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Abstract 

Fluorescence lifetime imaging microscopy (FLIM) and photometry (FLiP) are illuminating the 
dynamics of biological signals. Because fluorescence lifetime is an intensive property of a 
fluorophore that is insensitive to sensor expression levels, it excels over fluorescence intensity 
measurements by allowing comparison across animals, over chronic time periods, and quantitation 
of the absolute levels of biological signals. However, the insensitivity of lifetime to sensor 
expression level does not always hold true in biological experiments where autofluorescence, 
ambient light, dark currents and afterpulses of the detectors are present. To quantitatively evaluate 
the potential and limitations of fluorescence lifetime measurements, we introduce FLiSimBA, a 
flexible platform enabling realistic Fluorescence Lifetime Simulation for Biological Applications. 
FLiSimBA accurately recapitulates experimental data and provides quantitative analyses. Using 
FLiSimBA, we determine the photons required for minimum detectable differences in lifetime and 
quantify the impact of hardware innovation. Furthermore, we challenge the conventional view that 
fluorescence lifetime is insensitive to sensor expression levels and define the conditions in which 
sensor express levels do not result in statistically significant difference in biological experiments. 
Thus, we introduce an adaptable simulation tool that allows systematic exploration of parameters 
to define experimental advantages and limitations in biological applications. Moreover, we provide 
a statistical framework and quantitative insights into the impact of key experimental parameters 
on signal-to-noise ratio and fluorescence lifetime responses. Our tool and results will enable the 
growing community of FLIM users and developers to optimize FLIM experiments, expose 
limitations, and identify opportunities for future innovation of fluorescence lifetime technologies. 
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Introduction 
 

Fluorescence lifetime imaging microscopy (FLIM) and photometry (FLiP) are powerful methods 
to reveal the dynamics of biological signals1–18. Fluorescence lifetime refers to the time between 
excitation of a fluorophore and emission of light.  Compared with intensity-based imaging, the 
biggest advantage of fluorescence lifetime comes from its insensitivity to fluorophore 
concentration. As a result, fluorescence lifetime can be used to compare the dynamics of biological 
signals across animals or over long periods of time despite sensor expression level change. 
Furthermore, it offers the potential to quantitate absolute values of biological signals because of 
its quantitative nature and its insensitivity to sensor expression. Because of these advantages, more 
FLIM-compatible sensors have been developed and FLIM is increasingly adopted to elucidate the 
dynamics of many types of biological signals over multiple time scales. 
 
Although fluorescence lifetime is independent of sensor expression when only the sensor is 
present, in biology experiments, this very advantage of FLIM breaks down when multiple other 
factors are present. These include autofluorescence, background light (e.g., ambient light), dark 
current and afterpulse of the photomultiplier tube (PMT)1,19–21. As sensor expression varies, the 
relative contribution of sensor fluorescence and these other sources of light or electrical noise 
varies correspondingly, leading to an apparent change in fluorescence lifetime. Thus, to harness 
the power and correctly interpret results of FLIM and FLiP experiments in biological tissue, it is 
critical to understand quantitatively the regime when fluorescence lifetime varies with sensor 
expression, and the range when sensor expression does not significantly alter lifetime 
measurements. Furthermore, these additional factors introduce bias and noise to fluorescence 
lifetime measurements. As innovation pushes the technological boundary to image larger fields of 
view at higher speed22–25, it is critical to understand how these factors contribute to signal-to-noise 
(SNR) ratio, and how many photons are required to achieve a certain SNR in biological settings.  

 
An effective tool to explore how experimental parameters contribute to outcome is simulation. 
Both analytical and simulation methods have provided insights into issues such as SNR15,26–34. 
However, prior work usually assumes the presence of sensor fluorescence only without 
considering the important contributions to noise and bias due to other factors such as 
autofluorescence and afterpulse of the PMT. Consequently, these simulations are useful in vitro 
but not readily applicable in biological settings. Therefore, to understand how experimental 
conditions influence lifetime estimate for biological applications, it is essential to perform 
simulations with realistic and, ideally, measured data. 

 
Here we introduce Fluorescence Lifetime Simulation for Biological Applications (FLiSimBA) and 
use it to quantitatively define the potential and limitation of lifetime experiments in biological 
settings. FLiSimBA is a flexible platform designed for realistic simulation of fluorescence lifetime 
data through time-correlated single photon counting (TCSPC). FLiSimBA recapitulates 
experimental data. Using the realistically simulated histograms, we determine photon requirements 
for minimum detectable difference in fluorescence lifetime and assess the impact of hardware 
innovation on SNR. Furthermore, we challenge the conventional view that fluorescence lifetime 
is insensitive to sensor expression levels and establish the quantitative limits of insensitivity. Thus, 
we provide a versatile tool to simulate experimental conditions with empirically determined 
parameters. Furthermore, we provide a quantitative framework to evaluate fluorescence lifetime 
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results, generating insights into the potential and limitations of fluorescence lifetime measurements 
in biological applications. 
 

