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Abstract

When constructing empirical models, researchers must make decisions about which

variables to include, how those variables relate to the outcome variable, and how that

mapping varies across units in the population. Additional decisions are made in con-

ducting robustness checks or analyzing heterogeneity or multiple outcomes. Estimates

from the selected models rarely account for the search process or correlations across

models, and may depend on ad hoc choices made in the selection process. We propose

a new methodology, the moment forest, that allows parameters in a broad class of

moment-based models to vary across groups of observations on the basis of observable

characteristics. A two step estimation process first assigns observations to groups with

common parameters, and then estimates an empirical model within each group. We

prove the consistency of this estimator and show that standard rates of convergence

apply under weak regularity conditions. Our results are applicable to an enormous

range of empirical settings, including linear regression, randomized controlled trials

with multiple arms or multiple outcomes, regression discontinuity designs, and a wide

variety of structural models. Monte Carlo evidence demonstrates the excellent small

sample performance and faster-than-parametric convergence rates of the model selec-

tion step. We showcase our approach by estimating heterogeneous treatment effects in

a regression discontinuity design in a development setting.
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1 Introduction

Applied researchers are faced with a multitude of decisions when constructing statistical

models, such as which variables to include in the model, how those variables are related

to the outcome variable, and how that mapping may vary across units in the population.

While theory is often helpful in addressing the first issue, and nonparametric methods can,

in principle, address the latter two concerns in complete generality, data limitations often

force the researcher to make decisions about the empirical specification. In practice, the

process of determining the statistical model is often ad hoc, with the researcher adding and

removing variables and interactions in a non-systematic fashion, either as a result of intuitive

exploration or in the process of producing “robustness checks.” Two major issues arise

from this process. First, the model resulting from the search may have different statistical

properties from the original model, as the result of choosing the specification on the basis of

the answers it produces. Second, the researcher often only considers a subset of the possible

modeling choices, potentially introducing specification bias in the estimates. This paper

proposes a method that addresses both of these issues, recovering the correct specification

in a systematic fashion without introducing bias in the estimates due to the search process.

At the highest level of generality, we are interested in estimating the parameters of the

following conditional moment:

E[Y −G(X; β(Z))|X = x] = 0, (1.1)

where G is the data-generating process mapping the matrix of covariates X to the vector of

outcomes Y . Our key innovation over the standard method of moments estimator is that we

allow the parameters to be governed by the unknown function β(Z), where Z is a matrix

of observables that, depending on the application, may or may not be a subset of X. That

function is the object of interest in this paper.

We introduce moment forests to estimate β(Z). Each moment forest consists of an ensemble

of moment trees, which are generalizations of classification trees that group observations

in a sample together on the basis of moment functions. The basic idea is to partition the

data such that the fit of the underlying moment functions are maximized on each subset.

Through a process of recursive binary partitioning, subject to appropriate stopping criteria,

we obtain a different parameter vector in each disjoint subset of the sample. As opposed to

a standard mixture model—e.g., a random coefficients logit, where individuals are assigned
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a type from some distribution but are all assumed to follow the same model—our method

assigns a model with certainty to a group of observations. Our method builds on the split

sample method of honest trees (Cappelli, Mola, and Siciliano (2002), Wager and Athey

(2015), Athey and Imbens (2015)): we estimate the structure of β(Z) on a subsample of

the data, which governs how parameters should be assigned to observations. We then take

the structure as given and estimate parameters on the remaining data. Wager and Athey

(2015) prove the consistency of a binary tree estimator for heterogeneity in a setting where

the moment function is a difference of means, such as a randomized control trial. While

this result is a seminal contribution, heterogeneity is a major concern in a large number of

empirical contexts other than randomized control trials. Our results generalize to nearly any

moment-based empirical model, making them available in a huge range of empirical settings.

Like other random forest based approaches, our estimator also performs well in contexts

where the number of covariates is very large.

We make two general contributions to econometric theory in this context. First, we show

the uniform convergence of conditional moment-based semiparametric models that use clas-

sification trees, like our moment trees, to control for unobserved heterogeneity. This allows

us to prove the consistency of our approach for recovering the structure of β(Z). Second,

building on the observation that classification and regression trees are local estimators that

aggregate information from the data in shrinking neighborhoods of the parameter space, we

show that if the complexity of the unobserved heterogeneity is relatively low (i.e. the num-

ber of components of the unobserved heterogeneity grows sublinearly with the sample size)

then the first step of the estimation does not affect the uniform convergence of the semi-

parametric conditional moment function over the values of the finite-dimensional parameter.

This means that the researcher can use the usual standard errors in the second step of the

procedure, greatly simplifying the application of our method. We also show that a simple

version of the bootstrap yields valid confidence sets for estimated parameters.

Our setting is one with a long academic literature. Medical researchers and applied mi-

croeconomists have long struggled with the issue of subgroup analysis.1 The basic issue is

that researchers, through statistical ignorance (or more nefarious motivations), may search

across subgroups until they find one with a treatment effect that is statistically significantly

different from the baseline. Emphasizing this finding and ignoring groups for which the effect

is zero leads to substantial reporting bias and can provide misleading policy implications.

1See, for example, Assmann, Pocock, Enos, and Kasten (2000).
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However, understanding the true structure of treatment heterogeneity can be essential in

understanding program impacts. The problem of subgroup analysis has become so severe

that it is becoming common to pre-announce testing hypotheses in public before engaging

in an experiment via a “pre-analysis plan.”2

Further, it is nearly universal in the economics literature to find several specifications re-

ported in the same paper. Researchers commonly estimate a “baseline” or “preferred” sta-

tistical model, either on the basis of theory, intuition, or fit. The next step, especially in

reduced-form settings where the computational burden may not present significant barriers

to repeated specification testing, is to estimate a sequence of models where the parameters

are allowed to vary across observations in some observable fashion. One approach is to in-

clude various levels of fixed effects that operate at some aggregated level. A second approach

is to allow for some form of interactions between demographic characteristics and outcomes.3

While econometric theory exists for various specification tests for growing or pruning mod-

els, this step is rarely guided by formal econometric intuition. Instead, researchers most

often consider a (small) finite number of specifications to run and report those results as

“robustness checks.” Robustness checks are pervasive across all fields in economics; see e.g.,

Chetty, Hendren, and Katz (2016) in education, Banerjee, Barnhardt, and Duflo (2016)

in development, Collard-Wexler and De Loecker (2015) in industrial organization, Barreca,

Clay, Deschênes, Greenstone, and Shapiro (2015) in environmental, Doyle, Graves, Gruber,

and Kleiner (2015) in health, and Heckman, Pinto, and Savelyev (2013) in labor.4

While the desire to know whether estimates are sensitive to the particular modeling choices

made in forming those estimates is clearly laudable, there are two important limitations to

this approach. The first, as mentioned above, is that the statistical properties of models

constructed after a researcher searches through the model space are not the same as those

if the models were predefined. One must account for that search process in order to engage

in proper inference. The second issue is that robustness checks are almost never exhaustive,

nor are they guided by some econometrically-sound search process that guarantees conver-

gence to the true underlying data-generating process. One may erroneously conclude that

2The Hypothesis Registry at J-PAL (https://www.povertyactionlab.org/Hypothesis-Registry) is
an early example of a pre-analysis plan registry, now subsumed by the the AEA RCT Registry (https:
//www.socialscienceregistry.org/).

3For example, Card (1999), in an influential chapter in the Handbook of Labor Economics, has a section
discussing observable heterogeneity with many citations to prominent papers using statistical models with
interaction effects.

4At a top economics department in 2016, every single job market paper in an applied field contained some
variety of robustness checks. A majority had a section expressly labeled “Robustness Checks.”
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the estimates are robust simply because non-robust specifications happen to have not been

chosen. In models with discrete variables, it is almost unheard of to estimate the model

on all subsets of the data, in part because there are typically too many subsets to consider.

When continuous variables are introduced, the problem becomes infinite-dimensional because

any sub-intervals of the continuous variable could be considered; researchers in this context

usually choose arbitrary partitions based on quantiles or round numbers. By partitioning

observations on the basis of an objective criterion and then generating standard errors that

account for the partitioning process, our estimator jointly solves both problems.

The remainder of the paper is organized as follows: we introduce and discuss the estimator

(Section 2) before developing its statistical properties (Section 3). We then show its small-

sample performance in a Monte Carlo (Section 4), and apply it to a regression discontinuity

design in a development setting (Section 5). Section 6 concludes. We first discuss several

common empirical settings where our estimator may be useful.

1.1 Examples

Our estimator has a broad set of applications. We illustrate several common settings where

allowing the parameters to vary across an observable characteristic of the sample may be

useful.

1.1.1 Linear Regression

The most commonly-applied statistical model in econometrics is the linear regression:

Y = Xβ + ε, (1.2)

where Y is a N × 1 vector, X is a N ×K matrix of covariates, and ε is a N × 1 vector of

unobservable errors. The parameter of interest in this model is typically (a subset of) β. A

common modeling approach is to saturate Equation 1.2 with many fixed effects at various

levels of aggregation. The idea is to “control” for other confounding effects that may influence

the outcome variables at those grouped levels. There are several issues with this approach:

first, some of the fixed effects may be equal to each other. Grouping them together will

improve statistical precision. Second, fixed effects only control for additive effects at exactly

the group level, while critically still imposing a constant relationship between X and Y . Our
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approach generalizes Equation 1.2 to the following model:

Y = Xβ(Z) + ε, (1.3)

allowing β be a function of Z, a N×K matrix of variables excluded from the specification in

Equation 1.2. The parameter of interest, β, may now depend on observable characteristics of

each observation, such as the categorical variables used to generate fixed effects. This model

is substantially more flexible than the baseline fixed effects model, as one can replicate the

model in Equation 1.2 while allowing the relationship between Z and β to be arbitrarily

nonlinear.

The same setup can be directly applied to other models based on linear regression, such

as the regression discontinuity design, which we describe briefly below and explore in an

empirical example in Section 5.

Heterogeneous Treatment Effects, Multiple Treatment Arms, and Multiple Out-

comes A special case of the linear regression model is the randomized controlled trial

(RCT). Athey and Imbens (2015) introduce the following heterogeneous treatment effects

specification:

Y = Xβ +Wτ(Z) + ε, (1.4)

where W is an indicator for treatment status and τ(Z) is the treatment effect, which may

depend on Z.

Equation 1.4 can be extended to both multiple treatment arms and multiple outcomes. For

M treatments, the model is:

Y = Xβ + 1(Y ∈M1)W1τ1(Z) + · · ·+ 1(Y ∈MM)WMτM(Z) + ε, (1.5)

where 1(Y ∈ Mm) is an indicator for whether an observation belongs to treatment arm m,

Wm is a treatment status indicator within each arm, and τm(Z) is the treatment effect in

arm m. While this model allows for multiple treatment effects by treatment arm, it also

allows the treatment effect to be grouped across different arms, e.g. if the treatment effect

is zero across several arms. This can result in a significant improvement in precision. The

Z may contain other variables, such as demographics, that further increase the flexibility of

the model to allow for heterogeneous treatment effects within and across groups in different
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treatment arms. For example, it may be that the treatment effect is zero in some arms for

all observations, takes different values in other arms for all observations, and has different

values for different groups in the remaining arms.

