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GOING FOR A WALK IN THE (RANDOM) FOREST




RESEARCH OBIJECTIVE

= Machine Learning (ML) methods have made several recent inroads in econometrics

=  One key area of research has been around model selection

= Many ML methods can be conceptualized as having two steps:
= [Selection] What goes into the model?

= [Estimation] What are the parameters post selection?

= Chernozhukov and co-authors have expanded both theoretical foundations and applications of ML:

= Double LASSO for selecting instruments in high-dimensional IV

= Orthogonalization of machine learning plug-in methods for inference

= This paper: expand the methods of Nekipelov, Novosad, and Ryan (2020) to semiparametric domains



BASIC IDEA

= NNR considered the problem of how to assign parameters to observations in the following moment model:
Ely —m(X,0(2))] =0

= Here the m is a moment function known up to a finite vector of parameters, 8, Y are outcomes, X are observable
covariates, and Z are observables that govern the assignment of parameters to observations
= We proposed a moment forest for estimating this problem

=  Moment forest is an ensemble of moment trees
= Moment trees are generalization of regression/classification trees with moment functions in each “leaf”
= Generates a recursive partitioning of the Z space; in each partition, solve the moment above

= We previously proved consistency and asymptotic normality of this estimator

= Here, we extend that analysis to incorporate homogeneous parameters



DIGRESSION ON TREES

®=  Decision Trees are nested binary partitions
= Grow through a greedy search at each node
= Each node has two potential children

= Keep splitting the sample until reach some limit (hyperparameters):
=  Number of observations in each split
=  Minimum level of improvement in objective function

=  Maximum depth of tree
®=  That controls the complexity of the tree
®  Use cross-validation to determine hyperparameters
= Use honest trees: one sample to grow the tree structure, one sample to fill in values

= Universal approximators



DIGRESSION ON TREES

®= Trees have some cool properties

= Firstis that they are universal approximators, but they work in the characteristic space (X)

m  Start off with simple models and build complexity

= We do not have to specify the relationship between outcomes and explanatory variables

= But, unlike usual nonparametric estimators, you have a parametric function conditional on tree structure

= Under some regularity conditions, you can actually achieve faster than parametric rates of convergence in first step
= This means that asymptotics are governed by second step estimator, which is really nice

= Random forest extension is to take iid resamples and grow many trees, average together -> also, caps run time with
complexity

= Random part is not only sample, but which covariates you split on -> reduces link across trees -> improve variance of
estimates (in limit down to irreducible error!)



REVIEW OF MOMENT FOREST CONSTRUCTION

= Moment Forest is composed of iid resampled Moment Trees
= A Moment Tree is a rectangular partitioning of the Z space

= Estimate a separate moment in each partition

= Partitions are found by greedy search at each node

= Tree growth is stopped when convergence criteria are met (number of observations in each child node, minimum
objective function improvement)



PARTIALLY HOMOGENEOUS MODELS

We want to allow for the following:

E [Y —m (X; g, é(Z))] —0

Where the parameter vector may include components which are homogeneous across the entire domain of Z

= At one extreme is the standard GMM model, other is NNR

Why would we do this?

= Efficiency (variance) versus flexibility (bias)

= Imposing (correctly) homogeneity helps improve the precision of our estimates

=  The issue is that we don’t know which parameters are heterogeneous...



ESTIMATION METHOD

=  We extend NNR to allow for partially homogeneous parameters
= Sketch of idea:

= Set hyperparameters of moment forest using cross validation

= Grow an unrestricted moment tree

Test for homogeneity parameter-by-parameter across all terminal leaves, correcting for multiple hypothesis testing using Holm-Bonferroni
= Imposing homogeneity for parameters that fail to reject null, estimate a nested fixed point:
= |n an outer loop, search for homogeneous parameters

= |naninnerloop, condition on those and grow an (optimal) moment forest



TESTING

The Holm-Bonferroni procedure is a method for controlling the family-wise error rate in a multiple hypothesis testing setting
= Control Type | errors (rejecting the null when it is true)

= Cannot control Type Il errors in frequentist settings (that I'm aware of; there are “agnostic test statistics” that make an attempt...?)

