Investigating the Effect of Water on the Modulus and Yield Strength of Quartz via Nanoindentation

Hannah S. Tebbens¹, Jessica J. Wen², Nir Z. Badt³, David L. Goldsby⁴, Lars N. Hansen⁵

¹College of William and Mary, Williamsburg, VA; ²Colgate University, Hamilton, NY; ³University of Pennsylvania, Philadelphia, PA; ⁴University of Minnesota - Twin Cities, Minneapolis, MN

Introduction
- Hydrolytic weakening of quartz has been shown to occur at temperatures of ~400°C, but has not been shown to occur in the Low Temperature Plasticity (LTP) regime.
- Understanding of the yield strength of earth materials in this regime has important implications for interpreting the strength of the lithosphere.
- As part of the RORD REU, we explore the influence of water content on the elastic modulus and hardness of quartz at room temperature.

Methods
- Synthetic single crystal of quartz with water contents (H/Si):
 - ~2480 ppm
 - ~1280 ppm
 - ~160 ppm
- Nanomechanics Nanoindenter fitted with a Berkovich tip (Figure 1 and Figure 5).
- Samples indented // to c-axis, loaded to 600 mN with a maximum depth of 5000 nm.
- Additional tests on rotated samples (relative to the fixed tip orientation) to test for anisotropic modulus and hardness (Figure 4).

Main Result: No influence of water content on hardness of quartz at room temperature.

Discussion
- Our results show:
 - Hardness values of ~14 +/- 0.5 GPa (Figure 2)
 - Modulus values of ~113 +/- 5 GPa (Figure 3)
- This indicates that there is no effect of water content on the hardness of quartz at room temperature.
- The lack of an effect on water is consistent with other work done on hydrolytic weakening in the LTP regime.
- There appears to be a systematic increase in modulus with increasing water content in our samples, however this variation falls into the range of variation due to orientation effects (Figure 4).

Future Research
- Test additional samples with water content between 1280 & 160 ppm (H/Si).
- Test at a range of temperatures to determine specific temperature where hydrolytic weakening is initiated.

References