Results 

Simulation of fluorescence lifetime data in biological tissue 

To realistically mimic fluorescence lifetime in biological tissue, we simulated contributions from 
sensor fluorescence, autofluorescence, afterpulse, background due to a small amount of light leak, 
and the dark current of the photon detectors. For sensor fluorescence, we sampled with replacement 
from an ideal distribution of photon lifetimes. In the examples in this study, we used the lifetime 
distribution of FLIM-compatible A Kinase Activity Reporter (FLIM-AKAR), a Förster resonance 
energy transfer (FRET)-based biosensor that measures the activity of protein kinase A (PKA) in a 
variety of biological contexts, including brain slices and freely moving animals6,10,13,14,35. The 
fluorescence lifetime of FLIM-AKAR follows a double exponential decay defined by the 
following equation: 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹0 ∗ (𝑃𝑃1 ∗ 𝑒𝑒
�− 𝑡𝑡

𝜏𝜏1
� + 𝑃𝑃2 ∗ 𝑒𝑒

�− 𝑡𝑡
𝜏𝜏2
�) (Equation 1), 

where F(t) is number of photons that arrives at time t, F0 is the number of photons at time 0, τ1 and 
τ2 are time constants corresponding to lifetime distributions of the donor fluorophore that is either 
free or undergoing FRET, and P1 and P2 are the proportion of the donor fluorophores in these two 
states (Fig. 1A). Following sampling, we convolved the lifetime histogram with an instrument 
response function (IRF) to account for instrument noise. Subsequently, we added sampled photons 
from an autofluorescence curve, whose distribution was determined with measurement in brain 
tissue. Autofluorescence lifetime histogram exhibited faster decay than FLIM-AKAR (Fig. 1A). 
After that, we added afterpulse of PMT, long-lasting signals from ionization of residual gas inside 
the PMT following a photon detection event19. Afterpulse was modelled as an even distribution 
with the number of photons as a fraction of sensor fluorescence. Finally, we added background 
fluorescence that is empirically determined from measurement. We generated 500 simulated 
fluorescence lifetime histograms for each P1 and sensor photon count (see more details in Materials 
and Methods). 

The simulated histogram closely matched experimental histogram (Fig. 1A). Following histogram 
generation, we used two commonly used fluorescence lifetime metrics to evaluate the simulated 
data: fitted P1 after double exponential fitting of the final simulated data, or calculation of average 
lifetime of all photons, which we termed empirical lifetime. To quantitate how well our simulation 
matches experimental conditions, we calculated empirical lifetime after each of the simulation 
steps. Although autofluorescence biased empirical lifetime to be shorter, and background and 
afterpulse biased empirical lifetime to be longer, the empirical lifetime of final simulated data was 
not significantly different from experimental data (Fig. 1B; adjusted p = 0.24, final simulated data 
vs experimental data; n = 500 and 7 respectively). Thus, our simulated fluorescence lifetime data 
recapitulate experimental data in biologically relevant settings.  

Bias and noise introduced by different sources of fluorescence 
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To understand how different fluorescence sources contribute to bias and noise, we analyzed fitted 
P1 and empirical lifetime across a range of values for simulated P1 and sensor photon counts. 
Autofluorescence decreased fitted P1 and empirical lifetime, consistent with the faster decay of 
autofluorescence compared with FLIM-AKAR sensor fluorescence (Fig. 1C-1D; p < 0.0001, 
sensor + autoF vs sensor only under all sensor photon number conditions for both fitted P1 and 
empirical lifetime). Afterpulse and background did not introduce significant change in fitted P1 (p 
> 0.20, final simulated data vs sensor + autoF condition for all sensor photon number conditions), 
consistent with consideration of the background term during the fitting procedure. However, 
afterpulse and background increased empirical lifetime, consistent with their presentation as even 
distribution across lifetime time channels with a higher mean lifetime than FLIM-AKAR (Fig. 1C-
D; p < 0.0001, final simulated data vs sensor only for all sensor photon number conditions). These 
biases were less pronounced at higher sensor photon counts, which can be explained by the 
relatively small contribution of autofluorescence, afterpulse, and background when sensor 
fluorescence is high. Furthermore, as photon counts increased, the variance became smaller for 
both fitted P1 and empirical lifetime (Fig. 1D). Therefore, we defined quantitatively how different 
sources of fluorescence contribute to bias and noise (Fig. 1C-1D), and FLIM users can use these 
curves to specify the threshold of autofluorescence, afterpulse, background, and sensor 
fluorescence that are optimal for specific experimental needs. 

