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1 Vector Spaces and Linear Algebra.

1.1 Overview.

Definition 1. A set V ⊆ RN is a vector space iff the following two properties hold.

1. For any x, x̂ ∈ V , x+ x̂ ∈ V .

2. For any x ∈ V , for any γ ∈ R, γx ∈ V .

Because γ can equal 0, we always have that the origin (0, . . . , 0) is in V . I will
write the origin in RN as simply “0,” but to avoid confusion with the real number
0, some authors write the origin in RN as, say, θ.

A vector space is a line, plane, or higher dimensional analog thereof, through
the origin. Thus, for example, for x ∈ R, the graph of the line f(x) = ax is a vector
space in R2.

On the other other hand, the graph of f̂(x) = ax+ b, with b 6= 0, is not a vector
space because the graph does not go through the origin in R2. The graph of f̂(x) is
instead an example of a linear manifold. A linear manifold is the result of taking a
vector space and shifting it in a parallel fashion away from the origin.

RN itself is a vector space. Thus it is also common to see a vector space V ⊆ RN
called a vector subspace of RN .

1.2 Spanning, Linear Independence, and Bases

In the example above, the vector space V given by the graph of f(x) = ax can also
be represented in the form V = {(x, y) ∈ R2 : there is a γ ∈ R such that (x, y) =
γ(1, a)}. The vector (1, a) ∈ V is said to span V . More generally, we have the
following. As a matter of notation, st denotes the vector st = (st1, . . . , s

t
N ) ∈ RN .

Definition 2. Given a vector space V ⊆ RN and a set of T vectors S = {s1, . . . , sT },
all in V , S spans V iff for any x ∈ RN there exist γ1, . . . , γT , all in R, such that

x = γ1s1 + · · ·+ γT sT .

1cbna. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License.
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In the example, note that although {(1, a)} spans V , so does {(1, a), (2, 2a)}. In
particular it is always possible to take γ2 = 0, which puts us back in the previous
case. Including (2, 2a) in the spanning set when we already have (1, a) is redundant.
We are interested in spanning by sets of vectors that are minimal in the sense of not
having any such redundancies. Given a set S = {s1, . . . , sT } of T vectors, there is a
redundancy if it is possible to write one of the vectors, say s1, as a linear combination
of the other vectors,

s1 = γ2s2 + . . . γT sT .

This can be rewritten as

−s1 + γ2s2 + . . . γT sT = 0.

In the example above, I could write either (1, a) = (1/2)(2, 2a) or (2, 2a) = 2(1, a).
This motivates the following definition.

Definition 3. A set S = {s1, . . . , sT } of T vectors in RN is linearly dependent if
there exists T numbers γ1, . . . , γT , at least one not equal to zero, such that

γ1s1 + · · ·+ γT sT = 0.

If S is not linearly dependent then it is linearly independent. Equivalent, S is
linearly independent iff whenever

γ1s1 + · · ·+ γT sT = 0,

γ1 = · · · = γT = 0.

In particular, if γ1s1 + · · ·+ γT sT = 0 and, say, γ1 6= 0 then s1 is redundant in
the sense that s1 = −(1/γ1)(γ2s2 + · · ·+ γT sT ).

If S contains the origin as one of its vectors then it is automatically linearly
dependent. In particular, if S contains only the origin then it is linearly dependent.
Specializing even further, in the case N = 1, the “matrix” [0] is linearly dependent;
on the other hand, the “matrix” [1] is linearly independent.

Even if S is linearly dependent, some subset of S may be linearly independent.
And when there is one linearly independent subset of S, then there is often more
than one. For example, if S = {(1, a), (2, 2a)} then S is linearly dependent (take
λ1 = −2, λ2 = 1), but both Ŝ = {(1, a)} or S̃ = {(2, 2a)} are linearly independent.

Definition 4. S is a basis for V iff S is linearly independent and spans V .

Except for the trivial case V = {0}, there will be many (uncountably infinitely
many, in fact) bases. In the example above, (1, a) is a basis but so is (2, 2a) and so
is (−1,−a).