Grow an unrestricted tree with v final splits

Run constrained estimation imposing that Hl’fgft = er'cight for all splits simultaneously (akin to SUR)

Compute all the p-values under hypothesis that parameters are equal using GMM distance metric test (or Wald3)

Sort from lowest to highest value, reject null and continue to next highest p-value if:

a

P<—
K S m—k+1

Otherwise, stop testing



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

= First, we view our model as an “overparameterized” semiparametric model

= The conditional moment function depends on an unknown function of the covariates, n(-)

= However, there exists a representation n(x) = f(t/)(x)) where Y (x) is a known function of the covariates and f is
an unknown low-dimension function

= Implies that model without constraints is correctly specified, as is any correct reduction in complexity

= Example: if h(x) = {11 (x1), P2 (x2), ..., P (xk)}, then the model n(x) = g(¥h1(x1), x5, ..., Xk) is correctly specified,
where g is unknown



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

= Second, we use the moment forest as a classifier to determine target function n(-) with reduced complexity
= Moment forest is a uniformly convergent universal approximator
= Can verify that moment functions fit on the low-dimensional function almost everywhere

= With guarantee on the rate of convergence of the moment forest, correct specification of model established with
probability that is exponential in convergence rate

= This is a consequence of standard exponential inequalities for sample means

= Subtle point: we may select inefficient models, but we will (essentially never) select incorrect models



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

= Third, given correct specification, model becomes a standard semiparametric model

= Under independent splitting of the sample between classification and estimation, nonparametric component can be
recovered at the specified rate

= Simultaneously, convergence of parametric component can be established conditionally on the nonparametric
component (as is standard in semiparametric theory models)

= |n parametric models, this means we can obtain Vn convergence!



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

= Fourth, estimator for parametric component will generally depend on error in estimation of nonparametric part
= To restore parametric rates of convergence on parametric component, we orthogonalize the model

= |n linear settings, this is the standard “partialling out” of the nonparametric components

®= |n nonlinear models, a linear offset can be created using a pilot estimate for the target parameter

=  Moment models that are linear in parameters can be orthogonalized by residualizing variables corresponding to
homogeneous components and subtracting their mean conditional on the nonparametric components



ECONOMETRIC THEORY: DETAILS

The data is characterized by the joint distribution of random variables (X,7) with X € X € R%
and Z € Z c R% that may share some of the components. The econometric model is defined by
the moment function p(-;-) : X x RP — RP. The model is parameterized by the general functional
parameter 1 : R® — RP, such that each component 7n;(-) is a function mapping from R or its subset
to R belonging to a separable space endowed with Lo(R¢) norm. Without loss of generality we set
the dimension of the moment vector p(-;-) to be equal to the dimension of the parameter vector 7.

The conditional moment linking the functional parameter to the distribution of the data is

Elp(X 5 n(-))|Z = 2] =0. (2.13)



ECONOMETRIC THEORY: DETAILS

ASSUMPTION 1. 1. There exists a partition X = (X', X?), a parametric function go(-;6), a

parameter 8, € © C R*, and an unknown function ho(-) € Ho where Hy is a separable space
with Lo (R®) norm such that

Elp (X?%; 90(X":00), ho(-)) | Z = 2] = 0.

2. For each j = 0,...,p there exists a family of models indexed by n'(-) = (g7 (:167), h'(-))
defined by parametric functions ¢’ (-;-) indexed by ¢’ taking values in a convexr compact set

© C RJ and unknown functions h’(-) belonging to a separable space H’ with Lo(R®) norm
such that

(a) For each fived partition X = (X, 2%, X?*) with a single element x* model indexed by
j + 1 implies model indexed by j. In other words, if there exist (YU TV* RUTD*(.)) such
that

Elp (X2*; g(X1*,2";00+0%), A0+ ()} | Z= 2] =0.

then there necessarily exists (67*,h?*(-)) such that
Elp (X**,2*; ¢/ (X™;67%),h7*(")) | Z = 2] = 0.

(b) Model go(-;60) ho(-) belongs to the family of models above indexed by k.



ECONOMETRIC THEORY: DETAILS

ASSUMPTION 2. 1. Almost everywhere on z € Z E[p(X ; n(:))| Z = 2| is Frechet-differentiable

in each n'(-) fori=1,...,p and the Jacobian matriz J(z) with elements
0 .
Jij(z) = —E[p'(X ;s n(-)) | Z = =
(2) o P (X)) ]

is non-singular with bounded eigenvalues and its determinant does not change sign. More-
over,the corresponding Hessian exists and its universally bounded.