Determination of minimum photon number requirements to achieve specific SNRs 

How many photons do we need for a given FLIM experiment? Are more photons always better? 
More photons mean better SNR, but also lower sampling rate and reduced fields of view. How can 
we quantitatively find the optimal compromise among these factors? As sensor fluorescence 
increases, variances of both fitted P1 and empirical lifetime decrease (Fig. 1D), and the ability to 
detect a specific amount of fluorescence lifetime response increases. Although the number of 
photons required to achieve a certain amount of SNR was analyzed previously15,26–34, such analysis 
had not been performed with consideration of biological samples in realistic experiments with 
autofluorescence, background, and afterpulse.  

To determine the minimum number of photons required for a certain SNR, we analyzed the 
minimum detectable differences (MDD) of both fitted P1 and empirical lifetime with different 
numbers of sensor photons and repeated data samples (Fig. 2). The MDD was calculated with 80% 
power and 5% significance level. As sensor photons increased, MDDs decreased. As the number 
of repeated data samples increased, MDD also decreased. Importantly, the MDD curves provide 
quantitative information on the minimum number of photons required for a certain amount of 
expected signal. For example, to detect a P1 change of 0.006 or a lifetime change of 5ps, 
approximately 300,000 photons are required. As sensor fluorescence increased, the gain in signal-
to-noise ratio became less and less. Thus, MDD curves generated with FLiSimBA are instrumental 
to determine the optimal experimental conditions (for example, optimal imaging speed and sizes 
of imaging fields) necessary to detect a minimum amount of lifetime change. 

Impact of hardware on MDD: a comparison between gallium arsenide phosphide (GaAsP) 
PMTs and hybrid detectors 
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FLiSimBA can be used to quantitatively evaluate the benefit of specific hardware changes on SNR.  
Hybrid detector (HBD) is advantageous over traditional GaAsP PMT due to its narrower IRF width 
and lack of afterpulsing36. However, hybrid detectors are more expensive. Thus, it is valuable to 
quantitate how much benefit HBD can bring over traditional GaAsP PMTs for SNR. To answer 
this question, we simulated fluorescence lifetime histograms with narrower IRFs (Fig. 3A) and no 
afterpulse for HBD and compared them with the simulated data for traditional GaAsP PMTs. The 
simulation indicated that hybrid detectors and GaAsP PMTs displayed similar photon-dependent 
change in fitted P1 and empirical lifetime (Fig. 3B; p < 0.01 for fitted P1, 800,000 photons vs 
majority of the photon number conditions, for both GaAsP PMT and HBD; p < 0.05 for empirical 
lifetime, 800,000 photons vs all other photon number conditions, for both GaAsP PMT and HBD). 
For both fitted P1 and empirical lifetime, a given sensor photon number gave a comparable MDD 
for HBDs and GaAsP PMTs (Fig. 3C), which can be explained by the similar levels of variance 
from HBD and PMT simulations (Fig. 3B). Thus, HBD with narrower IRF and low afterpulse yield 
little improvement on the SNR for fluorescent protein-based sensors in biological applications, 
although it can offer other advantages26. FLiSimBA thus quantitatively defines the impact on SNR 
due to hardware change, allowing users to determine the appropriate tradeoff between performance 
improvement and price given their sensor brightness, sensor lifetime, and expected signal 
amplitude in specific biological applications. 

Expression level dependence of fluorescence lifetime estimates 

Sensor expression level often changes over days and across animals and is usually assumed not to 
influence lifetime estimates because fluorescence lifetime is an intensive property of fluorophores. 
However, this assumption is true only if the biosensor is the only contributor to fluorescence. With 
autofluorescence, afterpulse, and background fluorescence that are present in biological 
applications, the amount of sensor fluorescence relative to these contributing factors can lead to 
an apparent change in fluorescence lifetime estimates even if the biosensor is in the same 
conformational state1. Here, we challenge the conventional view that fluorescence lifetime is 
independent of sensor expression and use simulation to define the range when sensor expression 
has negligible influence on lifetime. 

