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GOING FOR A WALK IN THE (RANDOM) FOREST



RESEARCH OBJECTIVE

 Machine Learning (ML) methods have made several recent inroads in econometrics

 One key area of research has been around model selection

 Many ML methods can be conceptualized as having two steps:

 [Selection] What goes into the model?

 [Estimation] What are the parameters post selection?

 Chernozhukov and co-authors have expanded both theoretical foundations and applications of ML:

 Double LASSO for selecting instruments in high-dimensional IV

 Orthogonalization of machine learning plug-in methods for inference

 This paper: expand the methods of Nekipelov, Novosad, and Ryan (2020) to semiparametric domains



BASIC IDEA

 NNR considered the problem of how to assign parameters to observations in the following moment model:

𝐸 𝑌 −𝑚 𝑋, 𝜃 𝑍 = 0

 Here the 𝑚 is a moment function known up to a finite vector of parameters, 𝜃, 𝑌 are outcomes, 𝑋 are observable 

covariates, and 𝑍 are observables that govern the assignment of parameters to observations

 We proposed a moment forest for estimating this problem

 Moment forest is an ensemble of moment trees

 Moment trees are generalization of regression/classification trees with moment functions in each “leaf”

 Generates a recursive partitioning of the Z space; in each partition, solve the moment above

 We previously proved consistency and asymptotic normality of this estimator

 Here, we extend that analysis to incorporate homogeneous parameters



DIGRESSION ON TREES

 Decision Trees are nested binary partitions

 Grow through a greedy search at each node

 Each node has two potential children

 Keep splitting the sample until reach some limit (hyperparameters):

 Number of observations in each split

 Minimum level of improvement in objective function

 Maximum depth of tree

 That controls the complexity of the tree

 Use cross-validation to determine hyperparameters

 Use honest trees: one sample to grow the tree structure, one sample to fill in values

 Universal approximators



DIGRESSION ON TREES

 Trees have some cool properties

 First is that they are universal approximators, but they work in the characteristic space (X)

 Start off with simple models and build complexity

 We do not have to specify the relationship between outcomes and explanatory variables

 But, unlike usual nonparametric estimators, you have a parametric function conditional on tree structure

 Under some regularity conditions, you can actually achieve faster than parametric rates of convergence in first step

 This means that asymptotics are governed by second step estimator, which is really nice

 Random forest extension is to take iid resamples and grow many trees, average together -> also, caps run time with 
complexity

 Random part is not only sample, but which covariates you split on -> reduces link across trees -> improve variance of 
estimates (in limit down to irreducible error!)



REVIEW OF MOMENT FOREST CONSTRUCTION

 Moment Forest is composed of iid resampled Moment Trees

 A Moment Tree is a rectangular partitioning of the 𝑍 space

 Estimate a separate moment in each partition

 Partitions are found by greedy search at each node

 Tree growth is stopped when convergence criteria are met (number of observations in each child node, minimum 

objective function improvement)



PARTIALLY HOMOGENEOUS MODELS

 We want to allow for the following:

𝐸 𝑌 −𝑚 𝑋; ҧ𝜃, ෠𝜃 𝑍 = 0

 Where the parameter vector may include components which are homogeneous across the entire domain of Z

 At one extreme is the standard GMM model, other is NNR

 Why would we do this?

 Efficiency (variance) versus flexibility (bias)

 Imposing (correctly) homogeneity helps improve the precision of our estimates

 The issue is that we don’t know which parameters are heterogeneous…



ESTIMATION METHOD

 We extend NNR to allow for partially homogeneous parameters

 Sketch of idea:

 Set hyperparameters of moment forest using cross validation

 Grow an unrestricted moment tree

 Test for homogeneity parameter-by-parameter across all terminal leaves, correcting for multiple hypothesis testing using Holm-Bonferroni

 Imposing homogeneity for parameters that fail to reject null, estimate a nested fixed point:

 In an outer loop, search for homogeneous parameters

 In an inner loop, condition on those and grow an (optimal) moment forest



TESTING

 The Holm-Bonferroni procedure is a method for controlling the family-wise error rate in a multiple hypothesis testing setting

 Control Type I errors (rejecting the null when it is true)

 Cannot control Type II errors in frequentist settings (that I’m aware of; there are “agnostic test statistics” that make an attempt…?)