In the case of multiple outcomes, suppose that the econometrician has J outcome variables

Yj, which is common in RCT settings. The model for assessing multiple treatment outcomes

can be written as:

Y = Xβ + 1(Y ∈ J1)W1τ1(Z) + · · ·+ 1(Y ∈ JJ)WJτM(Z) + ε, (1.6)

where 1(Y ∈ Jj) is an indicator function that identifies which j ∈ J outcomes Y belongs to.

Researchers typically estimate all the outcome variables separately. The joint approach made

possible by this paper has the benefit of grouping together similar treatment effects, improv-

ing precision. As above, it also allows treatment effects to vary across other observables Z,

while generating correct standard errors.

Regression Discontinuity Design (RDD) In settings where treatments are assigned

on the basis of an exogenously-given and non-manipulable cutoff, c, as measured by some

variable X, a regression discontinuity design may be used to estimate the causal effects with

the following equation:

Y = α +Dτ +Xβ + ε, (1.7)

where D = 1 if X ≥ c and D = 0 otherwise. Our model generalizes Equation 1.7 to allow

for multiple treatment effects by estimating the structure of τ(Z), where Z are additional

observables. Our application below uses the “fuzzy” variant of the RDD method where the

treatment probability changes discontinuously around the cutoff.

1.1.2 Two-Step Dynamic Estimators

The approach of Bajari, Benkard, and Levin (2007) estimates parameters of dynamic models

using a two-step procedure. In the first step, the econometrician estimates a set of reduced

form policy functions linking agent behavior with a set of observable state variables. In the

second step, these reduced form policy functions are projected onto an underlying structural

model, recovering estimates of the dynamic parameters. A key requirement of the process is

that the first-step policy functions have to be estimated on the same equilibria, otherwise they

may be produce bias in the estimated parameters, e.g. Otsu, Pesendorfer, and Takahashi
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(2016). Our approach makes it possible to ensure consistent estimates of policy functions

that vary across markets, for example, if firms are playing different equilibria in different

markets. In this case, the relevant model is:

Y = f(X,Z, ε), (1.8)

where f is the reduced-form policy function, such as a probit used to estimate entry proba-

bilities, X is a vector of state variables, and Z a vector of market-level indicator functions.

Our approach assigns a policy function to each market; in the limiting case, it will find

that there are no significant differences across markets and group all of the policy functions

together, as is often done in practice without formal justification (see, for example, Ryan

(2012)).

1.1.3 Logit Models

In Greenstone, Ryan, Yankovich, and Greenberg (2017), the authors use re-enlistment data

to estimate the value of statistical life (VSL) for soldiers in the US Army. They model the

probability that soldier i re-enlists after their first term as:

Pr(i re-enlists) =
exp(αbi + γhi +X ′iβ)

1 + exp(αbi + γhi +X ′β)
, (1.9)

where bi is the bonus offered for re-enlistment, hi is a measure of the mortality hazard faced

by the soldier at the time of re-enlistment, and X is a vector of demographics. The two

key parameters are the marginal utilities of the bonus offer, α, and the marginal disutility

of the excess hazard, γ; the ratio of the two is the value of statistical life. A key question is

how the VSL varies by observable group. Using the approach in this paper, the model with

heterogeneous VSL is:

Pr(i re-enlists) =
exp(α(Z)bi + γ(Z)hi)

1 + exp(α(Z)bi + γ(Z)hi)
. (1.10)

The model now depends only on the bonus and excess hazard covariates, with all other

observable demographics entering Z. The key distinction between Equations 1.9 and 1.10 is

that the object of the interest, the value of statistical life, can now vary in an unrestricted

way across all observable characteristics of the soldiers. This is a very complicated object,

as there are literally billions of possible combinations of discrete variables, and an infinitely-
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large number of continuous cuts of the data, that could interact with bi and hi in the

base specification. Moment trees guarantee that the true underlying model will be found

asymptotically, and will uncover the most important features of that heterogeneity in finite

samples.

2 The Estimator

Our goal is to estimate a model that allows parameters to vary across observations. Because

the data are finite and the set of possible partitions are infinite, we need to divide the data

into subsets with constant parameters while simultaneously avoiding overfitting and taking

the partitioning process into account when generating standard errors.

The decision tree provides one approach to the problem of partitioning data according to

some moment criterion function, such as minimizing mean-squared error. The decision tree

begins with an initial “stump,” with all the data grouped together, and proceeds to recur-

sively split the data along one dimension at a time according to some criterion. For contin-

uous variables, the algorithm chooses the split point that maximizes the criterion function.

For discrete variables, it searches over all disjoint binary sets. The chosen split generates

two disjoint sets of the data, each known as a “leaf.” The algorithm is then repeated on each

leaf, cutting the data into smaller and smaller subsets until a stopping criterion is met. The

literature has considered several stopping criteria, such as requiring the number of observa-

tions in each leaf to be above some minimum integer k, requiring the proportion of data in

each leaf to be at least some α, or requiring the improvement in the criterion function after

the split to be greater than some threshold. We consider the use of all three of these criteria,

and set their critical values using cross-validation on a holdout sample.

Many variants of trees fall under the broad umbrella of decision trees. Two of the most

common are classification trees and regression trees. Classification trees vote for assignment

for an observation into a group on the basis of the observable variables; the criterion function

is typically “node impurity,” a measure of the dissimilarity of observations in a given node.

Regression trees fit the average value of the subsample’s dependent variable; the criterion

function is the mean squared error within the leaf.

We use a variant of a classification tree that we term a moment tree. Like classification trees,

we seek to group together observations that have the same parameter vector conditional on

observable Z, a set of variables that do not enter the statistical model directly. Our criterion
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function is a moment function, which models the dependent variable as some function of the

observable variables, parameters, and unobservable shocks. At each stage of the partitioning

process, we partition the data in a way that minimizes the value of the moment function in

each leaf. When the stopping criteria are met, the data are partitioned into K disjoint sets,

Z = {Z1, . . . , ZK}; we can then assign a unique parameter vector, θk, for each Zk to solve

the following equation in that subgroup:

E[Y −G(X; β(Z))|X = x] = 0, (2.11)

If the moment function cannot be satisfied in a given sample, the leaf is assigned a value of

null.

Any such search process requires a method to avoid overfitting of the data and to generate

standard errors that take the search process into account. We use an approach known as

an “honest tree.” We split the data into two samples. In the first sample, we derive the

structure of the moment tree. In the second sample, we estimate the values of the θ at each

leaf, taking the structure of the tree from the first part as given. We show formally that this

guarantees that the tree is estimated uniformly, and that the researcher can ignore statistical

error in the first phase when calculating standard errors in the second phase, as we show

that, under certain regularity conditions, the rate of convergence of the first step is faster

than parametric.

At the stump, our model is exactly the same as a standard GMM-based model, which

encompasses an extraordinarily large class of empirical problems. In the conventional GMM

approach, one solves for θ using the entire sample and computes the value of the GMM

criterion function. Our approach extends the GMM approach by efficiently partitioning the

data and estimating the model in subsets of the parameter space in a manner that minimizes

the value of the GMM criterion function.

To calculate the statistical variability of our estimates, we use a moment forest. As in

the generation of a random forest, we repeatedly resample the data with replacement and

run the two stage estimation on each resampled data set; but only a random subset of p

variables are considered for splitting at each node. The final estimate of θk is then the

arithmetic average of the θk across all trees in the forest. This approach has at least two

benefits; first, it is possible to show that one can reduce mean-squared prediction error down

to irreducible structural error using resampling; and second, it allows the method to scale

9



with large dimension X datasets, as only a subset of variables is searched over at each split.

For a given forest, we compute θ using an inverse-variance weighted average to increase the

accuracy of the estimated parameter. Intuitively, estimates from trees with high standard

errors are downweighted relative to more precise estimates from other trees. We calculate

standard errors using the bootstrap applied to the construction of the entire random forest.

The final output of the random forest is a parameter estimate and standard error for every

observation in the original dataset; this parameter estimate is effectively a weighted mean

of the parameter estimate in each leaf of a tree where that particular observation appeared.

The next section provides a formal analysis of the econometric properties of our proposed

estimator.

3 Econometric Theory

3.1 Classification tree for a conditional moment model

We consider the model defined by moment function ρ(·; ·) : W × Θ 7→ M, where W is a

subset of Rn, Θ is a convex compact subset of Rp andM is a subset of Rm. We assume that

the data generating process is characterized by distribution of a random vector W = (Y,X)

where random variable X takes the values in X ⊂ Rq.

We assume that this distribution has an absolutely continuous density fX(·). Our results

apply to the cases where some of the components of X are discrete. Our model has a special

structure in the sense that we assume that there is a subvector of X that we denote Z

which characterizes the heterogeneity of the model. The support of Z, Z is an open convex

subset of Rr (r < q). The special structure of the model that we consider relies on the

existence of the system of subsets of Z such that in each subset the data generating process

corresponds to single homogeneous conditional moment model. Then the object of interest

is the conditional moment

E[ρ(W ; θ) |X = x] = 0, (3.12)

and the value of the parameter θ when z belongs to specific subsets of Z.

Formally, we characterize the structure of heterogeneity in the following assumption.

ASSUMPTION 1. For K = 1, 2, . . . there exists a system of K subsets ZkK , k = 1, . . . , K

such that Z iK ∩ ZjK = ∅ and
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1. For PZ(·), the distribution of random vector Z, and each k, PZ
(
ZkK

)
= O(1/K)

2. For numeric sequences aK and bK decreasing in K, for each ZkK there exists θkK such

that

sup
x∈X , z∈ZkK

∥∥E[ρ(W ; θkK) |X = x]
∥∥ = O(aK), (3.13)

with min
i 6=j=1,...,K

|θi − θj| ≥ bK, and

inf
θ∈Θ

sup
x∈X , z∈Z\∪Kk=1ZkK

∥∥E[ρ(W ; θkK) |X = x]
∥∥� aK

3. For each ZkK and θkK in (3.13) there exists a matrix function A(·) : X 7→ Rp×m such

that eigenvalues of A(·) are uniformly bounded by some constant λ and

E

[
A(X)

∂ρ(W ; θkK)

∂θ

]
is strictly positive definite.

4. For each fixed k and K there exists a sequence of sets ZkN for N = K + 1, K + 2, . . .

such that for each N > K + 1 Zk(N+1) ⊆ ZkN ⊆ ZkK and the corresponding sequence

of parameters θkN converges to a limit θk∗.