We first determined how sensor expression level altered responses in fitted P1 and empirical 
lifetime. When P1 changed from 0.4 to 0.5, both fitted P1 and empirical lifetime increased as 
expected (Fig. 4A, 4C; adjusted p < 0.0001, P1 = 0.4 vs P1 = 0.5, under all photon number 
conditions for both fitted P1 and empirical lifetime). As sensor photon counts increased, there was 
an apparent increase in fitted P1 and decrease in empirical lifetime (Fig. 4A, 4C; p < 0.01, 800,000 
photons vs the majority of other photon count conditions, for both fitted P1 and empirical lifetime, 
for both P1 = 0.4 and P1 = 0.5), consistent with the diminishing effect of autofluorescence, 
background, and afterpulse. For the response amplitude, as sensor photon counts increased, there 
was also an apparent increase in the change of fitted P1 and empirical lifetime (Fig. 4B, 4D; p < 
0.05, 800,000 photons vs the majority of other photon counts, for both fitted P1 and empirical 
lifetime). The response dependence on photons eventually approached asymptotes. With the 
parameters used in our case study, fluorescence lifetime responses were relatively stable at sensor 
photon counts of 200,000 and beyond but varied with lower sensor expression level (Fig. 4B, 4D). 
Thus, our results challenge the widely held view that fluorescence lifetime changes are 
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independent of sensor expression level, and FLiSimBA can be used to define a quantitative 
threshold of sensor expression level to reach for users to compare lifetime responses across 
different sensor expression levels. 

How much change in sensor expression level does not lead to significant difference in lifetime? 
The answer to this question depends on the sensor expression level. As sensor expression level 
increases, the expression change-induced apparent lifetime change becomes smaller (Fig. 4B, 4D). 
We therefore calculated the minimum number of sensor photons required for a certain amount of 
change in sensor fluorescence to have nonsignificant influence on lifetime measurements. We 
simulated fluorescence lifetime histograms across a range of sensor photon counts and across a 
range of change in sensor fluorescence levels. We determined the apparent change in lifetime 
introduced by change in sensor expression level (Fig. 5A, purple traces). As sensor fluorescence 
increased, the sensor expression-induced apparent change in lifetime decreased, consistent with 
relatively less contribution from autofluorescence/afterpulse/background. In addition, for each 
sensor photon count and for each sensor expression level change, we calculated the change in 
lifetime that would present as significant difference for t statistics (Fig. 5A, green traces). As sensor 
photons increased, the difference that would present as significant t statistics also decreased, which 
can be explained by the decreased variance of the data. Thus, we can use these two traces in Fig. 
5A to determine the point of interception – this gives the minimum number of sensor photon counts 
required to tolerate a certain amount of sensor photon changes (i.e., t tests would not show 
statistically significant difference) (Fig. 5B). As total sensor photon numbers increased, a greater 
number of sensor expression difference could be tolerated not to cause statistically significant 
difference in lifetime measurements. Thus, this curve defines a quantitative relationship to guide 
biological experiments on the amount of sensor photon counts required for a certain amount of 
sensor expression level change.  

Discussion 

Here we provide a quantitative framework for analyzing fluorescence lifetime in realistic 
biological settings. We introduce FLiSimBA, a platform that accurately simulates fluorescence 
lifetime data for biological applications (Fig. 1). With FLiSimBA, we address key questions in 
FLIM. We determine the number of photons required for different minimum detectable differences 
to understand SNRs (Fig. 2). Additionally, we assess the impact of hardware changes by comparing 
GaAsP PMTs to hybrid detectors (Fig. 3). Moreover, we challenge the conventional view that 
biosensor expression levels do not affect fluorescence lifetime. We reveal how variation in sensor 
expression influences response amplitude (Fig. 4) and identify the amount of expression level 
variation that does not significantly alter fluorescence lifetime estimates (Fig. 5). In summary, our 
study provides valuable insights and a quantitative framework to define the power and limitations 
of fluorescence lifetime experiments in biological applications. 

FLiSimBA is a necessary and useful tool for FLIM and FLiP experiments for a few reasons. First, 
it makes realistic simulations of lifetime data for biological applications. Second, it is versatile and 
can be easily adapted to evaluate new sensors with different lifetime constants and biophysical 
mechanisms, new methods of calculating fluorescence lifetime, new tissues and organisms with 
different amounts of autofluorescence, and new hardware modifications that can minimize dark 
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currents, afterpulse, or enhance other aspects of FLIM capabilities. Third, FLiSimBA and the 
quantitative framework we provide can precisely define the benefits and limitations of a FLIM or 
FLiP experiment, enabling rigorous experimental design and data interpretation. 