One can show that if there is a basis for V with T vectors then every basis for
V has exactly T vectors. This allows us to define the dimension of V .
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Definition 5. If V is a vector space then the dimension of V is T iff there is a
basis for V with T vectors.

In particular, the dimension of RN is N , because the N unit vectors e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0) and so on are a basis for RN . This basis is called
the standard basis.

Finally, note that if V is the vector space and S is a basis for V then any x ∈ V
is uniquely represented in the form

x = γ1s1 + · · ·+ γT sT .

To see this, suppose that we also have

x = γ̂1s1 + · · ·+ γ̂T sT .

Then setting these equal and rearranging,

0 = (γ1 − γ̂1)s1 + · · ·+ (γT − γ̂T )sT

If S is independent, all of the γt − γ̂t must equal 0, which implies that for all t,
γ̂t = γt.

1.3 Linear Functions and Matrices.

Definition 6. A function f : RN → RM is linear iff the following hold.

1. For any x, x̂ ∈ RN ,
f(x+ x̂) = f(x) + f(x̂).

2. For any x ∈ RN , γ ∈ R,
f(γx) = γf(x).

When M > 1, linear functions are often called linear maps. Map and function
mean the same thing here.

Setting γ = 0 implies that if f is linear then f(0) = 0. Thus, in the examples
above, f(x) = ax is linear but f̂(x) = ax+ b is not when b 6= 0 (f̂ is affine).

A fundamental fact is that a function f is linear iff it can be represented in
matrix form: there is an M ×N matrix A (note the dimensions) such that for any
x ∈ RN ,

f(x) = Ax.

To see that this is true, note that for any x ∈ RN , x = x1e
1 + · · ·+ xNe

N , where en

is the unit vector with a 1 in coordinate n and 0s everywhere else. Then since f is
linear

f(x) = x1f(e1) + · · ·+ xNf(eN ).

Let an = f(en). Let A be the M ×N matrix in which column n is an. Then

f(x) = Ax.

In our simple example in which f(x) = ax, f(1) = a and so A = [a].
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1.4 The Fundamental Spaces of a Linear Function

Given an M×N matrix A, let an denote column n of A. Then for the linear function
f(x) = Ax,

f(x) = x1a
1 + · · ·+ xNa

N .

In words, this says that f(x) is in the vector space in RM that is spanned by the
columns of A. This space is called the column space.

Similarly, one can consider the vector space spanned in RN by the rows of A,
considered as vectors (equivalently, consider the columns of A′, the transpose of A).

Finally, let K(A) be the set of points x such that

Ax = 0.

K(A) is the kernel of A. (It is also called the null space of A.) It is easy to verify
that K(A) is a vector space in RN .

1.5 The Fundamental Dimensionality Theorem.

One can prove the following theorem.

Theorem 1 (The Dimension Theorem). Let A be an M×N matrix. The dimension
of the column space of A plus the dimension of K(A) equals N .

One consequence of the Dimension Theorem is that, with some additional work,
one can show that, for any given matrix, the maximum number of independent
columns (i.e. the number of columns in the largest independent subset of columns)
equals the maximum number of independent rows (i.e., the maximum number of
independent columns of A′). This number is called the rank of A. In particular, this
says that the column space of A and the row space of A have the same dimension.
And this says that the dimension of K(A) is N minus the rank of A.

The rank of A cannot exceed min{M,N} but could be strictly less. For example,
if N = M = 2 and

A =

[
1 2
a 2a

]
,

then the rank is 1. A matrix A has full rank iff its rank is min{M,N}. Otherwise,
A is singular. As discussed below, the linear function f(x) = Ax is one-to-one, and
hence invertible, iff A has full rank.

1.6 Vector Subspaces Revisited.

Consider any M × N matrix A. Suppose that M < N and that A has full rank,
which is M . Then by the Dimension Theorem, the vector space K(A) has dimension
N −M . In particular, if M = 1 (so that A is a 1×N “row matrix”) then K(A) has
dimension N − 1.
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Conversely, any k-dimensional vector space in RN can be expressed as the kernel
of an (N −k)×N matrix. Constructing the matrix in general is a bit of pain, but it
is trivial in the N = 2 case. Consider once again the graph of f(x) = ax. This vector
space is spanned by (1, a). This vector space can also be viewed as the kernel of the
linear map F (x) = Ax where A = [ a −1 ]. In particular, note that A(x, y) = 0
iff ax− y = 0, or y = ax.