 Grow an unrestricted tree with v final splits

 Run constrained estimation imposing that 𝜃𝑙𝑒𝑓𝑡
𝑘 = 𝜃𝑟𝑖𝑔ℎ𝑡

𝑘 for all splits simultaneously (akin to SUR)

 Compute all the p-values under hypothesis that parameters are equal using GMM distance metric test (or Wald3)

 Sort from lowest to highest value, reject null and continue to next highest p-value if:

𝑃𝑘 <
𝛼

𝑚 − 𝑘 + 1

 Otherwise, stop testing



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 First, we view our model as an “overparameterized” semiparametric model

 The conditional moment function depends on an unknown function of the covariates, 𝜂(⋅)

 However, there exists a representation 𝜂 𝑥 = 𝑓 𝜓 𝑥 where 𝜓(𝑥) is a known function of the covariates and 𝑓 is 

an unknown low-dimension function

 Implies that model without constraints is correctly specified, as is any correct reduction in complexity

 Example: if 𝜓 𝑥 = {𝜓1 𝑥1 , 𝜓2 𝑥2 , … , 𝜓𝐾 𝑥𝐾 }, then the model 𝜂 𝑥 = 𝑔 𝜓1 𝑥1 , 𝑥2, … , 𝑥𝐾 is correctly specified, 

where 𝑔 is unknown



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 Second, we use the moment forest as a classifier to determine target function 𝜂(⋅) with reduced complexity

 Moment forest is a uniformly convergent universal approximator

 Can verify that moment functions fit on the low-dimensional function almost everywhere

 With guarantee on the rate of convergence of the moment forest, correct specification of model established with 

probability that is exponential in convergence rate

 This is a consequence of standard exponential inequalities for sample means

 Subtle point: we may select inefficient models, but we will (essentially never) select incorrect models



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 Third, given correct specification, model becomes a standard semiparametric model

 Under independent splitting of the sample between classification and estimation, nonparametric component can be 

recovered at the specified rate

 Simultaneously, convergence of parametric component can be established conditionally on the nonparametric 

component (as is standard in semiparametric theory models)

 In parametric models, this means we can obtain √𝑛 convergence!



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 Fourth, estimator for parametric component will generally depend on error in estimation of nonparametric part

 To restore parametric rates of convergence on parametric component, we orthogonalize the model

 In linear settings, this is the standard “partialling out” of the nonparametric components

 In nonlinear models, a linear offset can be created using a pilot estimate for the target parameter

 Moment models that are linear in parameters can be orthogonalized by residualizing variables corresponding to 

homogeneous components and subtracting their mean conditional on the nonparametric components



ECONOMETRIC THEORY: DETAILS



ECONOMETRIC THEORY: DETAILS



ECONOMETRIC THEORY: DETAILS



REGULARITY CONDITIONS ON DGP







THE COUP DE GRACE

• Intuitively, the idea here is that the p-values for dimensions with homogeneity approach 1 as sample 

grows, while p-values for heterogeneous dimensions approach 0.

• For any level of confidence, and a sufficiently large sample size, Bonferroni-Holm procedure selects 

model with probability approaching one



ACCELERATING RATE OF CONVERGENCE



ORTHOGONALIZATION OF THE MOMENT FUNCTION



PARTIAL LINEAR MODEL

 The classic partial linear model (Robinson, 1988) is:

𝑌 = 𝑋′𝛽 + 𝑔 𝑇 + 𝜖

 When our moment function is linear, we have:

𝑌 = 𝑋1
′𝛽 + 𝑋2

′𝛽 𝑍 + 𝜖

 To see the connection, when 𝑋2 = 1 we obtain:

𝑌 = 𝑋1
′𝛽 + 𝛽 𝑍 + 𝜖

 Our estimator can produce this model as an endogenously-selected outcome



PARTIAL LINEAR MODEL

 We would like to expand the approach to account for arbitrary partially linear models

 𝑌 = 𝑊1
′𝛽 + 𝑔 𝑊2 + 𝜖

 Goal is to classify W into two components: linear component and the nonparametric component

 This is different that what we were doing previously, since we are no longer imposing any linearity in the g function

 How to do this?