More than providing a tool and quantitative framework, this study challenges the wildly held 
assumptions about the very advantage of fluorescence lifetime measurements: its insensitivity to 
sensor expression levels. By considering autofluorescence, afterpulse, and background photon 
counts in biological experiments, our results define the range where expression level alters 
lifetime, and where it does not result in significant lifetime change (Figs. 4-5). These analyses are 
critical to define the window of opportunity in which FLIM and FLiP can be used to compare 
biosensor measurements over chronic time periods and across animals, and to quantitate absolute 
levels of biological signals. Finally, our results also provide the amplitude of the error bars in 
fluorescence lifetime measurements due to photon sampling, a necessary quantity to interpret any 
FLIM and FLiP data rigorously. These results empower FLIM users to precisely evaluate the 
compromise between SNR, field-of-view sizes, and imaging speeds. 

FLiSimBA and our quantitative platform also facilitate future innovation. Whereas our simulations 
showed little advantage of hybrid detectors over GaAsP PMTs in terms of SNRs, different types 
of hybrid detectors offer narrower IRFs at the cost of lower quantum efficiency (QE). FLiSimBA 
enables evaluation of the tradeoff between IRF width and QE. Additionally, hybrid detectors are 
more advantage for shorter fluorescence lifetimes26 and FLiSimBA allows exploration of the range 
where they provide clear benefits in biological settings. Another avenue to innovation stems from 
our analysis of the effects of autofluorescence (Fig. 1). Because autofluorescence cannot be readily 
subtracted as background from fluorescence lifetime histograms, autofluorescence introduces bias 
and noise to measurements. To enhance sensitivity and resolution, correcting autofluorescence 
interference with hardware and software approaches, or developing brighter or red sensors, is 
crucial. FLiSimBA and our quantitative framework are thus instrumental to evaluate specific 
strategies for autofluorescence correction, as well as other technical innovations for FLIM and 
FLiP. 
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Materials and Methods 

Animals 

All procedures for rodent husbandry and surgery were performed following protocols approved by 
the Washington University Institutional Animal Care and Use Committee and in accordance with 
National Institutes of Health guidelines. CD-1 mice (Envigo #030) were used. The experiments 
were performed according to the ARRIVE guidelines37. 

DNA plasmid 

For experimentally determined data on FLIM-AKAR, AAV-FLIM-AKAR10 (Addgene #63058) 
was used to express the FLIM-AKAR sensor in primary somatosensory cortex by in utero 
electroporation6. 

Acute brain slice preparation 

Mice at 15 to 19 days of age were anesthetized with isoflurane followed by decapitation. Their 
brains were rapidly dissected out and put in sucrose-based cutting solution (concentrations in mM: 
75 sucrose, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 87 NaCl, 25 glucose, 1 MgCl2). 300 μm-thick 
coronal sections with primary somatosensory cortex were obtained with a vibratome (Leica 
Instruments, VT1200S) in cold sucrose-based cutting solution. After sectioning, slices were 
transferred to artificial cerebral spinal fluid (ACSF) (concentrations in mM: 127 NaCl, 2.5 KCl, 
1.25 NaH2PO4, 25 NaHCO3, 2 CaCl2, 1 MgCl2, and 25 glucose) and incubated at 34℃ for 10 
minutes for recovery. Slices were kept at room temperature in ACSF with 5% CO2 and 95% O2. 
Slices were then transferred to a microscope chamber and ACSF was perfused at a flow rate of 2-
4 mL/min for imaging. 

Two-Photon Fluorescence Lifetime Imaging Microscopy (2pFLIM) 

2pFLIM was performed as described previously1,6,10. A custom-built microscope with a mode-
locked laser source (Spectra-Physics, Insight X3 operating at 80 MHz) was used. Photons were 
collected with fast photomultiplier tubes (PMTs, Hamamatsu, H10770PB-40). A 60X (Olympus, 
NA 1.1) objective was used. Image acquisition was performed with the custom-written software 
ScanImage1,10,38 in MATLAB 2012b. 920 nm was used as the excitation wavelength. Emission 
light was collected through a dichroic mirror (FF580-FDi01-25X36, Semrock) and a band-pass 
filter (FF03-525/50-25, Semrock). 128x128 pixel images were collected by frame scan at 4 Hz. 
The FLIM board SPC-150 (Becker and Hickl GmbH) was used, and time-correlated single photon 
counting was performed with 256 time channels. Photons from 20 frames were pooled for 
fluorescence lifetime calculation. Only healthy cells (judged by gradient contrast images) at 30-50 
μm below slice surface were selected. Each individual cell was analyzed as a region of interest 
(ROI). Photons from a given ROI were pooled for further analysis. 