A related comment is that any k dimensional vector space V ⊆ RN can be
expressed as the graph of a linear function. Suppose that, as above, V is expressed
as the kernel of an (N − k) × N matrix. Write this matrix in the form [ A B ]
where A is (N − k)× k and B is (N − k)× (N − k). Write x in the form x = (p, q),
where p ∈ Rk and q ∈ RN−k. Then

F (x) = F (p, q) = Ap+Bq.

If (p, q) belong to the vector space V = K(A) then Ap + Bq = 0 and hence I can
write

q = f(p) = −B−1Ap.

The vector space V is the graph of f . The Implicit Function Theorem is a general-
ization of this observation to non-linear analogs of vector spaces called differential
manifolds.

1.7 Invertibility and Determinants

In general, a function f : RN → RN is invertible iff it is one-to-one. If f(RN ) is a
proper subset of RM then the domain of the inverse is f(RN ) rather than all of RM .

In the particular case of a linear function f : RN → RM , f(x) = Ax, f is
invertible iff its kernel has dimension 0 (is just the origin). To see this, note that
f(x) = f(x̂) iff Ax = Ax̂ iff A(x− x̂) = 0, iff x− x̂ ∈ K(A). So if K(A) = {0} then
x = x̂. But if K(A) has positive dimension, then there are x, x̂ such that x 6= x̂
but f(x) = f(x̂): f is not one-to-one. Thus, if f is linear then f is one-to-one, and
hence is invertible, iff K(A) = {0}.

It also follows from the Dimension Theorem that if the dimension of K(A) is 0
then the dimension of the range of f is N − 0 = N . Note that this is impossible if
M < N , since the rank can never be greater than min{M,N}. Therefore, if M < N
then f cannot be one-to-one and hence cannot be invertible. On the other hand, if
M ≥ N then f is one-to-one, and hence invertible, iff A has full rank, namely N .

Moreover, in the particular case where M = N (A is square), this arithmetic
implies that if A has full rank, and hence is invertible, then f is also onto: the
column space of A is all of RN . In this case, the domain of f−1 is all of RN rather
than some proper subset.

There is a function called the determinant that is defined on square matrices (and
only on square matrices). The general form is cumbersome but for 2 × 2 matrices
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the determinant is given by

Det

[
a b
c d

]
= ad− bc.

The critical fact about determinants is that a square matrix A has full rank, and
hence is one-to-one, and hence is invertible, iff DetA 6= 0.

A second, less important but sometimes useful, fact is that if you multiply any
column by a constant, say γ, then the entire determinant gets multiplied by γ. In
particular, if you multiply every column by γ then the determinant gets multiplied
by γN .

2 Topology.

2.1 The Euclidean Metric.

In order to discuss concepts like limit in RN , we need a way to measure the distance
between points in RN . The standard way of doing this is the Euclidean metric and
the associated Euclidean norm. The Euclidean distance between two points, say
a, b ∈ RN , is defined to be

d(a, b) =

√∑
n

(an − bn)2 =
√

(a− b) · (a− b)

The function d : R2 → R is called the Euclidean metric. This is exactly the formula
for everyday distance, subject only to a choice of units (inches, centimeters, etc).
If I measure the distance from myself to the door, I am using Euclidean distance.
The fact that it happens to have this precise formula is, for most applications,
largely irrelevant. What does matter is that the Euclidean metric has the following
properties.

1. For any a, b ∈ R, d(a, b) ≥ 0, with d(a, b) = 0 iff a = b.

2. For any a, b ∈ R, d(a, b) = d(b, a).

3. For any a, b, c ∈ R, d(a, b) ≤ d(a, c) + d(c, b).

The last property is called the Triangle Inequality, referring to the fact that the
length of any one side of a triangle is always less than the sum of the lengths of the
other two sides.

The Euclidean norm of a ∈ RN , written ‖a‖, is defined by ‖a‖ = d(a, 0) =
√
a · a.

