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GOING FOR A WALK IN THE (RANDOM) FOREST



RESEARCH OBJECTIVE

 Machine Learning (ML) methods have made several recent inroads in econometrics

 One key area of research has been around model selection

 Many ML methods can be conceptualized as having two steps:

 [Selection] What goes into the model?

 [Estimation] What are the parameters post selection?

 Chernozhukov and co-authors have expanded both theoretical foundations and applications of ML:

 Double LASSO for selecting instruments in high-dimensional IV

 Orthogonalization of machine learning plug-in methods for inference

 This paper: expand the methods of Nekipelov, Novosad, and Ryan (2020) to semiparametric domains



BASIC IDEA

 NNR considered the problem of how to assign parameters to observations in the following moment model:

𝐸 𝑌 −𝑚 𝑋, 𝜃 𝑍 = 0

 Here the 𝑚 is a moment function known up to a finite vector of parameters, 𝜃, 𝑌 are outcomes, 𝑋 are observable 

covariates, and 𝑍 are observables that govern the assignment of parameters to observations

 We proposed a moment forest for estimating this problem

 Moment forest is an ensemble of moment trees

 Moment trees are generalization of regression/classification trees with moment functions in each “leaf”

 Generates a recursive partitioning of the Z space; in each partition, solve the moment above

 We previously proved consistency and asymptotic normality of this estimator

 Here, we extend that analysis to incorporate homogeneous parameters



DIGRESSION ON TREES

 Decision Trees are nested binary partitions

 Grow through a greedy search at each node

 Each node has two potential children

 Keep splitting the sample until reach some limit (hyperparameters):

 Number of observations in each split

 Minimum level of improvement in objective function

 Maximum depth of tree

 That controls the complexity of the tree

 Use cross-validation to determine hyperparameters

 Use honest trees: one sample to grow the tree structure, one sample to fill in values

 Universal approximators



DIGRESSION ON TREES

 Trees have some cool properties

 First is that they are universal approximators, but they work in the characteristic space (X)

 Start off with simple models and build complexity

 We do not have to specify the relationship between outcomes and explanatory variables

 But, unlike usual nonparametric estimators, you have a parametric function conditional on tree structure

 Under some regularity conditions, you can actually achieve faster than parametric rates of convergence in first step

 This means that asymptotics are governed by second step estimator, which is really nice

 Random forest extension is to take iid resamples and grow many trees, average together -> also, caps run time with 
complexity

 Random part is not only sample, but which covariates you split on -> reduces link across trees -> improve variance of 
estimates (in limit down to irreducible error!)



REVIEW OF MOMENT FOREST CONSTRUCTION

 Moment Forest is composed of iid resampled Moment Trees

 A Moment Tree is a rectangular partitioning of the 𝑍 space

 Estimate a separate moment in each partition

 Partitions are found by greedy search at each node

 Tree growth is stopped when convergence criteria are met (number of observations in each child node, minimum 

objective function improvement)



PARTIALLY HOMOGENEOUS MODELS

 We want to allow for the following:

𝐸 𝑌 −𝑚 𝑋; ҧ𝜃, 𝜃 𝑍 = 0

 Where the parameter vector may include components which are homogeneous across the entire domain of Z

 At one extreme is the standard GMM model, other is NNR

 Why would we do this?

 Efficiency (variance) versus flexibility (bias)

 Imposing (correctly) homogeneity helps improve the precision of our estimates

 The issue is that we don’t know which parameters are heterogeneous…



ESTIMATION METHOD

 We extend NNR to allow for partially homogeneous parameters

 Sketch of idea:

 Set hyperparameters of moment forest using cross validation

 Grow an unrestricted moment tree

 Test for homogeneity parameter-by-parameter across all terminal leaves, correcting for multiple hypothesis testing using Holm-Bonferroni

 Imposing homogeneity for parameters that fail to reject null, estimate a nested fixed point:

 In an outer loop, search for homogeneous parameters

 In an inner loop, condition on those and grow an (optimal) moment forest



TESTING

 The Holm-Bonferroni procedure is a method for controlling the family-wise error rate in a multiple hypothesis testing setting

 Control Type I errors (rejecting the null when it is true)

 Cannot control Type II errors in frequentist settings (that I’m aware of; there are “agnostic test statistics” that make an attempt…?)