Experimental data collection, determination of parameters, and simulation 

Simulation was performed in MATLAB2022a with the following steps (Fig. 1A). The parameters 
described below were used for this study and could be altered with our code to adapt to different 
biological applications. The final simulated histograms consist of IRF convolved sensor 
fluorescence, autofluorescence, afterpulse, and background fluorescence. The simulations were 
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performed with 256 time channels for each laser cycle from an 80 MHz laser. For each P1 and 
sensor photon number condition, simulation was repeated 500 times.  

1. Generation of photon populations for sensor fluorescence  

For sensor fluorescence, τ1 and τ2 were previously determined to be 2.14 ns and 0.69 ns 
respectively10. To determine the appropriate photon counts and P1 range for simulation, sensor 
fluorescence histogram was fitted with a modified version of Equation 1. 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹0 ∗ �𝑃𝑃1 ∗ 𝑒𝑒
− 𝑡𝑡
𝜏𝜏1 +  𝑃𝑃2 ∗ 𝑒𝑒

− 𝑡𝑡
𝜏𝜏2� ⊗ 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (Equation 2) 

where 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the background fluorescence that is fitted for sensor fluorescence data, and 
⊗ represents convolution. 

To simulate fluorescence lifetime with double exponential decay, we generated a population of 
photons with Equation 1 with 𝐹𝐹0  as 1,000,000. We generated photon populations and 
corresponding fluorescence lifetime histograms with the P1 range from 0.4 to 0.6 with an increment 
of 0.01. 

2. Sensor fluorescence sampling and IRF convolution 

For the determination of IRF, collagen fibers from mouse tail were used for second harmonic 
generation with excitation light at 1050 nm. The lifetime histogram was normalized with the total 
photon number and used as IRF. 

For sensor fluorescence sampling, a specific number of photons were randomly drawn with 
replacement from the corresponding population generated with the double exponential decay. The 
IRF convolution of the fluorescence lifetime histogram was performed: the lifetime of each photon 
of the sample was re-distributed along the time channels based on the probability of the IRF 
distribution. Following convolution, the histogram was wrapped around such that any photons 
whose lifetime were beyond the 12.5ns of a laser cycle were redistributed to the next cycle. 

Empirically measured IRF by second harmonic generation of the mouse tail was used in all figures 
except for Fig. 3. For Fig. 3, the IRFs of both systems were modeled as Gaussian distribution with 
different Gaussian width. The mean of the Gaussian distribution (μ) was set as the peak channel of 
the experimental collected IRF. The full width at half maximum (FWHM) of the Gaussian IRF of 
the GaAsP PMT was set to match the FWHM of the experimental collected IRF (340 ps). The 
FWHM of the hybrid detector Gaussian IRF was set as 120 ps based on the model HPM-100-40 
(Becker & Hickl)36. The standard deviation (STD, σ) of the Gaussian distribution of the IRFs was 
determined based on the relationship with FWHM: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2√2𝑙𝑙𝑙𝑙2 ∗ 𝜎𝜎 (Equation 3). 

The Gaussian distribution was defined as: 

𝐺𝐺(𝑡𝑡) =  1
𝜎𝜎√2𝜋𝜋

∗ 𝑒𝑒−
1
2�
𝑡𝑡−𝜇𝜇
𝜎𝜎 �

2

 (Equation 4). 

The gaussian IRF was generated by normalization of G(t) against the total photon counts.  
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3. Autofluorescence 

All biological tissues exhibit autofluorescence due to different fluorescent cellular components 
and metabolites such as nicotinamide-adenine dinucleotide (NAD), flavins, aromatic amino acids, 
etc1,20,21. To collect the autofluorescence of brain tissue, we imaged brain slices without sensor 
expression from mice at postnatal 15 to 19 days of age. After brain slicing, neurons from primary 
somatosensory cortex were imaged under the same imaging conditions (920 nm excitation light, 
2.5 mW, 30-50 μm below slice surface, and same magnification as FLIM-AKAR imaging). The 
decay histograms from 19 acquisitions were averaged. The number of photons from 
autofluorescence contributing to autofluorescence (Fauto) was calculated as the average 
autofluorescence subtracted by the number of photons contributing to background fluorescence 
(Fbackground). Autofluorescence measurements consist of true autofluorescence together with 
background fluorescence (due to dark current and ambient light leak). Thus, the average 
autofluorescence histogram was fitted with a double exponential with background (Equation 2) to 
determine the τ1, τ2, P1, P2 of autofluorescence as well as background fluorescence.  For simulated 
autofluorescence, up to 10% of fluctuation was introduced to the number of photons with the 
random draw of an integer within the range of Fauto*(1±5%). 