Thus the norm of a is simply the distance of a to the origin. The Euclidean norm
has the following properties.

1. For any a ∈ RN , ‖a‖ ≥ 0, with ‖a‖ = 0 iff a = 0.

2. For any a ∈ RN and any γ ∈ R, ‖γa‖ = |γ|‖a‖.

3. For any a, b ∈ RN , ‖a+ b‖ ≤ ‖a‖+ ‖b‖.
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2.2 Open Balls.

Given a point x∗ ∈ RN and a number ε ∈ R, ε > 0, the open ball of radius ε around
x∗ is given by

Nε(x
∗) = {x ∈ RN : d(x, x∗) < ε}.

Because of the strict inequality, Nε(x
∗) does not contain the sphere of radius ε that

forms its boundary. Loosely, imagine a basket ball. The “open ball” is everything
inside the ball, but not the rubber shell of the ball.

2.3 Sequences, Cauchy Sequences, and Completeness.

Definition 7. Given a sequence (xt) in RN , the sequence converges to x∗, written
limxt = x∗ or xt → x∗, iff for any ε > 0 there is a T such that for all t > T ,

xt ∈ Nε(x
∗).

In words, (xt) converges to x∗ iff for any standard of what it means to be “close
to” x∗ (i.e. for any ε > 0), the sequence will eventually stay at least that close to
x∗, forever.

Here and elsewhere, it is critical to get quantifiers correct. If I had instead
written “there is an ε,” I would have gotten nonsense. For example the sequence
1, -1, 1, -1, . . . does not converge, but all xt are within, say, 100, of 0. And the
order of quantifiers matters. Because T comes second, the interpretation is that it
is allowed to vary with ε: choose a smaller ε and you may have to choose a larger
T . If you reverse the order, the convergence condition becomes hopelessly strong.
For example, the sequence 1/2, 1/3, 1/4, . . . converges to 0. But I can’t get the
above condition to hold if I have to fix T in advance, independently of ε. If I choose
T = 1000, for example, then it will not be true that for all t > T , xt ∈ N1/10,000(0).

Definition 8. A sequence (xt) in RN is Cauchy iff for any ε > 0 there is a T such
that for all s, t > T ,

d(xs, xt) < ε.

It is not hard to show that if (xt) converges to x∗ then (xt) is Cauchy. Conversely,
if (xt) is Cauchy then there is an x∗ ∈ RN such that xt → x∗. This fact, that every
Cauchy sequence in RN converges to a point in RN , is called completeness. In
contrast, the set of rational numbers, Q, is not complete. Consider, for example,
the sequence of rational numbers, 3, 3.1, 3.14, 3.141 converging to π. This sequence
is Cauchy but since π is not rational, the sequence does not converge to a point in
Q.

2.4 Open Sets.

Given a point x ∈ RN and a set A ⊆ RN , x is an interior point of A iff there is an
ε > 0 such that Nε(x) ⊆ A. Thus 1/2 is an interior point of [0, 1) but 0 is not an
interior point of [0, 1).
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Definition 9. A set O ⊆ RN is open iff every x ∈ O is an interior point of O.

Thus [0, 1) is not open but (0, 1) is open. A subtle issue is that ∅ is open (every
point in ∅ is interior since there are no points in ∅). Also all of RN is open.

Theorem 2. A set O ⊆ RN is open iff it is either empty or is a union of open balls.

2.5 Closed Sets.

Definition 10. A set C ⊆ RN is closed iff its complement Cc is open.

Thus [0, 1) is not closed because [0, 1)c = (−∞, 0)∪ [1,∞) is not open (in partic-
ular, 1 is not an interior point). But [0, 1] is closed because [0, 1]c = (−∞, 0)∪(1,∞)
is open.

A common but serious mistake is to write that [0, 1] is closed because it is not
open (or analogously, that (0, 1) is open because it is not closed). The problem with
this is two fold. First, there are sets, such as [0, 1) that are neither open nor closed.
You cannot say that such a set is closed because it is not open or vice versa. Second,
there are sets that are both open and closed. In particular, ∅ and RN are both open
and both closed. These are, however, the only subsets of RN with this property.