Assumption 1 requires the existence of the system of subsets of Z with non-vanishing volumes

where a conditional moment model is valid uniformly in each subset (up to an error of aK)

and it is not valid outside of this system of subsets. Moreover, the parameter values that

solve the conditional moment within each subset are separated by bK . Examples of the

settings where Assumption 1 holds include the case where Z has a finite partition where in

each element of the partition the data can be characterized by a single conditional moment

model. This could be the case where Z corresponds to geography and different models apply

to different separated geographical locations (such as counties or states). Another simple

example is the case where there is a unique subset of Z where the conditional model is valid.

We formulate the Econometric problem as a problem of estimation of a set of parameters

θkK by recovering subsets of sets in the set system {ZkK}Kk=1 for a given K. There is no

guarantee that we can recover sets ZkK . However, given that the conditional moment is

valid inside each ZkK it will be sufficient to recover some strict subsets of ZkK . We now
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develop tree-based algorithm that estimates parameters θkK by searching for rectangular

strict subsets of sets ZkK .

For our analysis we use the notion of classification trees. In theory, we can try to find

sets ZkK by fully triangulating the set Z (e.g. by defining the grid in this set). However,

such a procedure will face a severe curse of dimensionality in high-dimensional spaces. The

classification tree replaces the brute-force grid search with dimension-wise search and splits Z
into non-overlapping rectangles. Then each rectangle is assigned the label k and parameter

θkK if such assignment is possible (i.e. the corresponding rectangle is a strict subset of

ZkK). We reserve the labels 0 and ∅ instead of the estimated parameter for the case where

a particular element of the partition cannot be classified.

In our further analysis we assume that continuous components of Z lie in the interior of the

hypercube. This can be done without loss of generality since any open convex sets in Rr

are homeomorphic, i.e. we can define a one-to-one mapping from Z to the interior of the

hypercube in Rr.

The partitioning is performed recursively such that the algorithm begins with considering

the set S(0) = Z ⊂ Rr (parent node of the tree). For this set we select dimension 1 ≤ d ≤ r

and the threshold c such that S(0) is split into two children S(1,1) = S(0) ∩ {z ∈ S(0) | zd ≤ c}
and S(1,2) = S(0) ∩ {z ∈ S(0) | zd > c}. If the component d is discrete, then we choose a

particular value c of zd and split S(0) into two children S(1,1) = S(0) ∩ {z ∈ S(0) | zd = c} and

S(1,2) = S(0) ∩ {z ∈ S(0) | zd 6= c}.

Then at split k we choose one of k + 1 sets S(k,i). Then we choose the dimension d and,

assuming that it is continuous, we select the threshold c and construct two sets S(k+1,i) =

S(k,i) ∩ {z ∈ S(k,i) | zd = c} and S(k+1,k+2) = Sk,i ∩ {z ∈ S(k,i) | zd 6= c}. Then we re-index the

remaining sets S(k,j) as S(k+1,j).

The sequence of k splits induces the partition of Z which we denote S. This partition consists

of non-overlapping rectangular regions L which we call leaves of the classification tree. Let

L(z) be the element of S containing the point z. L(z) is the leaf of the classification tree

containing z.

The idea behind the construction of the classification tree is the following. Suppose that L

is a leaf of the classification tree. If L ⊆ ZkK for some k, then if z ∈ L there exists the

parameter value θkK such that the moment function E[ρ(W, θ) |X = x] is bounded by aK

uniformly over components x that are not in z. However, by Assumption 1 if L 6⊂ ZkK for
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any k, then the norm of the moment function will not be close to zero.

We associate the unknown conditional expectation E[· |X = x] with an infinite-dimensional

parameter which we denote η ∈ H. Then we consider an estimator for the moment function

m(x; θ, η) = E[ρ(W, θ) |X = x], denote it m̂(x; θ). We take weighting function A(·) : X 7→
Rp such that E[A(X)A(X)′] < ∞ and E[A(X)∂m(X;θ,η)

∂θ′
] has full rank for each η ∈ H and

for all θ in some fixed neighborhood of θkK . In that case the finite-dimensional parameter

of interest θk is identified from any leaf L ⊆ Zk that generates function

ML(θ, η) = E [A(X)m(X; θ, η) 1{Z ∈ L}] (3.14)

Then we estimate the conditional expectation that yields m(x; θ, η̂). The corresponding

sample analog for M(·, ·) can be constructed as

M̂L(θ, η̂) =
1

nPZ(L)

∑
i : zi∈L

w(xi)m(xi; θ, η̂) (3.15)

The classification will be based on the norm ‖ · ‖ and the threshold Mn > 0. The threshold

sequence Mn is calibrated based on the property of the moment function. In the next

section we provide an explicit expression for this threshold. For partition S we define the

classification tree such that for each element of partition

θS : S 7→ Θ ∪ ∅,

and

θS(L) =

{
arg infθ ‖M̂L(θ, η̂)‖, if infθ ‖M̂L(θ, η)‖ ≤Mn,

∅, otherwise.

In other words, the classification tree returns the parameter that solves the empirical moment

condition if the minimum of the moment function is below the pre-set threshold. If the

minimum is above the threshold (meaning that the solution that equates the moment function

to zero cannot be found), then the tree returns null. Inside the leaves where the minimum

is below the threshold we can replace the procedure with solving equation

M̂L(θ, η̂) = o(1)

which corresponds to the standard Z-estimator. The leaves of the tree are then assigned
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integer labels based on the inferred parameters. For a given δn > 0 we assign two leaves L

and L′ the same integer label if ‖θS(L) − θS(L′)‖ ≤ δn. Parameter δn is sample-dependent

and is chosen based on the properties of the estimator. In many cases encountered in practice

the choice δn = O(K/n) will be sufficient.

3.2 Implementation of honest splitting rules

Wager and Athey (2015) propose to use an application of a cross-validation procedure to

evaluate the tree splits. The main idea of that procedure is that partitioning and estimation

uses different independent subsamples. We adapt this idea to the evaluation of the moment

classification trees. In this case, split the sample into two subsamples where one subsample

is used to estimate the moment functions m(x; θ, η̂) and the other one is used to split Z into

rectangles. The estimation procedure implemented this way does not induce dependence

between the observations that are used to construct the moment function within each leaf

of the tree.

To implement the procedure we take the sample {yi, xi, zi}ni=1. First, we then draw a sub-

sample of size s from this sample without replacement and split it into two non-overlapping

subsets Dt and Dv.

Second, using the subset Dt we grow the tree.

Third, once the splits are made, we compute parameters and assign labels based on the

minimization of the empirical moment function M̂L(θ, η̂) for each leaf using sample Dv.

We adhere to a specific methodology for growing the tree, since unlike the standard regression

trees, the classification tree can assign a null label to elements of partition. The goal of the

recursive splitting is to ensure that the estimated moment function well approximates the

true moment function defined by (3.12). Then we consider a standard Euclidean norm ‖ · ‖
and compute the overall discrepancy between the true and empirical moment for a given L

within the validation sample (which we call the prediction error) as∑
i∈Dv

∑
L∈S

‖A(xi)m(xi; θ0L, η0)1{zi ∈ L} −ML(θ̂, η̂)1{zi ∈ L}‖2,

where η0 is the true value of the infinite-dimensional parameter and

θ0L = arg inf
θ
‖E [A(X)m(X; θ, η0) 1{Z ∈ L}]‖
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and

θ̂L = arg inf
θ
‖ML(θ, η̂)‖ .

The prediction error can be further re-written as

∑
i∈Dv

∑
L∈S

(
‖A(xi)m(xi; θ0L, η0)‖2+‖ML(θ̂L, η̂)‖2−2m(xi; θ0L, η0)′A(xi)

′M(θ̂L, η̂))

)
1{zi ∈ L}.

Provided that ML(·, ·) is fixed within the leaf L and there is a single minimizer θ̂L of ML(·, η̂)

for each L ∈ S, then we can re-write∑
i∈Dv

m(xi; θ0L, η0)′A(xi)
′ML(θ̂L, η̂)) =

∑
L∈S

∑
i : zi∈L

m(xi; θ0L, η0)′A(xi)
′ML(θ̂L, η̂)).

As we show further, whenever L ⊆ ZkK then

1

nPZ(L)

∑
i : zi∈L

A(xi)m(xi; θ0L, η0) = M(θ̂L, η̂)) + op(1).

This means that∑
i∈Dv

m(xi; θ0L, η0)′A(xi)
′M(θ̂L, η̂)) =

∑
L∈S

#{i : zi ∈ L}M(θ̂L, η̂))′ M(θ̂L, η̂)) + op(1)

=
∑
i∈Dv

‖M(θ̂L, η̂))‖2 + op(1)

and the prediction error whenever L ⊆ ZkK can be re-written as∑
i∈Dv

‖A(xi)m(xi; θ0L, η0)‖2 −
∑
i∈Dv

‖M(θ̂L, η̂))‖2 + op(1).

In other words, the partition that minimizes the squared deviation of the estimated moment

function for each leaf within ZkK from the true moment function has to maximize the

variance of the estimated moment function. This result extends the observation in Athey

and Imbens (2015) made for standard regression trees.

Now based on this idea we can construct an actual mechanism for producing new splits. Con-

sider step k of the recursive splitting algorithm that partitionsZ into subsets S(k,1), . . . , S(k,k+1).

Next, for each i = 1, . . . , k + 1 and each dimension d we consider threshold c that generates
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the new partition S(k+1,1)(i, c, d), . . . , S(k+1,k+2)(i, c, d) according to the algorithm that we

outlined previously. In each subset S(k+1,j)(i, c, d) we estimate the moment function m(θ;x)

and define function

M̂
(k+1,j)
i,c,d (θ, η̂) =

1

nPZ (S(k+1,j)(i, c, d))

∑
i : ziS(k+1,j)(i,c,d)

A(xi)m(xi; θ, η̂).

Then we find the set of minimizers

θ̂
(k+1,j)
i,c,d = arg min

θ
‖M̂ (k+1,j)

i,c,d (θ, η̂)‖.

Note that we need to compute this only in the newly created elements of partition, while

functions M̂ and their minimizers on the remaining elements of partition stay the same.

Then we choose the triple (i, c, d) by maximizing the variance of the moment function

max
i,c,d

k+2∑
j=1

∥∥∥M̂ (k+1,j)
i,c,d

(
θ̂

(k+1,j)
i,c,d , η̂

)∥∥∥2

.

Step k, therefore, requires us to solve 2(k + 1) minimization problems.5

3.3 Consistency for classification trees

Now we develop consistency results for classification trees with honest splitting rules. The

classification tree induces a structure on the empirical moment where it is a product of the

weighted empirical moment function A(·)m(·; θ, η̂) and the containment indicator 1{· ∈ L}
indicating that a given observation is contained in leaf L of the classification tree. We can

interpret this as an effective reduction of the sample using the containment indicator. In order

to work with this type of moment function and establish consistency of the corresponding

Z-estimator we need to evaluate the complexity of this class.