2. For each h(-) € H, p(X; 8, h(-)) is Ly,-Lipschitz continuous in 8 with L, < L < oc.

3. For each 0 € © with probability 1 p(X ; 0, h(Z)) is w-Hélder continuous in h(-), i.e. there exist
constants H and w such that for each hi(-), ha(:) € H

lp(X 5 0, ha()) = p(X5 0, ha()) || < HI[hy — ha|™.



REGULARITY CONDITIONS ON DGP

We impose the following assumption on the random forest estimator.

ASSUMPTION 3. 1. The data is split into proportional independent subsamples for each 6

one subsample is used to produce a random forest estimator while the other one is used to
produce 6 for each random forest estimator.

2. There exists an algorithm that induces the sequence of partitions 11 indexed by the sample size
n that yields the random forest estimator attaining the minimax convergence rate n) for each

k component hi(-) of h(-) where v is a function of dimension of ws and the properties of
function hy(-).



LEMMA 3. Let the total sample size be 2n with sample of size n used to produce the random forest
estimator (2.14) and remaining sample is used to estimate parameter 0. Then for each dimension k
of 0. [0 — Ooi|| = Op(n™*7).

Proof: For a given instance of the random forest estimator h,

supH—Zp i 0),h) —E[p(X?; g(X1:0,h)][| = Op((n) /%)

pece N

due to Lipschitz-continuity of p(-) in €, validity of the symmetrization lemma and exponential bound
conditional on A and universal bound on the Lipschitz constanstant which guarantees, due to in-
dependence of fz, that the corresponding bound also holds in expectation over h. Next, using the
first-order Taylor expansion of E[p(X?2: ¢(X1:60,h)] we can express

Elp(X?; g(X1;0,h)] — E[p(X?; g(X1;00,h)] = E[J(Z2)](0 — 65) + o(||0 — 65 ]|?)

due to the boundedness of the Hessian of the conditional expectation of the moment function. Due
to Hélder-continuity of the moment function in A(-), we can also express that

E[p(X*; g(X1;00,h)] = O(n™)
given that ||h — ho| = O,(n~"). Collecting terms, we conclude that

0 — 6y =O0,(n~Y?) +O0(n)



LEMMA 4. Suppose that model indexed by j + 1 as discussed above is correctly specified then for

é\{ and (9\{ in (2.15) and (2.16). Then for verification on an independent sample of size n :

(s

—w P ((I‘?j \év?j(k)) ; gj“((l‘@-lj Ufa?j(k)) .03). E(-)) ‘ > T) 0.

i=1

n

Ly p (@l () s (2 L () 60). ()

=1

Proof: Denote p;; = p ((m?j \mfj(k)) ; ng((m@lj U m?j(k)) ;5{), h()) , L =1,2. Then due to inde-

T

pendence of h(-) we first compute probability
1
- Z(Pu — pi2)

]:P)(
ni:l

>T‘ﬁ(-)).

Given that |py| < Ldiam(©) we can apply standard exponential bound inequality to assess this

probability. The magnitude of the exponent is exp(—= d?;”g;(@) =) and it does not depend on ().
Therefore, we can take expectation over it which yields the statement of the lemma. H



THE COUP DE GRACE

THEOREM 1. The Holm-Bonferroni procedure selects the correct model with probability approach-

ing 1 as n — oo.

* Intuitively, the idea here is that the p-values for dimensions with homogeneity approach 1 as sample
grows, while p-values for heterogeneous dimensions approach O.

* For any level of confidence, and a sufficiently large sample size, Bonferroni-Holm procedure selects
model with probability approaching one



ACCELERATING RATE OF CONVERGENCE

The acceleration of the convergence rate with orthogonal moments We note that Lemma
3 implies a slow nonparametric convergence rate for the finite-dimensional parameter. The reason
for this is that the moment function depends on the function estimated with the random forest in the
first order which means that the non-parametric rate of that estimator dominates the sampling noise
in the empirical moment itself. The acceleration of the convergence rate to the standard parametric
rate is possible if the convergence rate for the random forest estimator is sufficiently high and the

moment function is in the orthogonal form.