Theorem 3. A set C ⊆ RN is closed iff for any sequence (xt) in C, if there is an
x∗ ∈ RN such that xt → x∗, then x∗ ∈ C.

Thus, [0, 1) is not closed because the sequence (1/2, 2/3, 3/4, . . . ) is in [0, 1) and
converges to 1, but 1 is not in [0, 1).

2.6 Continuity.

Informally, a function f : RN → RM is continuous iff for any x∗ ∈ RN , f(x) is close
to f(x∗) whenever x is sufficiently close to x∗. The formal definition is as follows.

Definition 11. f : RN → RM is continuous iff for any x∗ ∈ RN and any ε > 0
there is a δ > 0 such that if x ∈ Nδ(x

∗) then f(x) ∈ Nε(f(x∗)).

As with the definition of convergence, it is critical to get the quantifiers correct.
If I had written “there exists ε > 0” then the condition becomes too weak. For
example, consider f : R→ R

f =

{
1 if x > 0

0 if x ≤ 0.

This function is not continuous at 0. But if I had written “there exists ε > 0” then
f would have been been declared continuous since the condition would hold for ε
equal to, say, 100.
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On the other hand, if I had reversed the order of δ and ε, then I would be
requiring that the same δ work for every ε no matter how small. The only function
that could pass this continuity requirement is a constant function. And if I had
allowed δ to depend on ε but required that the same δ work for every x∗ then I
would have gotten a condition called uniform continuity. One can show that if a
function is continuous and its domain is restricted to a closed and bounded interval
then it is uniformly continuous. But in general, continuity does not imply uniform
continuity. For example, f(x) = ex is continuous but it is not uniformly continuous
on all of R. For any given ε > 0, I’ll need a smaller δ the larger is x, since f is
steeper the larger is x.

3 Multivariate Calculus.

3.1 Directional Derivatives, Partial Derivatives, and the Jacobian.

Given a function f : RN → RM (not assumed to be linear), let fm : RN → R be the
m coordinate function: f(x) = (f1(x), . . . , fm(x)).

Given a point x∗ ∈ RN and a vector v ∈ RN , v 6= 0, the directional derivative of
fm in the direction v is given by

Dvfm(x∗) = lim
t→0

fm(x∗ + tv)− fm(x∗)

t
,

provided this limit exists. (The notation limt→0 means the limit for every sequence
in R of non-zero elements converging to 0.) This calculation is not much different
from the familiar Calc I calculation. In particular, if we define h : R → R, h(t) =
fm(x∗ + tv), then

dh

dt
(0) = Dvfm(x∗).

In words, Dvfm(x∗) gives an infinitessimal approximation to the change in fm as a
result of changing x∗ to x∗ + v. It is natural to denote combine all M directional
derivatives, for a given v, into a single matrix:

Dvf(x∗) =

 Dvf1(x
∗)

...
DvfM (x∗)

 .
If we take the direction v to be a unit vector, say en = (0, . . . , 0, 1, 0, . . . 0), with

the 1 in coordinate n, then we get the coordinate n partial derivative of fm, written

Dnfm(x∗)

or, in alternate notation,
∂fm
∂xn

(x∗).
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This calculation is almost exactly like the familiar Calc I calculation, with xn the
variable and all other xk treated like constants.

It is then natural to form all the partial derivatives into an M ×N matrix (note
the dimensions) called the Jacobian:

Jf(x∗) =


∂f1
∂x1

(x∗) · · · ∂f1
∂xN

(x∗)
...

. . .
...

∂fM
∂x1

(x∗) · · · ∂fM
∂xN

(x∗)

 .
3.2 The Derivative.

If you work an example you will “typically” find that, provided all the required
derivatives exist,

Dvf(x∗) = Jf(x∗)v.

That is, the Jacobian is a machine for computing directional derivatives in any
direction for all M coordinate functions. It turns out that this equality always
holds if f is differentiable at x∗ in the following strong sense.

Definition 12. f : RN → RM is differentiable at x∗ ∈ RN iff there is an M × N
matrix A such that for w ∈ RN ,

lim
w→0

‖f(x∗ + w)− f(x∗)−Ax∗‖
‖w‖

= 0.