We recall the following definition from empirical process theory which uses the concept of

Radamacher random variables, which take values ±1 with equal probability 1
2
.

DEFINITION 1. For the class of functions F = {f(·;h), h ∈ H} indexed by a subset H

5While our discussion of the honest tree presumes an infinite amount of data, we note that, in finite
samples, the estimates of some leaves in the second tree may not have enough variation to produce valid
moments. For example, the first tree may split on combinations of levels of Z that do not appear in the
second data set. If this is the case, we will “prune” back that leaf to its parent node recursively until a valid
parameter vector is found.
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of the Banach space, i.i.d. random variables xi and i.i.d. Radamacher random variables σi

the empirical Radamacher complexity of F is

R̂(F) = E

[
sup
f∈F

1

n

n∑
i=1

σi f(xi)

∣∣∣∣x1, . . . , xn

]
.

and the Radamacher complexity of F is

R(F) = E

[
sup
f∈F

1

n

n∑
i=1

σi f(xi)

]
.

The notion of the Radamacher complexity is central in establishing the uniform behavior of

the empirical sum of functions of i.i.d. random variables within a given functional class. The

rate of decay of the Radamacher complexity determines the rate of uniform convergence of

the empirical sum to the corresponding expectation.

The presence of the containment indicator in the definition of the moment function induced

by the classification tree changes the structure of the empirical sum. With this indicator in

place, only a fraction of the sample will impact that empirical sum. Consequently, in the

presence of this indicator we expect the uniform convergence of the empirical sum to change.

Gu, Komarova, and Nekipelov (2017) find it useful to modify the notion of the Radamacher

complexity to account for the presence of containment indicators. The resulting notion is

referred to as Bernoulli-downsampled Radamacher complexity.

DEFINITION 2. For the class of functions F = {f(·;h), h ∈ H}, i.i.d. random variables

xi, i.i.d. Radamacher random variables σi, and i.i.d. Bernoulli random variables ξi with

parameter π, the Bernoulli-downsampled empirical Radamacher complexity of class F is

B̂π(F) = E

[
sup
f∈F

1

nπ

n∑
i=1

σiξi f(xi)

∣∣∣∣x1, . . . , xn

]

and the Bernoulli-downsampled Radamacher complexity of class F is

Bπ(F) = E
[
B̂π(F)

]
.

The notion of Bernoulli-downsampled Radamacher complexity allows us to impose a condi-

tion directly on the class of moment functions that then ensures the validity of the uniform
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law of large numbers and guarantees that the Z-estimator that results from the classification

tree converges.

ASSUMPTION 2. Suppose that dΘ(·, ·) and dH(·, ·) are metrics in the spaces Θ and H
respectively and moment function m(·; θ, η) is defined in the product space Θ × H endowed

with the corresponding product metric. Consider the class of functions

Fθ,δ = {f(·) = A(·) (m(·; θ′, η)−m(·; θ, η)) , θ′ ∈ Θ, dΘ(θ′, θ) < δ, η ∈ H} .

For each bounded converging sequence πn such that nπn →∞ let Bπn(Fθ,δ) be the Bernoulli-

downsampled Radamacher complexity of class Fθ,δ. We assume that there exists a function

γ(δ; πn, n) > 0 such that Bπn(Fθ,δ) ≤ γ(δ; πn, n) and lim
n→∞

γ(δ; πn, n) = 0 for each δ.

Assumption 2 imposes a high-level condition that establishes the rate of uniform conver-

gence for the empirical moment that is weighted by a stochastic binary sequence. We can

provide the following lower level result that explicitly expresses the bound on the Bernoulli-

downsampled Radamacher complexity for classes of moment functions with low entropy. As

expected, this bound yields a guarantee of uniform convergence with the rate O(
√
nπn) for

classes of bounded functions with low entropy.

LEMMA 1. Suppose that F is a class of measurable functions with envelope F (i.e., for

each f(·) ∈ F , |f | ≤ F ) with covering number N(ε,F , L2(Q)) and uniform covering integral

J(θ,F) = sup
Q

∫ θ

0

√
1 + log N(ε‖F‖Q,F , L2(Q)) dε,

increasing in θ. Then Bernoulli downsampled Radamacher complexity of class F for bounded

converging sequence πn can be bounded as

Bπ(F) ≤ K
J(1,F)R[F (Z)2]1/2

√
nπn

,

for a universal constant K.

Proof:

For a sequence of i.i.d. Bernoulli random variables ξi with parameter π and a sequence of
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i.i.d. Radamacher random variables σi we consider the process

(f) =
1

√
nπn

n∑
i=1

ξi σi f(zi)

By Hoeffding’s inequality this process is sub-Gaussian with the L2(Pn) seminorm

‖f‖n =

(
1

n

n∑
i=1

f 2(zi)

)1/2

.

In fact, note that for f, g ∈ F we can compute the standard deviation metric

σξ,σ(f−g) =

(
Var

(
1

√
nπn

n∑
i=1

ξi σi (f(xi)− g(xi))

∣∣∣∣x1, . . . , xn

))1/2

=

(
1

n

n∑
i=1

(f(xi)− g(xi))

)1/2

.

Suppose that N(ε,F , L2(Pn)) is the L2(Pn)-covering number of the class of functions F .

Suppose that ηn = sup
F
‖f‖n. Then we can apply Dudley’s approach to bound the Orlicz

norm conditional on the observations x1, . . . , xn as∥∥∥∥sup
F

(f)

∥∥∥∥
ψ2

≤ K

∫ ηn

0

√
1 + log N(ε,F , L2(Pn)) dε,

for some constant K. Then let ε∗ = ε/‖F‖n, which leads to∫ ηn

0

√
1 + log N(ε,F , L2(Pn)) dε = ‖F‖n

∫ θn

0

√
1 + log N(ε∗‖F‖n,F , L2(Pn)) dε∗.

Recall that the uniform entropy integral is defined as

J(θ,F) = sup
Q

∫ θ

0

√
1 + log N(ε‖F‖Q,F , L2(Q)) dε,

where the supremum is taken over all measures Q. Noticing that θn ≤ 1, we can bound

Eξ,σ

[
sup
F

(f)

]
≤ K J(1,F) ‖F‖n.

Finally, taking the expectation over the sample and applying Jensen’s inequality allows us
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to evaluate

E

[
sup
F

1
√
nπn

n∑
i=1

ξi σi f(xi)

]
≤ K J(1,F)E[F (Z)2]1/2.

As a result, we can bound the Bernoulli downsampled Radamacher complexity by

Bπn(F) ≤ K
J(1,F)E[F (Z)2]1/2

√
nπn

Q.E.D.

Lemma 1 indicates that the notion of Bernoulli-downsampled Radamacher complexity is

well-defined and can be applied to the low complexity classes of moment functions. Our

next step is to establish that Assumption 2 guarantees the validity of the uniform law of

large numbers within the class of moment functions induced by classification trees.

LEMMA 2. Suppose that function m(x; ·, η) is Lipschitz-continuous for each x ∈ X and

η ∈ H with a universal Lipschitz constant. Under Assumption 2 and the leaf of classification

tree L such that PZ(L) > 0 for functions (3.15) and (3.14),
√
nPZ(L)γ (δ;PZ(L), n) = o(δ)

as n→∞ and each θ ∈ Θ

sup
dΘ(θ′,θ)<δ, η∈H

∣∣∣M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)
∣∣∣ = op(1).

Proof:

To establish the uniform law of large numbers we need to derive a large deviation bound for

sup
dΘ(θ′,θ)<δ, η∈H

∣∣∣M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)
∣∣∣

≤ max

{
sup

dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)

)
,

sup
dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ, η)−ML(θ, η)− M̂L(θ′, η) +ML(θ′, η)

)}
.
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Applying the union bound, we have

P

(
sup

dΘ(θ′,θ)<δ, η∈H

∣∣∣M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)
∣∣∣ ≥ t

)
≤ P

(
sup

dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)

)
≥ t

)
+ P

(
sup
θ∈Θ

sup
dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ, η)−ML(θ, η)− M̂L(θ′, η) +ML(θ′, η)

)
≥ t

)
.

We focus on the first term of this evaluation and the second term can be bounded in an

analogous way.

To do that consider

Eξi,xi

[
sup

dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)

)]

= Eξn,xn

[
sup

dΘ(θ′,θ)<δ, η∈H
Eξ′i,z′i

[
1

nPZ(L)

n∑
i=1

ξiA(xi) (m(xi; θ
′, η)−m(xi; θ, η))

− 1

nPZ(L)

n∑
i=1

ξ′iA(x′i) (m(x′i; θ
′, η)−m(x′i; θ, η))

]]
≤ Eξi,xi,ξ′i,x′i

[
sup

θ∈Θ,η∈H

1

nPZ(L)

n∑
i=1

(
ξiA(xi) (m(xi; θ

′, η)−m(xi; θ, η))

− ξ′iA(x′i) (m(x′i; θ
′, η)−m(x′i; θ, η))

)]
,

where xn = {x1, . . . , xn} and ξn = {ξ1, . . . , ξn} and ξi = 1{zi ∈ L}.

Given that the data are i.i.d., the distribution of pairs of random variables in the supremum

is symmetric. Therefore, we can apply the standard symmetrization argument and use

Radamacher random variables σi to obtain

Eξi,xi

[
sup

dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)

)]

≤ 2Eξi,xi

[
sup

dΘ(θ′,θ)<δ, η∈H

1

nPZ(L)

n∑
i=1

σi ξiA(xi) (m(xi; θ
′, η)−m(xi; θ, η))

]

The bound on the right is the Bernoulli-downsampled Radamacher complexity. Let xn,i(x′i) =
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{x1, . . . , x
′
i, . . . , xn}, where we replace xi in S by x′i. Denote

Q(xn) =
√
nPZ(L) sup

dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)

)
when sample xn is used. Let M̂ ′

L(θ, η) correspond to the empirical moment computed from

sample xn,i(x′i). Then

|Q(xn)−Q(xn,i(x′i))| ≤
√
nPZ(L)

∣∣∣∣ sup
dΘ(θ′,θ)<δ, η∈H

(
M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)

)
− sup

dΘ(θ′,θ)<δ, η∈H

(
M̂ ′

L(θ′, η)−ML(θ′, η)− M̂ ′
L(θ, η) +ML(θ, η)

) ∣∣∣∣
≤
√
nPZ(L) sup

dΘ(θ′,θ)<δ, η∈H

∣∣∣M̂L(θ′, η)− M̂L(θ, η)− M̂ ′
L(θ′, η)− M̂ ′

L(θ, η)
∣∣∣

=
√
nPZ(L) sup

dΘ(θ′,θ)<δ, η∈H

∣∣∣∣ 1

nPZ(L)
A(xi) (m(xi; θ

′, η)−m(xi; θ, η))

− 1

nPZ(L)
A(x′i) (m(x′i; θ

′, η)−m(x′i; θ, η))

∣∣∣∣
≤ 2λBδ√

nPZ(L)
,

where B is the universal Lipschitz constant. Thus, by McDiarmid’s inequality, we have

P (Q(xn)− E[Q(xn)] ≥ t) ≤ exp

(
−2t2∑n

i=1 (2Bλδ)2/(nPZ(L))

)
= exp

(
−PZ(L)2t2

2B2λ2δ2

)
.

