¢).
Then there are infinitely many ¢ such that z; € U(y). These x; constitute a
sequence in U(y) that converges to z, but « ¢ U(y), hence U(y) is not closed,
hence [U(y)]¢ is not open.

e 1(c) = 1(a). Takeany y € R. If U(y) = 0 then I am done. Otherwise, take any
convergent sequence (z;) in U(y) let z = limz;. I need to show that x € U(y).
By 1(c), for any € > 0 there is a T such that for all ¢t > T, f(z) > f(x¢) —e.
Since z¢ € U(y), f(z:) > y, hence f(x) >y — . Since this must hold for any
e >0, f(x) >y, which implies z € U(y).

Since conditions listed under 1 and 2 are equivalent, I can choose any pair of
them to define upper and lower semicontinuity. To underscore the analogy with
continuity, I use the “b” conditions.

Definition 1. Let f : X — R.
1. f is upper semicontinuous (USC) iff for any y € R, f~1((—o0,y)) is open.
2. f is lower semicontinuous (LSC) iff for any y € R, f~1((y,00)) is open

Informally, a function is upper semicontinuous if it is continuous or, if not, it
only jumps up; a function is lower semicontinuous if it is continuous or, if not, it
only jumps down.

Ezample 1. Define f : R — R by

1/x it z <0,
flx) =<0 if x =0,
—1/z ifxz>0.

Then f is upper semi-continuous. In particular, if z; — 0, then f(z;) —» —00 < 0 =
£(0). O
Theorem 2. f is continuous iff it is both upper and lower semi-continuous.

Proof. Almost immediate form property 1(c) and 2(c), which together are equiv-
alent to requiring that if (z;) converges to = then for any e > 0, there is a T' such
that for all t > T, f(x¢) € No(f(z)), hence f(x) converges to f(z). B