The matrix A is the derivative of f at x∗, also written Df(x∗). f is differentiable
iff it is differentiable at every x∗.

In practice, no one actually uses this definition to compute Df(x∗). This is
because if Df(x∗) exists then Jf(x∗) exists and Df(x∗) = Jf(x∗). To see this, I
first note that one can easily show, although I will not do so explicitly, that f is
differentiable at x∗ iff each coordinate function fm is differentiable at x∗, in which
case,

Df(x∗) =

 Df1(x
∗)

...
DfM (x∗)

 ,
where each Dfm(x∗) is a 1 × N matrix. From the definition of differentiability,
taking w = tv, one can then show that for each m and any v 6= 0,

Dvfm(x∗) = Dfm(x∗)v,

which implies
Dvf(x∗) = Df(x∗)v.
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Taking v equal to the unit vectors then implies that for each n and each m,
Dnfm(x∗) = Dfm(x∗)en, which implies that, indeed

Df(x∗) = Jf(x∗).

Again, this assumes Df(x∗) exists. The next example illustrates that Jf(x∗) can
exist even if Df(x∗) does not.

Example 1. Consider the function f : R2 → R given by

f(x) =

{
x31

x21+x
2
2

if x 6= 0

0 if x = 0

One can show that Jf(0, 0) =
[

1 0
]
. Let v = (1, 1). Then Jf(0, 0)v = 1. On

the other hand, one can compute that Dvf(0, 0) = 1/2. So Dvf(0, 0) 6= Jf(0, 0)v.
Since Dvf(0, 0) equals Jf(0, 0) if Df(0, 0) exists, the lack of equality implies that
Df(0, 0) does not exist. �

The following theorem gives a sufficient condition for existence of Df(x∗) that
is often met, and is easily checked.

Theorem 4. If all partial derivatives of f : RN → RM are continuous, then f is
continuously differentiable.

I won’t formalize what “continuously differentiable” means for a multivariate
function. In the above example, the partial derivatives are not continuous at 0.

3.3 The Chain Rule.

One can prove the following.

Theorem 5 (The Chain Rule). Let g : RN → RM , f : RM → RL, x∗ ∈ RN ,
y∗ = g(x∗) ∈ RM . Define h = g ◦ g, h(x) = f(g(x)). If f and g are differentiable
then h is differentiable and

Dh(x∗) = Df(y∗)Dg(x∗).

Note that in the Chain Rule, the matrices conform: Dh is L×N , Dg is L×M ,
and Dg is M ×N .

3.4 Real-valued Functions.

If M = 1 then Df(x∗) is a 1×M “row” matrix. The transpose of Df(x∗) is called
the gradient, written

∇f(x∗) = [Df(x∗)]′ =


∂f
∂x1

(x∗)
...

∂f
∂xN

(x∗)

 .
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∇f(x∗) can be interpreted as a point in RN . Therefore ∇f can be interpreted as
a function from RN to RN . If this function is differentiable, then its derivative is
called the Hessian of f and is written,

D2f(x∗) = D∇f(x∗) =


∂2f
∂x1x1

(x∗) · · · ∂2f
∂2x1xN

(x∗)
...

. . .
...

∂2f
∂2xNx1

(x∗) · · · ∂2f
∂xNxN

(x∗)

 .
Theorem 6. If all second-order partial derivatives of f : RN → RN exist and are
continuous then the Hessian is symmetric.

3.5 The Inverse Function Theorem

Recall that if f : RN → RN is linear then a necessary and sufficient condition for f
to be invertible is that it have full rank, namely N . The Inverse Function Theorem
says that something similar is true for non-linear (but continuously differentiable)
functions.

Theorem 7 (Inverse Function Theorem). If f : RN → RN is continuously dif-
ferentiable and if Df(x∗) has full rank then f has a continuously differentiable lo-
cal inverse. Explicitly, there is an open ball U around x∗, an open ball V around
y∗ = f(x∗), and a continuously differentiable function f−1 : V → U such that the
following hold.

1. f(U) ⊆ V .