Thus, with probability at least 1− α/2, we have

Q(xn) ≤ E[Q(xn)] +Bλδ

√
2 log(2/α)

PZ(L)
.

Given that identical analysis applies to sup
dΘ(θ′,θ)<δ, η∈H

(ML(θ, η) − M̂L(θ, η)), we can combine
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the results to establish that

P

(
sup

dΘ(θ′,θ)<δ, η∈H

∣∣∣M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)
∣∣∣

≥ γ (δ;PZ(L), n) +
Bλδ

PZ(L)

√
2 log(2/α)

n

)
≤ α.

Therefore, it is sufficient for the uniform law of large numbers to hold when αnr → ∞ for

some r > 1 when

sup
dΘ(θ′,θ)<δ, η∈H

∣∣∣M̂L(θ′, η)−ML(θ′, η)− M̂L(θ, η) +ML(θ, η)
∣∣∣ = Op (γ (PZ(L), n))+op

(
1

PZ(L)

√
log n

n

)
.

By the Borel-Cantelli lemma the convergence will also occur almost surely.

Q.E.D.

Lemma 2 ensures that whenever L ⊆ ZkK then the uniform law of large numbers holds for

θ = θk∗ and, as a result, for the Z-estimator. The Z-estimator is constructed by finding a

solution to

M̂L(θ, η̂) = op(1),

producing an estimator θ̂kK that is consistent for θk∗, which is justified given that aK → 0 as

K grows (and thus the moment function provides a higher quality uniform approximation).

We impose conditions on the behavior of the population moment function (3.14) in the leaves

of the classification tree.

ASSUMPTION 3. For any θ0 ∈ Θ and η0 ∈ H there exists δ̄ > 0 such that for all

0 < δ < δ̄ and all (θ, η) ∈ Θ × H such that dΘ(θ, θ0) ≤ δ and dH(η, η0) ≤ δ there exists a

non-singular matrix J(θ0, η0) and linear functional I(θ0, η0)[·] such that

ML(θ, η) = ML(θ0, η0) + J(θ0, η0)(θ − θ0) + I(θ0, η0)[η − η0] +R(δ)

where the eigenvalues of J(θ0, η0) and the norm of I(θ0, η0)[·] are universally bounded for all

θ0 ∈ Θ and η0 ∈ H for each L such that PZ(L) > 0 (where the bound may depend on L) and

R(δ) = O(δ2).

Assumption 3 requires the existence of the local linear approximation for the population
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moment function ML(θ, η). This assumption may be directly verified for specific moment

functions. In general, it will be satisfied whenever either the distribution W or the moment

function ρ(·, ·) is sufficiently smooth.

Our next assumption requires the existence of a “high quality” estimator for parameter η.

ASSUMPTION 4. There exists an estimator η̂ that converges to its population counterpart

η0 in H and for sequence rn →∞ such that sup
θ∈Θ,x∈X

‖rn (m(x; θ, η̂)−m(x; θ, η0)) ‖ = op(1).

This assumption allows us to evaluate

∥∥∥M̂L(θ̂, η̂)− M̂L(θ̂, η0)
∥∥∥ ≤ sup

θ∈Θ,x∈X
‖m(x; θ, η̂)−m(x; θ, η0)‖ 1

nPZ(L)

n∑
i=1

A(xi)1{zi ∈ L},

which ensures that the corresponding term vanishes.

The last assumption is a generalization of the Central Limit Theorem for empirical functions

M̂L(θ, η). This assumption can be verified by directly computing the moments of random

variable A(X)m(x; θ, η) for each fixed η and θ.

ASSUMPTION 5. For each (θ, η) ∈ Θ×H and sequence of leaves Ln such that PZ(Ln) > 0

and the limit PZ(Ln) exists, we can find a positive definite matrix Ω such that√
nPZ(Ln)

(
M̂L(θ, η)−ML(θ, η)

)
d−→ N(0, Ω).

Now we derive the asymptotic distribution for Z-estimator θ̂L for parameter θkK when we

found the leaf L ⊆ ZkK . We assume now that K grows and Assumption 1 is satisfied.

THEOREM 1. Under conditions of Lemma 2 and Assumptions 1-5 for K →∞ such that

aK
√
n/K → 0 and bK

√
n/K →∞ for each L ∈ ZkK√

n

K

(
θ̂L − θ∗k

)
d−→ N(0, J(θ∗k, η0)−1Ω J(θ∗k, η0)−1′)

The result of the theorem follows immediately from Theorem 3.3.1 in Van Der Vaart and

Wellner (1996) applied to the mapping M̂L(·, η0) in light of our assumption regarding the

estimator η̂ taking into account that PZ(L) = O(1/K).
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We define a global estimator θ̂(z) = θS(L) if z ∈ L and the population object

θ∗(z) =

{
θ∗k, if z ∈ L andL ⊆ ZkK ,
∅, otherwise.

Then Theorem 1 is the uniform convergence result that the global estimator over Z converges

to the population object θ∗(z) which defines the heterogeneity structure.

We proved this for a fixed partition S and the leaf of this partition L. The classification tree

uses an independent training sample Dt to implement the partition of Z into rectangular

areas. Theorem 1 specifies the number of sets K (depending on n) in the set system that

define the structure of heterogeneity. The classifier then takes a given leaf L and identifies

whether L ⊆ ZkK for some K if ‖M̂L(θ̂, η̂)‖ = O(aK). The probability of misclassification

approaches 0 given that ‖M̂L(θ̂, η̂)‖ � O(aK) whenever L 6⊂ ZkK for some k. Wager and

Walther (2015) characterize the class of rectangles that result from recursive partitioning

and show that for any rectangular set one can construct a rectangular subset from this

class. Walther et al. (2010) shows that a fixed rectangular subset can be approximated

with probability approaching 1 by finding the maximum of the blocked scan statistic over

rectangles whenever PZ(ZkK) > O(log n/n). As a result, the classifier that generates the

partition S produces consistent subsets ZkK .

4 Monte Carlo Evidence

To showcase the performance of our estimator, we conduct several Monte Carlo experiments.

We first demonstrate the ability of the estimator to successfully identify heterogeneous treat-

ment effects in an experimental setting. We then consider the case of a regression discon-

tinuity design (RDD). We anticipate that these two settings will be fruitful applications of

our framework, and our Monte Carlo is designed to highlight the strengths of our approach

while also illustrating potential tradeoffs that a practitioner faces in real settings.

4.1 Monte Carlo: RCT

We consider the following data-generating process which mimics a typical randomized con-

trolled trial (RCT) design. Let the outcome variable be defined as:

Y = τ(X) ·W + ε, (4.16)
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Table 1: Monte Carlo: Uniform RCT

numObs / (α, k,MSE) Num Leafs MSPE (Forest) MSPE (OLS)

50 1.000 0.275 NaN
(0.01, 13, 1e-07) (0.000) (0.221) (NaN)
100 1.000 0.158 NaN
(0.01, 28, 1e-07) (0.000) (0.152) (NaN)
200 1.000 0.113 0.413
(0.01, 55, 1e-07) (0.000) (0.050) (0.181)
400 1.000 0.074 0.556
(0.01, 100, 1e-07) (0.000) (0.055) (0.074)
800 1.000 0.049 0.415
(0.01, 211, 1e-07) (0.000) (0.037) (0.029)
1600 1.000 0.053 0.287
(0.01, 411, 1e-07) (0.000) (0.031) (0.017)
3200 1.000 0.031 0.212
(0.01, 811, 1e-07) (0.000) (0.030) (0.015)
6400 1.000 0.028 0.152
(0.01, 1611, 1e-07) (0.000) (0.012) (0.012)

where W is an indicator for treatment, X is a vector of observable covariates, and ε is an

idiosyncratic, normally-distributed shock with mean zero and unit variance. The object of

interest is τ(X), the true treatment effect, which may be a function of the observables, X.

We initially draw two discrete X variables, x1 and x2, that are uniformly distributed over the

integers from 1 to 8; this generates 64 distinct subgroups. We consider several specifications

for τ(X) in increasing complexity. In the simplest RCT setting, W is randomly assigned

independent of X. We draw a uniform random variable and set W to one when the draw is

greater than one-half and zero otherwise.

For sake of comparison, we start with the simplest possible case: the treatment effect is

equal to ten for all treated units, and zero otherwise, generating a single treatment effect.

We draw 500 samples of each sample size and generate treatment estimates from a moment

forest, and assign k, α, and MSE through cross-validation against a holdout sample.6 Of

these parameters, α and MSE are always at corner solutions, while k becomes increasingly

larger as the sample size increases. For comparison, we also estimate separately on each

subgroup. To evaluate each approach, we calculate mean squared prediction error (MSPE)

6k is the minimum number of observations in each leaf. α is the minimum proportion of data in each
leaf. MSE is the minimum improvement in MSE after each split.
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in a holdout sample generated from the underlying model; this error captures both statistical

sampling error and underlying model error.

Table 1 shows the results. We highlight two key features. First, Column 2 (Num Leafs)

shows the average number of leafs at the bottom of each moment tree; this is the number of

different treatment effects that the moment forest will estimate. In this case, the moment

forest identifies no meaningful treatment heterogeneity across all Monte Carlo runs, hence

the estimated trees have only a single leaf. The moment forest thus consistently recovers the

true underlying model. Second, the MSPE (Column 3) is a useful baseline against which to

compare the more complex models which follow. In this simple example, the MSPE reflects

only the statistical sampling error, whereas the more complex models we consider next have

a convolution of statistical sampling and model misspecification.

The final column shows the performance of OLS run on each subgroup separately.7 The

difference between the two estimators is driven by the fact that the tree can group together

observations from different X, while the OLS estimator is forced to estimate each subgroup

separately. The inability of OLS estimator to group together similar observations gives it

a large precision penalty at every sample size. This highlights a benefit of using the tree

method even when the true model is a single treatment effect. Finally, note that the moment

forest can estimate a heterogeneous treatment effect even with only 50 observations, whereas

estimating OLS in every subgroup is not even possible without a higher observation count.