A moment function p(22; g(2';60),h(-)) : X2 x X1 x © x H — R? is orthogonal with respect to h if
its pathwise derivative w.r.t h at hg is zero:

V, E [Pj (xz; g(xl; 6o),r(h — ho) + h0)|7‘:0] =0, Vje{l,2,..p}



ORTHOGONALIZATION OF THE MOMENT FUNCTION

THEOREM 2. Suppose that moment function p(x?; g(x*;0). h(-)) is orthogonal with respect to h(-)
and the random forest estimator h(-) satisfies wy > +. Then 6 — 6y = O,(n=1/%).

Proof: Due to orthogonality and the finiteness of the Hessian of the moment function E[p(X?; ¢(X1:6p.h)] =
O(n~=27%). By the assertion of the theorem, yw > 1, meaning that E[p(X?; g(X1; 6o, h)] = op(n=1/?).
Applying the expansion in the proot of Lemma 3, leads to the result of the theorem. B




PARTIAL LINEAR MODEL

= The classic partial linear model (Robinson, 1988) is:
Y=X'B+9(T)+e€
=  When our moment function is linear, we have:
Y=XB+X;6(Z)+¢€
= To see the connection, when X, = 1 we obtain:
Y=XB+B(Z)+e¢€

= Qur estimator can produce this model as an endogenously-selected outcome



PARTIAL LINEAR MODEL

=  We would like to expand the approach to account for arbitrary partially linear models

= Y =W,B+gW,) +e

=  Goal is to classify W into two components: linear component and the nonparametric component

= This is different that what we were doing previously, since we are no longer imposing any linearity in the g function

= How to do this?
= Quter loop still looking at estimating linear component

= Inner loop is no longer a moment forest but rather a random forest with regression trees (each leaf is a constant)

= Econometrically we need to ensure that g converges at fast enough rate so that usual semiparametric theory
follows through



CLUSTERED STANDARD ERRORS / HETEROSCEDASTICITY

=  Qur approach applies to the clustered standard errors literature as well
= Basically the idea is that we want to allow for correlations in the error terms in a model
=  For example, in the linear model:
Y=XPB+e€
= We may think that the error terms are correlated
= The general way of approaching this is to put a data-generating process on the error:
e ~ N(0,0%(X))

= Note that this is a partitioning problem!
= Quter loop, search for first-order parameters

= |nnerloop, run the random forest

= What are we matching? Out-of-sample correlation of error terms!




RANDOM COEFFICIENTS

= The random coefficient model (ala BLP (1995)) is:
w; =x'f+x'vi+& +e;
= This generates correlation in utilities across products that have similar characteristics
= Utility equation -> probabilities over choice set -> aggregate market shares
= We want to determine which components are fixed and which are random

= This is the higher-order version of the moment functions that we discussed previously



RANDOM COEFFICIENTS: BASIC OVERVIEW OF BLP

=  We are concerned that price and unobserved vertical quality are correlated
= However, need to get share equations in linear form so that we can apply IV
= BLP is about doing those gymnastics
= Share equation is super nonlinear:

si = [ s;(X; B)AF(B)

= Key point: integrate out the nonlinear part and then use the fact that any vector of shares can be rationalized by a
unique vector of numbers, 6 (mean utilities)

= Regress mean utilities on X’s, solve out for the unobservable, &, that rationalizes aggregate shares, minimize:
in E X)'Z
min E[¢(0(X))'Z]



RANDOM COEFFICIENTS: BASIC OVERVIEW OF BLP

=  We are concerned that price and unobserved vertical quality are correlated
= However, need to get share equations in linear form so that we can apply IV
= BLP is about doing those gymnastics
= Share equation is super nonlinear:

si = [ s;(X; B)AF(B)

= Key point: integrate out the nonlinear part and then use the fact that any vector of shares can be rationalized by a
unique vector of numbers, 6 (mean utilities)

= Regress mean utilities on X’s, solve out for the unobservable, &, that rationalizes aggregate shares, minimize:
in E X))'Z
min E[¢(0(X))'Z]



RANDOM COEFFICIENTS: MOMENT FOREST APPROACH

= Key observation is that a random coefficient model can be consistently estimated a point using the non-RC basis functions
= |n this case, the basis function is the logit function
= Note that, at a given set of characteristics:
si(BlX = x) = [ 5;(X, )dF (B)
= The implication of this is that the moment forest will only split on variables which have a random coefficient!