2. For any x ∈ U , f−1(f(x)) = x.

3. For any y ∈ V , f(f−1(y)) = y.

To take a trivial example, consider f : R→ R given by f(x) = x2. Then there is
no inverse at x = 0 and indeed Df(0) = 0, which does not have full rank (recall that
a matrix containing the origin is linearly dependent and hence has rank 0). But at
x = 1, Df(1) = 2, which does have full rank, and indeed f is invertible near x = 1:
f−1(y) =

√
y. As this example illustrates, one difficult with dealing with non-linear

functions is that we have to be content with only local invertibility.
Since

f−1(f(x)) = x,

for any x ∈ U , the Chain Rule implies that, setting y = f(x),

Df−1(y)Df(x) = I,

where I is the N ×N identity matrix. Hence

Df−1(y) = [Df(x)]−1.

12



In words, the derivative of the inverse is the inverse of the derivative.
If Df(x∗) is not of full rank then f is singular at x∗. It is possible for f to be

invertible at x∗ even if f is singular at x∗. The function f : R → R, f(x) = x3

provides an example. In particular, this f is singular at x∗ = 0 but it is invertible;
the inverse is f−1(y) = (y)1/3. But note that the derivative of f−1 is not defined
at y = 0 = f(0). This is a general fact: if a function is singular at a point x∗, its
inverse may still exist, but even if the inverse exists, it will not be differentiable at
f(x∗).

3.6 The Implicit Function Theorem

Recall the discussion in Section 1.6 (I will use somewhat different notation here;
sorry for that). Let F : RN+M → RM be linear. Write x ∈ RN+M in the form
x = (p, q), where p ∈ RN and q ∈ RM . Since F is linear, there is an M ×N matrix
A and an M ×M matrix B such that

F (x) = F (p, q) = Ap+Bq.

If B, which is square, has full rank, then there is a linear function f : RN → RM
given by

f(p) = −B−1Ap

with the property that for all p ∈ RN ,

F (p, f(p)) = Ap+B(−B−1Ap) = 0.

Put differently, f expresses the kernel of the matrix [ A B ] as the graph of a linear
function of p. f is “implicitly” defined by the expression F (p, f(p)) = 0.

The Implicit Function Theorem Generalizes this observation to non-linear func-
tions. In the theorem statement, DMF (x∗) refers to the M × M submatrix of
DF (x∗) formed by the last M columns of DF (x∗).

Theorem 8 (Implicit Function Theorem). Let F : RN+M → RM be continuously
differentiable and let x∗ = (p∗, q∗) be such that F (x∗) = 0. If DMF (x∗) has full rank
then there is an open ball U around p∗ and a continuously differentiable function
f : U → RM such that following hold.

1. f(p∗) = q∗.

2. For all p ∈ U ,
F (p, f(p)) = 0.

In words, the Implicit Function Theorem says that, subject to some technical
conditions, the “kernel” of F : RN+M → RM (for non-linear F , the “kernel” is called
the zero set) can be locally described as the graph of a continuously differentiable
function f defined on an open ball in RN . Any such graph is called a differentiable
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manifold. It is a non-linear analog of a vector space. Thus the Implicit Function
Theorem says that, subject to some technical conditions, the zero set of a function
is, locally, a differentiable manifold.

Since
F (p, f(p)) = 0,

for any p ∈ U , the Chain Rule implies that, for x = (p, f(p)) and writing DNf(x)
for the M ×N submatrix formed by the first N columns of DF (x),

DNF (x) +DMF (x)Df(p) = 0,

or
Df(p) = −[DMF (x)]−1DNF (x).

Note that this is equivalent to the expression we found in the linear case. If you can
remember the linear case, then you can remember the Implicit Function Theorem.

Much as with the Inverse Function Theorem, the qualification that f is defined
only locally can be essential. A standard example is the circle: F : R2 → R,
F (p, q) = p2 + q2 − 1. The zero set of F is the unit circle. At (p∗, q∗) = (0, 1), for
example, the derivative with respect to q is 2, so the full rank condition holds, and
indeed we can write,

q = f(p) =
√

1− p2.