To assess the performance of the estimator when we introduce observable heterogeneity,

we next set the treatment effect to ten if the observation has x1 = 1, and zero otherwise,

generating two treatment effects. Table 2 reports the results. The forest initially estimates

too many splits, compared to the one split and two leafs required to fit the true model, but

converges to the true model for n ≥ 1600. The MSPE decreases at a faster-than-parametric

rate while the forest is converging to the true model, and then decreases at a parametric

rate once the true model is obtained. The OLS estimates have larger standard errors than

the moment forest at all sample sizes—even before the forest has converged to the right

model—due to the inability of OLS to group observations that have the same model.

We next consider a case of a sparse treatment effect, where τ(X) = 10 if and only if x1 = 1

and x2 = 1. Otherwise, τ(X) = 0. This is a challenging specification for the estimator, as

7There is no column analogous to “number of leafs” for OLS, because OLS is estimating the same (wrong)
model every time – a model with 64 different treatment effects. The OLS errors thus decline at a parametric
rate in all examples.
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Table 2: Monte Carlo: Group RCT

numObs / (α, k,MSE) Num Leafs MSPE (Forest) MSPE (OLS)

50 6.914 1.447 NaN
(0.01, 1, 1e-01) (2.508) (1.088) (NaN)
100 6.378 0.549 NaN
(0.01, 1, 1e-01) (4.516) (0.436) (NaN)
200 4.052 0.295 NaN
(0.01, 1, 1e-01) (1.342) (0.186) (NaN)
400 2.130 0.144 0.718
(0.01, 12, 1e-01) (0.336) (0.129) (0.107)
800 2.060 0.088 0.591
(0.01, 22, 1e-01) (0.237) (0.047) (0.058)
1600 2.000 0.062 0.415
(0.01, 42, 1e-01) (0.000) (0.031) (0.036)
3200 2.000 0.044 0.288
(0.01, 163, 1e-02) (0.000) (0.022) (0.026)
6400 2.000 0.031 0.201
(0.01, 323, 1e-02) (0.000) (0.017) (0.018)

there are 63 zero treatment effects which may appear to be true effects due to within-group

statistical errors. Table 3 reports the results.

There are several notable features. The true model can be fit with two branches (and thus

three leafs): a split on x1 = 1, and then a split on x2 = 1 in the x1 = 1 branch. At the

smallest sample sizes, the classification tree has a downward bias on the estimated number

of heterogeneous branches. This results from the optimal tradeoff of variance (too few

observations in each leaf) versus bias (not enough partitions of the data to capture the true

number of effects). At sample sizes of n = 400 and above, the tree grows more complex and

quickly converges to finding the true tree structure. The faster-than-parametric decrease in

the MSPE at that threshold reflects the decline in specification error.

It is instructive to contrast the performance of the tree against the OLS estimator. Initially,

OLS cannot estimate the model at all because, unlike the moment forest, OLS requires a

minimum number of observations in each subgroup. For one sample size, n = 400, OLS

has lower MSPE than the moment forest; here, the OLS advantage on specification error

dominates the moment forest’s advantage from the ability to group observations. At all

higher sample sizes, the moment forest dominates, even at n = 800 where the forest is

estimating an excessively complex model. Once the moment forest converges to the correct
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Table 3: Monte Carlo: Sparse RCT

numObs / (α, k,MSE) Num Leafs MSPE (Forest) MSPE (OLS)

50 1.000 1.305 NaN
(0.01, 13, 1e-03) (0.000) (0.107) (NaN)
100 1.000 1.269 NaN
(0.01, 28, 1e-03) (0.000) (0.041) (NaN)
200 1.944 1.184 NaN
(0.01, 1, 1e-01) (1.608) (0.221) (NaN)
400 46.134 0.917 0.718
(0.01, 1, 1e-02) (7.678) (0.257) (0.107)
800 27.980 0.396 0.591
(0.01, 1, 1e-02) (15.855) (0.162) (0.058)
1600 6.844 0.129 0.415
(0.01, 1, 1e-02) (3.028) (0.067) (0.036)
3200 4.838 0.072 0.288
(0.01, 1, 1e-02) (1.068) (0.026) (0.026)
6400 3.628 0.046 0.201
(0.01, 1, 1e-02) (0.776) (0.019) (0.018)
12800 3.044 0.029 0.142
(0.01, 1, 1e-02) (0.215) (0.012) (0.012)
25600 3.000 0.020 0.100
(0.01, 1, 1e-02) (0.000) (0.009) (0.009)
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Table 4: Monte Carlo: RCT with Saturated Sub-Group Heterogeneity

numObs / (α, k,MSE) Num Leafs MSPE (Forest) MSPE (OLS)

50 8.044 12.493 NaN
(0.01, 1, 1e-01) (1.970) (2.404) (NaN)
100 16.078 7.686 NaN
(0.01, 1, 1e-01) (2.475) (2.110) (NaN)
200 31.328 3.724 NaN
(0.01, 1, 1e-03) (3.179) (1.009) (NaN)
400 53.414 1.666 0.718
(0.01, 1, 1e-03) (2.712) (0.329) (0.107)
800 63.456 0.677 0.591
(0.01, 1, 1e-03) (0.751) (0.121) (0.058)
1600 63.988 0.415 0.415
(0.01, 1, 1e-03) (0.109) (0.036) (0.036)
3200 64.000 0.288 0.288
(0.01, 1, 1e-03) (0.000) (0.026) (0.026)
6400 64.000 0.201 0.201
(0.01, 1, 1e-03) (0.000) (0.018) (0.018)
12800 64.000 0.142 0.142
(0.01, 1, 1e-03) (0.000) (0.012) (0.012)
25600 64.000 0.100 0.100
(0.01, 1, 1e-07) (0.000) (0.009) (0.009)

model, it generates far more precise estimates than OLS due to its ability to group together

observations with similar treatment effects.

Finally, we consider the other extreme complex case, where each subgroup has a different

treatment effect. We modify the data-generating process for τ(X) to be:

τ(X) = x1(1 + (x2 − 1)). (4.17)

This results in 64 treatment effects as a combination of x1 and x2. Table 4 reports the results.

Note that the optimal k is set to 1, which was the lower bound in the cross validation

search, for all sample sizes. This is driven by two factors. First, setting k higher makes

it mechanically impossible to cut the data enough times to reproduce the number of true

treatment effects. For example, when k = 25, the sample size must be at least n = 25 · 64 =

1600 before the tree can even potentially match the true set of underlying treatment effects.

Second, all possible interactions of the two dummy variables have true treatment effects,
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so this design will not experience an over-fitting problem. The optimal size of the tree is

controlled here by the acceptance criterion, which becomes more lax as the sample size grows.

At small sample sizes, the tree cannot grow complex enough to estimate the true model,

leading to considerably higher prediction error than the earlier models. As above, MSPE

converges at a faster-than-parametric rate until the moment forest recovers the true model

at n = 1600. Parametric error rates obtain after that point, reflecting the independence of

the tree estimation and the estimation of treatment effects, as desired.

The OLS estimator in this case has a performance as good or better than the moment

forest, for all sample sizes for which it can be estimated. This is expected, because the OLS

estimator in this case is the true model. Once the tree has found the true model, prediction

errors are (mechanically) identical, again highlighting the independence of the honest tree’s

predictive performance from the model selection step.

An additional advantage of the moment forest over the OLS estimator is that we did not

need to specify that the true model had a different treatment effect in each subgroup. The

OLS estimator had better performance than the moment forest only at small sample sizes

and only when it was prespecified to either the true model (Table 4) or close to the true

model (Table 3). In a real empirical scenario, a researcher using the OLS approach is in

many cases unlikely to begin with a model close enough to the true model to outperform the

moment forest at any sample size.

4.2 Monte Carlo: RDD

Our second set of Monte Carlo experiments uses a regression discontinuity design (RDD).

RDD works by leveraging some known threshold, c, on a so-called running variable which

functions as an assignment mechanism: to the left of the threshold, units do not receive

a treatment, while those to the right of the threshold do. Assuming that units cannot

manipulate their running variable, the discontinuous treatment on either side of the threshold

can be used to estimate the causal effect of a treatment on outcomes, as sorting into the

control or treatment groups is as “good as random” under the maintained assumption.

Examples of RDD settings include the assignment of educational treatment on the basis of

test scores, and means-tested assignments of welfare, unemployment insurance, and disability

programs on labor supply.

While the RDD setting has broad empirical appeal as a method for obtaining “credible” esti-
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mates of causal effects, the researcher still has to make a number of important assumptions.

Among those assumptions are classifying units into different groups where the researcher

may think that treatment effects vary. For example, the treatment effects of magnet schools

on student achievements may vary in size depending on the income of the student’s parents.

For low-income students, the effects may be much larger than for high-income students. The

researcher may split the sample into two groups and estimate separate RDD regressions on

each group, producing two treatment effects. In general, this search of the model specifica-

tion process will fail for the reasons discussed above. Our Monte Carlo illustrates how the

present estimator can circumvent this problem by constructing a set of splits of the data

without intervention of the researcher. A second holdout sample is then used to produce

consistent estimates of the treatment effect within each sub-group.

We modify the above data-generating process by augmenting the experimental treatment to

be a function of a running variable:

Y = τ(X) ·W (R) + ε, (4.18)

where W (R) is now an indicator function that is equal to zero to left of a cutoff value R̄,

and one to the right:

W =

0 if R < R̄,

1 else.
(4.19)

This generates a sharp RDD, as opposed to a fuzzy RDD where the probability of treatment

is positive everywhere but jumps discontinuously at R̄. We draw R from uniform U [0, 1].

The object of interest is τ(X), the treatment effect as a function of the vector of covariates.

We allow the treatment effect to depend on three covariates as follows:

τ(X) =

5 if X2 < 0.67,

−2 else.
(4.20)

We augment the treatment effect by subtracting 2 if X3 = 1 and adding 5 if X3 = 2. This

generates six total treatment effects across the covariate space.

The problem facing the econometrician is deciding where to assign different treatment effects.

It is possible that one could guess the data-generating process above, but it is both unlikely

and statistically undesirable for the reasons outlined above. Our estimator circumvents this

process by estimating the partitioning of the X space in a first stage. In a second stage,
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Table 5: Monte Carlo: RDD

Count Count
numObs Dim(τ) Discrete Continuous Mean X2 MSPE

500 6.587 3.207 2.380 0.539 0.918
(0.785) (0.480) (0.772) (0.252) (0.393)

1000 6.107 3.113 1.993 0.671 0.669
(0.449) (0.317) (0.337) (0.027) (0.303)

2000 6.133 3.087 2.047 0.675 0.497
(0.499) (0.281) (0.291) (0.026) (0.273)

4000 6.040 3.020 2.020 0.671 0.321
(0.280) (0.140) (0.140) (0.014) (0.187)

8000 6.027 3.013 2.013 0.670 0.246
(0.229) (0.115) (0.115) (0.013) (0.213)

16000 6.000 3.000 2.000 0.669 0.198
(0.000) (0.000) (0.000) (0.006) (0.174)

we estimate treatment effects using the standard RDD approach outlined in Imbens and

Lemieux (2008) and Lee and Lemieux (2010), using a local-linear regression around the

threshold. We control the window width around the threshold using cross-validation, and

we report results for various choices of that window width below.