For Fig. 3, autofluorescence simulation with double exponential decay was used (Equation 1). For 
the rest of the figures, autofluorescence lifetime were sampled from the empirical autofluorescence 
lifetime distribution where background was subtracted from the average autofluorescence lifetime 
histogram.  

4. Afterpulse and background fluorescence 

The afterpulse ratio of the PMT was derived from IRF histogram and the background fluorescence 
measurement described above. Then average photons per channel at the end of the IRF histograms, 
where the distribution was even across time channels. This number subtracted by the background 
fluorescence were used as the afterpulse. Subsequently, the ratio between the number of photons 
contributing to afterpulse and the total number of photons from sensor fluorescence were 
calculated as afterpulse ratio. This ratio was determined to be 0.32% for GaAsP PMTs.  

Afterpulse and background fluorescence were simulated by sampling with replacement from an 
even distribution across time channels. The number of photons contributing to background 
fluorescence was determined from autofluorescence fitting. Up to 10% of fluctuation was 
introduced to the number of photons with the random draw of an integer within the range of 
Fbackground *(1±5%). The number of photons from afterpulse were determined by the afterpulse 
ratio (0.32% for GaAsP PMTs and 0 for hybrid detectors) multiplied by the number of photons 
from sensor fluorescence. 

FLIM analysis 

Two metrics were used for subsequent data visualization and analysis. First, the fluorescence 
lifetime histograms generated from simulation or experimental data were fitted by Equation 2 with 
Gauss-Newton method non-linear least-square fitting algorithm. Fitted P1, corresponding to the 
proportion of slower decay (2.14 ns), was used for data visualization and analysis. Second, the 
empirical lifetime of all the photons were calculated as: 
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑(𝐹𝐹(𝑡𝑡)∗𝑡𝑡)
∑𝐹𝐹(𝑡𝑡)

 (Equation 5), 

in which t is the lifetime of a specific time channel, and F(t) is the photon count from that time 
channel. The lifetime range from 0.489 ns to 11.5 ns was used for both P1 fitting and empirical 
lifetime calculation. 

Quantification and statistical analysis 

For each simulated condition, the mean and STD of the fitted P1 or empirical lifetime of the 500 
simulation repeats were calculated.  

For Figs. 2 and 3, the minimum detectable difference (MDD) was calculated by: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑧𝑧 ∗ 𝑆𝑆𝑆𝑆 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� ) (Equation 6), 

where SE refers to standard error, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�   is the estimated mean difference between two 
distributions. With a significance level of 0.05 and a power of 0.8, the z value is 2.806. which was 
used for the calculation in this study.  Under a certain sensor photon number condition, the STD 
of the two metrics with different P1 condition were similar to each other. Thus, given a certain 
sensor photon count, the STD at a certain P1 condition (used as 0.5 in Fig. 2) was used to calculate 
the MDD:  

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑧𝑧 ∗  √𝑆𝑆𝑆𝑆𝑆𝑆
2+𝑆𝑆𝑆𝑆𝑆𝑆2

√𝑛𝑛
=  𝑧𝑧∗√2∗𝑆𝑆𝑆𝑆𝑆𝑆

√𝑛𝑛
 (Equation 7), 

where n was the number of data pairs used to analyze whether there was a significant change in 
fitted P1 or empirical lifetime. 

For Fig. 5, to determine whether a certain amount of sensor expression-induced apparent lifetime 
change could be tolerated, t tests were used to compare whether there was any statistically 
significant difference between two distributions with the same simulated P1 but different photon 
numbers. The critical value of the t statistic is z = 1.96 for a significance level of 0.05. The equation 
𝑧𝑧 ∗ 𝑆𝑆𝑆𝑆 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�� was used to calculate the lifetime difference that would show up as statistically 
significant. As photon counts increased, there was an intersection where the mean lifetime 
difference between the two distributions became less than the difference that would reach statistical 
significance, and this intersection point (determined by linear interpolation of the curves plotted 
in log scale for both axes) was used to determine the minimum sensor photon numbers required to 
tolerate a specific amount of sensor fluorescence change. 

Wilcoxon test was used to test the significance of the difference between two distributions. 