= The resulting approximation will show two things:
=  Which dimensions have random coefficients

= Alow-order approximation to the integral (digression on basis functions, quadrature, FKRB, and grid methods)

= One could use the moment forest solely as classifier, run FKRB on data with restricted basis afterwards

= Seems like there is a lot of information in moment forest, however! How to use?




MONTE CARLO SETUP

= To showcase the performance of the estimator, we consider three data-generating process
®= Linear model with two explanatory variables, three Z
Y=X'B(Z)+ €
m  Error is standard normal (so irreducible mean prediction error cannot be lower than 1.0)
1. Fully heterogeneous parameters: both parameters vary with Z: g = {—1,1} if Z; < 0, {0.33,—1.05} otherwise
2. One heterogeneous parameter: parameter on X2 varies with Z: § = {—1,1}if Z; < 0, {—1,—1.05} otherwise

3. Fully homogeneous parameters: parameters are fixed across Z



MONTE CARLO EVIDENCE

Table 1: Monte Carlo Results:

No Parameters Homogeneous

1000

2000

4000

MSE(Y)

MSE(B)
e
a

MSE(Y)

MSE(j3)
h
."?2

MSE(Y)

MSE(5)
B
32

MSE(Y)

MSE(f)
h
B

Unrestricted Model

Mean

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

S5.D.

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

Mean

1.04
0.0433
0.00
0.00

1.02
0.0166
0.00
0.00

1.01
0.00807
0.00
0.00

1.01
0.00488
0.00
0.00

Restricted Model

S.D.

(0.00411)
(0.000795)
(0.00)
(0.00)

(0.00223)
(6.91e-05)
(0.00)
(0.00)

(0.000741)
(1.52e-05)
(0.00)
(0.00)

(0.000463)
(1.82¢-05)
(0.00)
(0.00)

Classification
Rate

0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

Table 2: Monte Carlo Results: One Parameter Homogeneous

1000

2000

4000

Unrestricted Model

Mean
MSE(Y) 1.15
MSE(B) 0.0600
131
B2
MSE(Y) 1Bl
MSE(B) 0.0467
ifj
B2
MSE(Y) 1.07
MSE(3) 0.0229
31
B2
MSE(Y) 1.02
MSE(3) 0.00847
31
B2

S.D.

(0.0407)
(0.00310)

(0.0220)
(0.00252)

(0.0103)
(0.000222)

(0.000903)
(5.28¢-05)

Mean

1.16
0.0542
-0.997
0.00

1.10
0.0358
-0.997
0.00

1.04
0.0173
-1.00
0.00

1.02
0.00701
-1.00
0.00

Restricted Model

S.D.

(0.0619
(0.00346
(0.0640
(0.00

(0.0228
(0.00143
(0.0393
(0.00

(0.00428
(0.000172
(0.0292
(0.00

(0.000910
(5.47¢-05
(0.0196
(0.00

)
)
)
)

)
)
)
)

)
)
)
)

Classification
Rate

100%
0.00%

100%
0.00%

100%
0.00%

100%
0.00%

B(Z) = {B1(Z), B(2)}

B(Z) = {B1,B(Z)}



MONTE CARLO EVIDENCE

Table 3:

Monte Carlo Results: All Parameters [Homogeneous

1000

2000

4000

MSE(Y)
MSE(A)
51

o

MSE(Y)
MSE(S)
h
a2

MSE(Y)
MSE(S)
3
B2

MSE(Y)
MSE(A)
h
2

Unrestricted Model

Mean

1.02
0.00936

1.01
0.00899

1.01
0.00349

1.00
0.00157

S.D.

(0.00362)
(9.46¢-05)

(0.00125)
(0.000114)

(0.000657)
(L.36e-05)

(0.000442)
(1.87c-06)

Mean

1.02
0.00523
-0.999
0.997

1.00
0.00203
-1.00
0.998

1.00
0.00110
-1.00
1.00

1.00
0.000422
-1.00
1.00

Restricted Model

S.D.