As above, we generate 500 draws of each sample size and report an out-of-sample mean

squared prediction error for each sample size, which we constructed by generating data

using the true (known) generating process and using the estimated tree and associated RDD

models to compute predicted treatment effects. We then sum the squared difference from

the true value, divide by sample size, and take the square root. Table 5 shows the main

results for the model above when using all the data in sample on either side of the treatment

threshold (h = 0.5); the threshold for improvement in the tree MSE is set to 0.1.

First, we note that the model obtains consistent estimates of the number of treatment effects

(true value: 6), the number of discrete splits (true value: 3), the number of continuous splits

(true value: 2), and the level at which the second covariate, X2, splits the sample (true

value: 0.670). This convergence to the true model is rapid—at the sample size of 16,000

there is no appreciable variation across Monte Carlo experiments in the structure of the

estimated tree. At that point, the estimator essentially recovers the true tree without error,

as would be expected given the faster-than-parametric rate of convergence of the first stage

of our estimation. The column labeled RMSPE reports the root mean squared prediction
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error on out-of-sample data. The RMSPE is the composition of two sources of error: errors

in the specification of the classification tree, and errors arising from sampling error within

each leaf. For smaller sample sizes, the rate of decline in the RMSPE is driven by both

errors. As the tree converges at faster-than-parametric rates, so does the prediction error.

Beyond n = 8000, when the tree is recovered with negligible error, the RMSPE is almost

completely due to classical sampling error. At that point, the rate of convergence reverts to

the parametric
√
n rate.

The smaller sample sizes show some regularities, particularly with respect to bias. For one,

our procedure tends to estimate too many treatment effects at smaller sample sizes, primarily

of the continuous variety. This also introduces bias in the estimate of where X2 is split. These

biases disappear rapidly as the sample size grows.

4.3 Continuous Treatment Effects

An extension of our econometric results above considers the case where K is infinite. To

demonstrate the small sample performance of our estimator in such a setting, we perform

a Monte Carlo experiment in a univariate RDD setup with the following function for the

treatment effect:

τ(xi) = sin(4πxi), (4.21)

where xi is a unidimensional covariate distributed uniformly on the unit interval. As before,

we generate a U [0, 1] running variable and assign the treatment if the running variable is

above one half. We estimate by splitting the sample in half, first fitting the tree on the first

sample, and then fitting the estimates within each leaf on the second sample. We impose that

α = 0.1 and choose the minimum number of observations in each node via cross-validation.

This guards against the possibility of growing the number of splits faster than the number

of observations, which by extension ensures that each leaf will have an infinite number of

observations in the limit, while also balancing finite-sample bias and variance.

4.4 No Error Term

We begin by running our Monte Carlos with the variance of the idiosyncratic term set to

zero. This captures the effect of pure approximation error.

The left panel of Table 6 reports the results from this experiment. As the dimension of

τ shows, the model fits an increasingly complex model to the data. This also results in a
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Table 6: Continuous Treatment Effects

Without Error With Error
Uniform x Normal x Uniform x Normal x

n Dim(τ) RMSPE Dim(τ) RMSPE Dim(τ) RMSPE Dim(τ) RMSPE

2000 15.548 0.137 19.560 0.148 11.942 0.373 7.282 0.360
(0.976) (0.006) (0.697) (0.010) (0.755) (0.052) (0.599) (0.046)

4000 24.520 0.090 37.156 0.081 12.222 0.298 14.190 0.292
(1.044) (0.004) (1.254) (0.004) (0.667) (0.033) (0.806) (0.038)

8000 30.332 0.071 64.148 0.046 16.880 0.361 14.306 0.235
(0.823) (0.002) (1.353) (0.001) (0.840) (0.033) (0.770) (0.024)

16000 40.244 0.057 113.440 0.028 24.764 0.193 22.666 0.197
(1.339) (0.002) (1.905) (0.002) (1.168) (0.019) (1.157) (0.019)

substantial decrease in mean squared prediction error.

Figure 1 shows the fit of the moment tree in this case. The red line shows the true model,

while the blue line shows the moment tree estimate, and the dashed lines the 95% confidence

interval. First, the general fit is excellent across the entire range of the function. There is

a small bias evident at the peaks and troughs of the sine function, where the derivative is

near zero. In smaller samples, the estimator fits a constant to these neighborhoods, which

leads to some minor underfitting. This bias disappears in the large samples. By n = 16000,

the underlying function is recovered uniformly and with nearly no variance.

4.5 With Measurement Error

We now allow the error term to be drawn from a standard normal. The right panel of the

table shows the results. The trees are simpler in this case, as the estimator has to balance

variance against bias. The RMSPE is substantially larger, although it rapidly shrinks at

higher sample sizes. Figure 2 shows the resulting estimated function across the domain of

X.

4.6 Normally-Distributed Data

In this section, we show that the method works well even when data is not distributed

uniformly across the domain of interest. We draw x from a normal distribution with mean

one-half and standard deviation equal to 0.25, and truncate at zero and one, we can observe

the effect of having non-uniformly distributed data across the interval. Figure 3 plots the
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Figure 1: Estimated and True Treatment Effect Function, Without Error
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n = 16000
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Notes: Each figure plots the mean estimated (blue) and true treatment effect (red) functions, τ(xi), for
various sample sizes. The minimum number of observations in each leaf, k, was chosen via cross-validation.
The data-generating process is a regression discontinuity design with uniformly-distributed xi. The dashed
lines represent the 95 percent confidence interval. Results were computed using 500 Monte Carlo experiments.
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Figure 2: Estimated and True Treatment Effect Function, With Error and Optimal k
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n = 16000 k = 450
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Notes: Each figure plots the mean estimated and true treatment effect function, τ(xi), for various sample
sizes. The minimum number of observations in each leaf, k, was chosen via cross-validation. The data-
generating process is a regression discontinuity design with uniformly-distributed xi. The dashed lines
represent the 95 percent confidence interval. Results were computed using 500 Monte Carlo experiments.
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Figure 3: Estimated and True Treatment Effect Function, Normally-Distributed Data
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Notes: Each figure plots the mean estimated and true treatment effect function, τ(xi), for various sample
sizes. The minimum number of observations in each leaf, k, was chosen via cross-validation. The data-
generating process is a regression discontinuity design with truncated normal-distributed xi with mean 0.5
and standard deviation 0.25. The dashed lines represent the 95 percent confidence interval. Results were
computed using 500 Monte Carlo experiments.
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estimated functions and the 95 percent confidence bands generated over 500 Monte Carlo

iterations. It is immediately apparent that the estimator is best at capturing the variation in

the underlying treatment effect function where the data is most frequent. The two tails have

more constant approximations, which hones in on the true function rapidly as the sample

size increases. This result gives confidence that the method is still able to consistently and

accurately recover the true function in reasonably-sized data sets, even when the data density

is unevenly distributed.

5 Empirical Application

This section presents an illustrative example of our estimator in an empirical regression dis-

continuity context with treatment heterogeneity. We examine the impacts of India’s large

scale rural road construction program, under which over 115,000 new roads were built from

2000 to 2015, on the emergence of new bus routes to villages. The program’s implementa-

tion rules dictated that villages were to be prioritized for new roads based on population

thresholds, such that villages with populations just above 500 or 1000 were about 20% more

likely to be treated than villages with populations just below those thresholds. Asher and

Novosad (2018) exploit these discontinuities in a fuzzy regression discontinuity framework to

evaluate the impacts of new roads. Because we are focused on the application of the method,

we forgo the usual specification checks and assume that the assumptions required for causal

identification are upheld; see Asher and Novosad (2018) for more details.

We focus on bus routes both because they are important economically, and because they

showcase the challenge of selecting a good specification for examining treatment heterogene-

ity. Access to bus routes is a critical determinant of individuals’ ability to take advantage of

new rural roads, as few individuals in remote Indian villages own vehicles. Recent research

has suggested that rural demand may not be sufficient to support the provision of bus ser-

vices, which may mitigate the value of new roads Raballand, Thornton, Yang, Goldberg,

Keleher, and Müller (2011). Bryan, Chowdhury, and Mobarak (2014) find very large returns

to subsidizing bus travel to nearby cities, so much that their intervention is being scaled up

into a major anti-poverty program in Bangladesh. Given the high cost of road construction,

a better understanding of the conditions under which road provision leads to an expansion

of actual transportation options would help policymakers maximize the impact of infrastruc-

ture investments. The typical bus in the Indian context is a privately operated vehicle that

tightly fits fifteen to twenty people.
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We choose this example because geographic variables are natural candidates as predictors for

heterogeneity in the appearance of new bus routes, and such variables are easy to represent

visually. The representation and visualization of heterogeneous treatment effects in random

forest settings is otherwise challenging, because each unit has a distinct treatment effect; we

avoid these challenges by choosing variables that can be easily represented in a heat map.

A policy-focused analysis could saturate the model with an arbitrary number of location

characteristics, even with more characteristics than observations; we leave this to future

research.

A priori, one could predict that distance to towns plays a key role in whether a village with

a new road also gets serviced by a bus route. However, the multidimensional nature of the

town and highway network forces the econometrician to make many arbitrary decisions in

estimating treatment heterogeneity. Are distance effects linear, or do they take a specific

non-linear form? Is heterogeneity in distance to small towns equivalent to heterogeneity in

distance to large towns? What town sizes should be used? The most common approach is

to collapse the multidimensional town distance matrix (i.e. town size x distance to town)

into a single scalar market access variable (e.g. Donaldson and Hornbeck (2016)) but this

is not guaranteed to be the empirically correct functional form. Our estimator allows for

the discovery of a complex structure of treatment heterogeneity from a finite sample, while

maintaining correct standard errors.

We combine data from the 2001 and 2011 population censuses on bus routes and other public

goods in the universe of Indian villages, with administrative records from the national rural

road construction program, which provides initial access conditions and road completion

dates. Baseline covariates are measured in 2001 before any roads under the program were

built. Data and sample construction are described in detail in Asher and Novosad (2018).

We implement a fuzzy regression discontinuity estimator that identifies the impact of new

roads by examining changes in outcomes across the population treatment thresholds. We

use a local linear estimator within the optimal population bandwidth, following the recom-

mendations of Imbens and Lemieux (2008) and Imbens and Wooldridge (2009).