 Outer loop still looking at estimating linear component

 Inner loop is no longer a moment forest but rather a random forest with regression trees (each leaf is a constant)

 Econometrically we need to ensure that g converges at fast enough rate so that usual semiparametric theory 

follows through



CLUSTERED STANDARD ERRORS / HETEROSCEDASTICITY

 Our approach applies to the clustered standard errors literature as well

 Basically the idea is that we want to allow for correlations in the error terms in a model

 For example, in the linear model:

𝑌 = 𝑋′𝛽 + 𝜖

 We may think that the error terms are correlated

 The general way of approaching this is to put a data-generating process on the error:

𝜖 ∼ 𝑁(0, 𝜎2 𝑋 )

 Note that this is a partitioning problem!

 Outer loop, search for first-order parameters

 Inner loop, run the random forest

 What are we matching? Out-of-sample correlation of error terms!



RANDOM COEFFICIENTS

 The random coefficient model (ala BLP (1995)) is:

𝑢𝑖𝑗 = 𝑥′𝛽 + 𝑥′𝜈𝑖 + 𝜉𝑗 + 𝜖𝑖𝑗

 This generates correlation in utilities across products that have similar characteristics

 Utility equation -> probabilities over choice set -> aggregate market shares

 We want to determine which components are fixed and which are random

 This is the higher-order version of the moment functions that we discussed previously



RANDOM COEFFICIENTS: BASIC OVERVIEW OF BLP

 We are concerned that price and unobserved vertical quality are correlated

 However, need to get share equations in linear form so that we can apply IV

 BLP is about doing those gymnastics

 Share equation is super nonlinear:

𝑠𝑗 = ∫ 𝑠𝑗 𝑋; 𝛽 𝑑𝐹(𝛽)

 Key point: integrate out the nonlinear part and then use the fact that any vector of shares can be rationalized by a 

unique vector of numbers, 𝛿 (mean utilities)

 Regress mean utilities on X’s, solve out for the unobservable, 𝜉, that rationalizes aggregate shares, minimize:

min
𝜎(𝑋)

𝐸[𝜉(𝜎 𝑋 )′𝑍]



RANDOM COEFFICIENTS: BASIC OVERVIEW OF BLP

 We are concerned that price and unobserved vertical quality are correlated

 However, need to get share equations in linear form so that we can apply IV

 BLP is about doing those gymnastics

 Share equation is super nonlinear:

𝑠𝑗 = ∫ 𝑠𝑗 𝑋; 𝛽 𝑑𝐹(𝛽)

 Key point: integrate out the nonlinear part and then use the fact that any vector of shares can be rationalized by a 

unique vector of numbers, 𝛿 (mean utilities)

 Regress mean utilities on X’s, solve out for the unobservable, 𝜉, that rationalizes aggregate shares, minimize:

min
𝜎(𝑋)

𝐸[𝜉(𝜎 𝑋 )′𝑍]



RANDOM COEFFICIENTS: MOMENT FOREST APPROACH

 Key observation is that a random coefficient model can be consistently estimated a point using the non-RC basis functions

 In this case, the basis function is the logit function

 Note that, at a given set of characteristics:

𝑠𝑗 ෠𝛽 𝑋 = 𝑥 = ∫ 𝑠𝑗 𝑋, 𝛽 𝑑𝐹(𝛽)

 The implication of this is that the moment forest will only split on variables which have a random coefficient!

 The resulting approximation will show two things:

 Which dimensions have random coefficients

 A low-order approximation to the integral (digression on basis functions, quadrature, FKRB, and grid methods)

 One could use the moment forest solely as classifier, run FKRB on data with restricted basis afterwards

 Seems like there is a lot of information in moment forest, however! How to use?