Data and code availability 

All data needed to evaluate the conclusions in the paper are present in the paper. The MATLAB 
functions for simulation are deposited at 
https://github.com/YaoChenLabWashU/Simulation_manuscript. The MATLAB programs for 
ScanImage for data acquisition and analysis are available at 
https://github.com/YaoChenLabWashU/2pFLIM_acquisition (DOI: 10.5281/zenodo.10031982). 
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Figure Legends 

Figure 1. Procedure and analysis results of simulated fluorescence lifetime data of biosensors 
in brain tissue.  

(A) The simulation procedure of fluorescence lifetime data. Fluorescence lifetime distribution of 
a FRET-based sensor was modeled as double exponential decay (τ1 = 2.14 ns, τ2 = 0.69 ns) and 
the lifetimes of photons were sampled with replacement. After the sensor fluorescence was 
convolved with instrument response function (IRF), autofluorescence (autoF) determined from 
brain tissue, afterpulse of the photomultiplier tube, and background fluorescence (consisting of 
dark current of the PMT and light leak) were added to produce final simulated data. The histograms 
of the final simulated data showed the same decay as experimental data. Simulation was repeated 
500 times under each P1 and sensor fluorescence photon number conditions. 

(B) Empirical lifetime of simulated and experimental data. autoF: autofluorescence that was 
empirically measured. Final simulated data include sensor fluorescence, autofluorescence, 
afterpulse, and background. P1 and P2 from the fitting of experimental data were used to generate 
simulated data. Note that the mean of the empirical lifetime of final simulated data is not 
significantly different from that of experimental data. * p < 0.05; n.s. not significant; one-way 
ANOVA with Dunn’s multiple comparison test.  

(C) Heatmaps showing the average fitted P1 and empirical lifetime of simulated data across a range 
of P1 and sensor photon number conditions. 

(D) Summaries of fitted P1 (left) and empirical lifetime (right) with simulated P1 = 0.5. * p < 0.05 
vs sensor only; n.s. not significant vs sensor + autoF; # p < 0.05 vs sensor + autoF condition. 
Wilcoxon test. 

Data are represented as mean and standard deviation.  

 

Figure 2. Relationship between expected response amplitude and the minimum number of 
photons required to detect the signals. 

(A-B) Minimum detectable differences of fitted P1 (A) and empirical lifetime (B) with different 
sensor photon numbers and with different number of pairs of sampled data (n). Data were 
simulated with P1 = 0.5. 

 

Figure 3. Comparison of the fluorescence lifetime response by GaAsP photomultiplier tube 
(PMT) and hybrid detector (HBD). 

(A) Gaussian IRFs used for simulation, reflecting different Gaussian widths for GaAsP PMT and 
HBD. 

(B) Distributions of fitted P1 (left) and empirical lifetime (right) of simulated data from GaAsP 
PMT or HBD, with simulated P1 = 0.5 and showing sensor photon number dependence. Data are 
represented as mean and standard deviation. * p < 0.05, 800,000 photons vs other photon numbers. 
Wilcoxon test. 
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(C) Minimum detectable difference of fitted P1 (left) and empirical lifetime (right) with different 
sensor photon numbers and different numbers of data samples. Data were simulated with P1 = 0.5.  

 

Figure 4. Impact of sensor photon numbers on the response amplitudes of fitted P1 and 
empirical lifetime. 

(A, C) Distribution of fitted P1 (A) and empirical lifetime (C) from fluorescence lifetime data with 
simulated P1 as 0.4 and 0.5 across different sensor photon numbers. * p < 0.05, P1 = 0.4 vs P1 = 
0.5, Wilcoxon test; # p < 0.05, vs photons = 800,000, Wilcoxon test. 

(B, D) Distribution of the change in fitted P1 (B) and empirical lifetime (D) with different sensor 
photon numbers. Simulated P1 varied from 0.4 to 0.5. * p < 0.05, vs photon count = 800,000, 
Wilcoxon test. 

Data are represented as mean and standard deviation. 

 

Figure 5. Minimum sensor fluorescence needed for sensor expression-induced lifetime 
change to be statistically nonsignificant. 

(A) Plots of change to reach statistical significance for t-tests (calculated as 1.96*standard error of 
the difference of the mean) and apparent lifetime change due to sensor expression. Data were 
simulated with P1 = 0.5. Each panel is plotted with a different amount of sensor expression change. 

(B) Relationship between photon number changes due to expression level and the minimum 
number of sensor photons required not to reach statistical significance. Data were simulated with 
P1 = 0.5. The minimum numbers of sensor photons were calculated by interpolating the 
intersection between the two curves in (A). 
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