The basic two stage IV estimator takes the form:

Yv,j = γ0 + γ1newroadv,j + γ2(popv,j − Tj) + γ3(popv,j − Tj) ∗ 1{popv,j ≥ Tj}+ υv,j, (5.22)

where Yv,j is the outcome of interest in village v in state j, Tj is the population eligibility
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threshold in state j, popv,j is village population measured at baseline and υv,j is an error

term. newroadv,j is instrumented by an indicator variable that takes the value one for villages

above the population threshold. γ1 captures the causal effect of being treated with a new

road, for a village with population at the treatment threshold T . The sample consists of the

set of states that followed program implementation rules regarding population thresholds.8

5.1 Results

As a preliminary step, we present standard regression discontinuity estimates on the impact

of new roads on bus routes. Column 1 of Table 7 reports the first stage estimate, where the

outcome variable is an indicator that takes the value one if a village received a new road by

2010. Villages just above the treatment threshold are 20% more likely to receive a new road.

Column 2 shows the IV estimates; the causal effect of a newly-built road to a rural village is

to increase bus availability by 17 percentage points, a statistically significant estimate at the

5 percent level. Figure 4 shows a graphical representation of the first stage effect of crossing

the population threshold on the probability that a village gets a new road (left panel) and

the reduced form form effect of the same threshold on the presence of a bus route by the end

of the sample (right panel). These tables and graphs describe an average treatment effect

across the entire sample, but there may be heterogeneity in the correctly specified model, or

some specification error. To assess whether we can improve on this estimate by accounting

for unobserved heterogeneity, we next run the moment forest estimator on the same data.

Table 7: Regression Discontinuity Estimates

(1) (2)
Road Priority 0.196***

(0.019)
New Road 0.172**

(0.086)
Population * 1(Pop < Cutoff) 0.019 -0.022

(0.042) (0.040)
Population * 1(Pop ≥ Cutoff) 0.077* 0.001

(0.042) (0.043)
N 9996 9996

Standard Errors in Parentheses

8Different states used different implementation thresholds, as described in Asher and Novosad (2018).
The sample includes villages from Chhattisgarh, Madhya Pradesh, Orissa and Rajasthan.
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Figure 4: Graphical Regression Discontinuity
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We consider heterogeneity on several dimensions; the Z vector includes state fixed effects;

distances to the nearest cities with 10,000 people, 100,000 people, and 500,000 people, re-

spectively; and an indicator for existence of a bus route in 2001, prior to the road-building

program.9

We follow the procedure described in Section 2. Within each of 50 bootstrap samples, we

grow 50 moment trees. To grow each tree, we sample with replacement (from the underlying

bootstrap sample), and then partition the data into two subsets. We estimate the structure

of the tree on the first subset, and estimate the RDD effect within each leaf of that tree in

the complementary subset of the data.10

To illustrate what is happening in our estimation, it is useful to consider the output of a

single tree. The structure selected for a single tree (generated on the first subset of the data)

may look like the tree depicted in Figure 5.

Each binary split in the graph partitions the remaining data into two subsets. The cell

beneath each leaf shows the treatment effect, standard error and number of observations in

the leaf. In this tree, there are statistically significant effects in two of the leaves. The first is

9Bus routes can exist at baseline in villages without paved roads, because some of these villages could be
reached on dirt roads, though not necessarily in all seasons.

10As in the Monte Carlo, we set the stopping criteria for growing the tree (k, α, and MSE) using cross-
validation. We used a holdout sample of 1,000 observations to calculate prediction error. Because the model
selection step has much faster convergence rates than the estimation step, we used unequal sample sizes; we
grew trees using 25% of the data and estimated treatment effects on the remaining 75% of observations. In
principle these sample sizes could also be optimized with cross-validation.
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Figure 5: Sample Tree (Structure Subset)
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for the states Orissa and Madhya Pradesh (MP), in villages that previously did not have bus

routes; the estimated treatment effect is a 38.2 percentage point increase in the probability of

receiving a bus route after building a road. The second effect is a more complex splitting of

the data: for the state Chhattisgarh, when the nearest city of 100,000 people is less than 108

kilometers away, and a bus route did not previously exist, the treatment effect is estimated

to be 59.1 percentage points with a standard error of 39.6 percentage points, indicating this

effect is marginally significant at the 10 percent level. For comparison, a baseline RDD on

the estimation sample for this tree finds a treatment effect of 28.8 percentage points with

a standard error of 11.6 percentage points.11 The presence of prior bus routes is associated

with low and statistically insignificant treatment effects, following the intuition given that it

is not possible for the outcome variable to grow in this subsample, though it could decline.

Note that the tree did not split on distance to the largest size of town, indicating that in

this subsample it was not a key predictor of treatment effect sizes.

This tree from the first sample subset is only used for its structure; the standard errors are

11This is different from the grouped RDD effect on all the data because this is a bootstrap sample and we
are estimating the RDD only on the subset of the data not used to estimate the structure of the tree.
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Figure 6: Sample Tree (Pruned Estimation Subset)
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not correct because they do not take into account the process of selecting where to split

the data. The second tree, estimated on the remaining subset of the sample, generates

unbiased treatment effects. The second tree is estimated using the structure defined by the

first tree above, but we “prune” leafs where first stage regression discontinuity estimates do

not produce valid estimates; this could be because the first stage F statistic is too low, or

because there are not enough observations in a given leaf of the second sample to run the

estimation at all. We combine these pruned leafs at the next highest level of aggregation.

The second tree is depicted in Figure 6.

The second tree finds an even stronger effect in Orissa and MP in the absence of prior

bus routes. The two leaves with prior bus routes are now combined into one; there is still

no significant effect. All leafs below the Rajasthan/Chhattisgarh split are also combined,

resulting in a more precise joint estimate for villages within 108 km of cities with more than

100,000 people in these two states.

We highlight two outcomes of this process. First, the average treatment effect in this sub-

sample of 0.288 is a composite estimate mixing together the weak and heterogeneous effects

effects in Rajasthan and Chhattisgarh with the strong and precise effects in MP and Orissa,

along with the zero effects in places already on bus routes. Second, even if the researcher

had the intuition that distance to cities would be more important in the states with lower

population density (Chhattisgarh and Rajasthan), this specific model is not something that
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could plausibly have been pre-specified: the lowest leafs of the tree are based on splits of a

continuous variable interacted with two other discrete variables. Even if such a specification

was stumbled upon, the standard errors would not correctly account for the process of find-

ing this specification. Note that this is a single tree out of 2,500 that are used to produce

the final estimates, and different splits emerge in other subsamples.

We estimate the full bootstrapped moment forest model under two sets of possible splitting

variables. We first restrict each tree to only split on the state indicators. Under this restric-

tion we obtain four different treatment effects: 0.292 (s.e. 0.157) in Orissa, 0.232 (s.e. 0.126)

in Chhattisgarh, 0.301 (s.e. 0.147) in MP and -0.069 (s.e. 0.086) in Rajasthan. The first

three are statistically different from zero at the 5% level. These results contrast with the

baseline homogeneous estimate in two important ways. First, the moment tree estimator

finds statistically significant effects for only 7389 of the 9996 sample villages. Second, it

estimates three different effects within those 7389 villages. The baseline estimate combines

both kinds of heterogeneity, resulting in a lower point estimate with a larger standard error.

Figure 7 shows reduced form and first stage binscatter estimates separately for the set of

states with significant treatment effects and the complementary set without. The figures

make clear that the sample was split based on treatment effect size, not based on the size

of the first stage; the insignificant sample has an even larger first stage than the significant

sample.

We next estimate the full moment tree model, allowing for continuous variables to enter

the tree, specifically the distances to towns of different sizes. The estimator finds 3,525

statistically significant unique treatment effects across 9,991 villages. The treatment effect

for each village is a weighted mean of treatment effects in every leaf in which that village

appeared across 2,500 estimated moment trees. A density plot of the range of estimates is

provided in Figure 8; the vast majority of estimated effects range from 0 to 0.4. This density

plot understates the incredible richness of the estimator, however, as can be seen by plotting

the distribution of treatment effects across space.

Figure 9a shows a heat map of treatment effects for all sample villages, both treated and

untreated. Treatment effects are divided into deciles, where the black areas show the smallest

treatment effects, and the bright red areas show the largest. State effects are plainly visible;

as above, treatment effects are smallest in Rajasthan and largest in MP. Urban proximity

stands out as well; the major cities of Bhubaneswar, Gwalior, Indore, Bhopal and Jabalpur

stand out as places where nearby connected villages are most likely to benefit from new bus
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Figure 7: Graphical Regression Discontinuity
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Figure 8: Density Plot of Treatment Effects
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routes. Proximity to smaller cities does not appear to drive substantial variation in treatment

effects, and Rajasthan and Chhattigarh (where treatment effects are respectively insignificant

and marginally significant) do not show strong heterogeneity in urban proximity. Figure 9b

presents another heatmap of treatment effects, this time for the subset of villages with

statistically significant treatment effects (all of them positive). The figure uses a different

gradient scale to highlight the substantial heterogeneity even among villages with large and

significant treatment effects. The proximity effect is clearly non-linear—treatment effects

become smaller at extremely close proximity to towns, perhaps because even villages with

very poor quality access roads were already connected to bus routes in these periurban areas.

We can draw two conclusions from this exercise. First, treatment heterogeneity is substan-

tial; many places have double the grouped treatment estimate, and many places have zero

estimates. Second, the partitioning of the data is complex and nonlinear even with only a

handful of variables, highlighting the fact that it is highly unlikely anyone would ever be

able to guess that this was the true model, even though the pattern of treatment effects is

sensible and can be understood ex post.

Trying to achieve a similar result by saturating a conventional regression specification would

not be possible. There is no obvious way to cut the continuous variables; without some kind

of grouping of similar estimates, one would quickly run out of data since there are literally

an infinite number of potential cuts. A fully nonparametric approach would be fully general,

47



Figure 9: Heatmap of Treatment Effects

(a) All Villages

(b) Statistically Significant Villages
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but converges so slowly that it is unlikely to be a productive path for practitioners with

finite data sets. Our estimator provides a middle path that allows for arbitrary structure

while retaining the efficiency properties of pre-specified models.

6 Conclusion

We have presented a two-stage estimator for the problem of assigning statistical models to

disjoint subsets of a sample. Leveraging recent results on the estimation of honest trees, we

split the sample into two random halves. The first half is used to estimate the classification

tree assigning observations to models. The second half is used to estimating parameters

of those models within each assignment. Splitting the data in this fashion allows us to

derive econometric results that the tree is consistently estimated, converges to the truth at a

faster-than-parametric rate, and therefore can be ignored when constructing standard errors

for the estimates in the second stage. Our method applies to all empirical settings where

the researcher has reason to believe that the estimated model may vary across units of the

sample in some observable fashion.

We show a simple application of our estimator to a roads building project in India. Using a

bootstrapped moment forest, we estimate a model that produces 3,525 statistically significant

treatment effects spread across 3,603 villages. The results highlight the heterogeneity in

treatment effects found using a regression discontinuity framework across these villages,

including the importance of proximity to large urban spaces and the variation across Indian

states. In future work, we plan to expand on these preliminary results and bring in a micro-

level data set at the household level to match with the village-building program. This will

let us to test for observable heterogeneity at a much finer level than our current data allows

for.
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