MONTE CARLO SETUP

 To showcase the performance of the estimator, we consider three data-generating process

 Linear model with two explanatory variables, three Z

𝑌 = 𝑋′𝛽 𝑍 + 𝜖

 Error is standard normal (so irreducible mean prediction error cannot be lower than 1.0)

1. Fully heterogeneous parameters: both parameters vary with Z: 𝛽 = −1,1 if 𝑍1 < 0, {0.33,−1.05} otherwise

2. One heterogeneous parameter: parameter on X2 varies with Z: 𝛽 = −1,1 if 𝑍1 < 0, {−1,−1.05} otherwise

3. Fully homogeneous parameters: parameters are fixed across Z



MONTE CARLO EVIDENCE

𝛽 𝑍 = {𝛽1(𝑍), 𝛽2 𝑍 } 𝛽 𝑍 = {𝛽1, 𝛽2 𝑍 }



MONTE CARLO EVIDENCE

 Few takeaways:

 Bottom line: it works

 MSPE is lower in the model with homogeneity restrictions

 Classification rate is almost exactly 100%

 Convergence rate is parametric in restricted model

𝛽 𝑍 = {𝛽1, 𝛽2}



MONTE CARLO EVIDENCE: PARTIALLY LINEAR MODEL

 Make X1 a complex function now:

 2.5*Math.sin(zi.get(0,0)) + 

0.25*Math.pow(zi.get(0,0),2)



MONTE CARLO EVIDENCE: PARTIALLY LINEAR MODEL

 Results:

 Get (nearly!) 100% perfect classification of both parts

 Models converge to irreducible error (1.0)

 Slight but noticeable gain in precision

 Posit: more stark when the dimensionality gets beyond 2

 Possible efficiency gains will be higher when I implement 

orthogonalization



APPLICATION: GASOLINE ENGEL CURVES

 Schmalensee and Stoker (ECMA, 1999) estimate semiparametric models of household gasoline demand

 In homage to this pioneering use of the semiparametric framework, we perform their analysis using updated data

 Data comes from 1997 National Household Travel Survey

 Detailed household data on age, income, vehicles, gasoline usage

 Their approach is to estimate the following consumption equation (in logs of gallons of gasoline):

ln 𝑔𝑎𝑙𝑙𝑜𝑛𝑠 = 𝑔 𝑎𝑔𝑒, 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝑥′𝛽 + 𝜖

 Where there are a vector of continuous and categorical variables in the linear component

 Our approach will mimic their empirical function. We want to answer two questions:

 What components should be in the linear component and which should be in the nonparametric component?

 What do the nonparametric functions looks like? Especially the Engel curve of consumption against age for various incomes



ORIGINAL S&S



SUMMARY OF FINDINGS

 We recreate their specification

 I allow the moment forest to split on all the X’s (Z=X)

 Digression on dummy variables

 Ask the forest what variables it splits on and how often across trees

 What do I find?

 In 5% (comparable to their original sample) and 20% sample: all the parameters are homogeneous!



APPLICATION: GASOLINE ENGEL CURVES



THANK YOU!

 We propose an estimator for determining parametric and semiparametric components of nonlinear models

 We use a moment forest as a classifier and estimator (although one could use any well-behaved approach here)

 Show sufficient conditions that this approach works

 Excited about the application of the framework to some real empirical settings

 Clustered standard errors

 Random coefficients

 Partially linear models



OBSERVATIONS

 Estimation with categorical variables can be treated as entering the model through a constant as a function of Z, 

where the categorical variables are in Z but not directly in X

 Also, can treat the categorical variables as continuous. Tree will partition if it needs to down to single groups. Much, 

much faster than all the combinations of bipartite partitions.

 For orthogonalization, in a sense our estimator is telling us what the structure of the model is; you can then use the 

two-step methods ala Robinson and S&S once that is done

 Can we formally show the equivalence of splitting on X and post-tree construction homogeneity testing?