(0.00381
(1.72¢-05
(0.0638
(0.0343

(0.00114
(1.04¢-05
(0.0392
(0.0226

(0.000646
(1.86c-06
(0.0284
(0.0171

(0.000423
(4.17c-07
(0.0181
(0.00983

)
)
)
)

==

—_ T

)
)
)
)

Classification
Rate

100%
100%

100%
100%

100%
100%

100%
100%

B(Z) = {B1, B2}

Few takeaways:

Bottom line: it works
MSPE is lower in the model with homogeneity restrictions
Classification rate is almost exactly 100%

Convergence rate is parametric in restricted model



IMIONTE CARLO EVIDENCE: PARTIALLY LINEAR MODEL

Fit Beta

JE = Make X1 a complex function now:

beta

...... ...... ......... = 2.5*Math.sin(zi.get(0,0)) +
T | 0.25*Math.pow(zi.get(0,0),2)

Zi

W Betal Truth ® Betal Estimate




IMIONTE CARLO EVIDENCE: PARTIALLY LINEAR MODEL

Table 4: Monte Carlo Results: Partially Linear Model

Unrestricted Model Restricted Model
Classification
n Mean S.D. Mean S.D. Rate

500 MSE(Y)  1.66  (0.0297) 165  (0.0285)
MSE(B) 0631  (0.0229) 0624  (0.0212)

By 0.00 (0.00) 0.00%

Ba 0.996  (0.0461) 100%

1000 MSE(Y) 126  (0.00487)  1.24  (0.00540)
MSE(B) 0251  (0.00198) 0236  (0.00207)

B 0.00 (0.00) 0.00%

Ba 0.995  (0.0261) 97.9%

2000 MSE(Y) 116  (0.00251) 115  (0.00232)
MSE(3) 0159 (0.000850)  0.149  (0.000827)

By 0.00 (0.00) 0.00%

fo 100 (0.0179) 100%

4000 MSE(Y) 110 (0.000844)  1.10  (0.000707)
MSE(B) 0.0999 (0.000194) 0.0927 (0.000178)

By 0.00 (0.00) 0.00%

Bo 100 (0.0115) 100%

Results:

= Get (nearly!) 100% perfect classification of both parts

= Models converge to irreducible error (1.0)

= Slight but noticeable gain in precision

= Posit: more stark when the dimensionality gets beyond 2

= Possible efficiency gains will be higher when | implement
orthogonalization




APPLICATION: GASOLINE ENGEL CURVES

= Schmalensee and Stoker (ECMA, 1999) estimate semiparametric models of household gasoline demand

In homage to this pioneering use of the semiparametric framework, we perform their analysis using updated data

= Data comes from 1997 National Household Travel Survey
= Detailed household data on age, income, vehicles, gasoline usage
= Their approach is to estimate the following consumption equation (in logs of gallons of gasoline):
In gallons = g(age,income) + x'B + €
=  Where there are a vector of continuous and categorical variables in the linear component

= Qur approach will mimic their empirical function. We want to answer two questions:

=  What components should be in the linear component and which should be in the nonparametric component?

= What do the nonparametric functions looks like? Especially the Engel curve of consumption against age for various incomes
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SUMMARY OF FINDINGS

= We recreate their specification

= | allow the moment forest to split on all the X’s (Z=X)

= Digression on dummy variables

= Ask the forest what variables it splits on and how often across trees
= Whatdo | find?

= In 5% (comparable to their original sample) and 20% sample: all the parameters are homogeneous!



APPLICATION: GASOLINE ENGEL CURVES
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THANK YOU!

= We propose an estimator for determining parametric and semiparametric components of nonlinear models

= We use a moment forest as a classifier and estimator (although one could use any well-behaved approach here)
= Show sufficient conditions that this approach works
= Excited about the application of the framework to some real empirical settings

= Clustered standard errors

= Random coefficients

= Partially linear models



OBSERVATIONS

= Estimation with categorical variables can be treated as entering the model through a constant as a function of Z,
where the categorical variables are in Z but not directly in X

= Also, can treat the categorical variables as continuous. Tree will partition if it needs to down to single groups. Much,
much faster than all the combinations of bipartite partitions.

= For orthogonalization, in a sense our estimator is telling us what the structure of the model is; you can then use the
two-step methods ala Robinson and S&S once that is done

= Can we formally show the equivalence of splitting on X and post-tree construction homogeneity testing?