On the other hand, the full rank condition fails at the point (1,0): it is not possible
to represent the unit circle near (1,0) as the graph of a function of p.

It is, however, possible to represent the circle near (1,0) as the graph of a function
of q:

p = f(q) =
√

1− q2.

This brings up a larger point. The stated version of the Implicit Function Theorem
is unnecessarily limited. A more general version says that as long as DF (x∗) has
full rank, namely M , then it is possible to represent the zero set of the function,
locally, as the graph of function that gives M of the variables as a function of the
other N variables.

4 Optimization

4.1 Unconstrained Optimization.

Let f : RN → R be twice continuously differentiable (so that the Hessian exists and
is symmetric). If x∗ solves

max
x∈RN

f(x)

then, in particular, it must be that x∗ is optimal in each coordinate. That is, for
each unit vector en,

f(x∗ + ten) ≥ f(x∗)

14



for any t ∈ R. If you manipulate this a bit you will see that this implies that for
each n,

∂f

∂xn
(x∗) = 0.

This implies that Df(x∗) = [ 0 · · · 0 ] and hence that for any direction v 6= 0,
Dvf(x∗) = Df(x∗)v = 0. Informally, at the top of the hill, the hill is flat.

An x∗ such that Df(x∗) = [ 0 · · · 0 ], or, equivalently, such that ∇f(x∗) = 0, is
called a critical point. In summary, a necessary condition for x∗ to be a solution
for an unconstrained maximization problem is for x∗ to be a critical point. This is
often called the first order condition.

The requirement that x∗ be critical is not sufficient. For f(x) = x2, x∗ = 0 is
critical but x∗ is a minimum, not a maximum. For f(x) = x3, x∗ is critical but it is
an inflection point: neither a minimum nor a maximum.

A sufficient condition for a critical point x∗ to be a maximum is for the function
to be concave. If N = 1, one can establish that f is strictly concave if (but not
only if) D2f(x) < 0 for all x. If N > 1, one can similarly establish that f is strictly
concave if the second derivative is negative in every direction v. Formally, given
x ∈ RN and given v 6= 0, define h : R→ R by h(t) = f(x+ tv). Then the condition
is that h′′(0) < 0. One can compute via the Chain Rule that,

h′′(0) = v′D2f(x)v,

where D2f(x) is the Hessian of f at x. Therefore, the condition is that f is strictly
concave if for every v 6= 0,

v′D2f(x)v < 0.

A matrix that has this property is called negative definite. Thus a sufficient condition
for f to be strictly concave is for Df2(x) to be negative definite for all x. This is
called the second order condition.

If instead we are working with a minimization problem then it is again necessary
that a solution be a critical point. A sufficient condition for a critical point to be a
solution is that f be convex. A sufficient condition for f to be strictly convex is for
D2f(x) to be positive definite for all x: for all x ∈ RN and all v 6= 0,

v′D2f(x)v > 0.

4.2 Constrained Maximization.

Suppose that instead there are constraints on what x can be. One gets a problem
in the form

maxx∈RN f(x)
s.t. g1(x) = 0

...
gK(x) = 0.
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To take an economics example, g1(x) = 0 might be the budget constant that
p · x = m, where p ∈ RN is the vector of prices and m ∈ R is “money” (wealth).
This constraint can be rewritten in the above form: p · x −m = 0. (In economics,
constraints are typically inequality constraints. Thus, for example, the budget con-
straint is really p · x ≤ m: you can spend less than wealth, but it will not be
optimal to do so. There is an easy extension of this machinery to handle inequality
constraints.)

Subject to a technical condition that I won’t go into, one can show that a nec-
essary condition for x∗ to be a solution to this problem is that there are numbers
λ1, . . . , λK , called Lagrange multipliers, such that

∇f(x∗) = λ1∇g1(x∗) + · · ·+ λK∇gK(x∗).

The intuition is that the reason why ∇f(x∗) 6= 0 at a solution is that one or more
constraints are in the way. The∇gk(x∗) express the local behavior of the constraints.
So you should expect to have the first order condition combine ∇f(x∗) and the
∇gk(x∗). I can give good intuition for why the condition takes this particular form,
but it would take me too far afield.
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