 Grow an unrestricted tree with v final splits

 Run constrained estimation imposing that 𝜃𝑙𝑒𝑓𝑡
𝑘 = 𝜃𝑟𝑖𝑔ℎ𝑡

𝑘 for all splits simultaneously (akin to SUR)

 Compute all the p-values under hypothesis that parameters are equal using GMM distance metric test (or Wald3)

 Sort from lowest to highest value, reject null and continue to next highest p-value if:

𝑃𝑘 <
𝛼

𝑚 − 𝑘 + 1

 Otherwise, stop testing



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 First, we view our model as an “overparameterized” semiparametric model

 The conditional moment function depends on an unknown function of the covariates, 𝜂(⋅)

 However, there exists a representation 𝜂 𝑥 = 𝑓 𝜓 𝑥 where 𝜓(𝑥) is a known function of the covariates and 𝑓 is 

an unknown low-dimension function

 Implies that model without constraints is correctly specified, as is any correct reduction in complexity

 Example: if 𝜓 𝑥 = {𝜓1 𝑥1 , 𝜓2 𝑥2 , … , 𝜓𝐾 𝑥𝐾 }, then the model 𝜂 𝑥 = 𝑔 𝜓1 𝑥1 , 𝑥2, … , 𝑥𝐾 is correctly specified, 

where 𝑔 is unknown



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 Second, we use the moment forest as a classifier to determine target function 𝜂(⋅) with reduced complexity

 Moment forest is a uniformly convergent universal approximator

 Can verify that moment functions fit on the low-dimensional function almost everywhere

 With guarantee on the rate of convergence of the moment forest, correct specification of model established with 

probability that is exponential in convergence rate

 This is a consequence of standard exponential inequalities for sample means

 Subtle point: we may select inefficient models, but we will (essentially never) select incorrect models



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 Third, given correct specification, model becomes a standard semiparametric model

 Under independent splitting of the sample between classification and estimation, nonparametric component can be 

recovered at the specified rate

 Simultaneously, convergence of parametric component can be established conditionally on the nonparametric 

component (as is standard in semiparametric theory models)

 In parametric models, this means we can obtain √𝑛 convergence!



ECONOMETRIC THEORY: HEURISTIC OVERVIEW

 Fourth, estimator for parametric component will generally depend on error in estimation of nonparametric part

 To restore parametric rates of convergence on parametric component, we orthogonalize the model

 In linear settings, this is the standard “partialling out” of the nonparametric components

 In nonlinear models, a linear offset can be created using a pilot estimate for the target parameter

 Moment models that are linear in parameters can be orthogonalized by residualizing variables corresponding to 

homogeneous components and subtracting their mean conditional on the nonparametric components



ECONOMETRIC THEORY: DETAILS



ECONOMETRIC THEORY: DETAILS



ECONOMETRIC THEORY: DETAILS



REGULARITY CONDITIONS ON DGP







THE COUP DE GRACE

• Intuitively, the idea here is that the p-values for dimensions with homogeneity approach 1 as sample 

grows, while p-values for heterogeneous dimensions approach 0.

• For any level of confidence, and a sufficiently large sample size, Bonferroni-Holm procedure selects 

model with probability approaching one



ACCELERATING RATE OF CONVERGENCE



ORTHOGONALIZATION OF THE MOMENT FUNCTION



PARTIAL LINEAR MODEL

 The classic partial linear model (Robinson, 1988) is:

𝑌 = 𝑋′𝛽 + 𝑔 𝑇 + 𝜖

 When our moment function is linear, we have:

𝑌 = 𝑋1
′𝛽 + 𝑋2

′𝛽 𝑍 + 𝜖

 To see the connection, when 𝑋2 = 1 we obtain:

𝑌 = 𝑋1
′𝛽 + 𝛽 𝑍 + 𝜖

 Our estimator can produce this model as an endogenously-selected outcome



PARTIAL LINEAR MODEL

 We would like to expand the approach to account for arbitrary partially linear models

 𝑌 = 𝑊1
′𝛽 + 𝑔 𝑊2 + 𝜖

 Goal is to classify W into two components: linear component and the nonparametric component

 This is different that what we were doing previously, since we are no longer imposing any linearity in the g function

 How to do this?

 Outer loop still looking at estimating linear component

 Inner loop is no longer a moment forest but rather a random forest with regression trees (each leaf is a constant)

 Econometrically we need to ensure that g converges at fast enough rate so that usual semiparametric theory 

follows through



CLUSTERED STANDARD ERRORS / HETEROSCEDASTICITY

 Our approach applies to the clustered standard errors literature as well

 Basically the idea is that we want to allow for correlations in the error terms in a model

 For example, in the linear model:

𝑌 = 𝑋′𝛽 + 𝜖

 We may think that the error terms are correlated

 The general way of approaching this is to put a data-generating process on the error:

𝜖 ∼ 𝑁(0, 𝜎2 𝑋 )

 Note that this is a partitioning problem!

 Outer loop, search for first-order parameters

 Inner loop, run the random forest

 What are we matching? Out-of-sample correlation of error terms!



RANDOM COEFFICIENTS

 The random coefficient model (ala BLP (1995)) is:

𝑢𝑖𝑗 = 𝑥′𝛽 + 𝑥′𝜈𝑖 + 𝜉𝑗 + 𝜖𝑖𝑗

 This generates correlation in utilities across products that have similar characteristics

 Utility equation -> probabilities over choice set -> aggregate market shares

 We want to determine which components are fixed and which are random

 This is the higher-order version of the moment functions that we discussed previously



RANDOM COEFFICIENTS: BASIC OVERVIEW OF BLP

 We are concerned that price and unobserved vertical quality are correlated

 However, need to get share equations in linear form so that we can apply IV

 BLP is about doing those gymnastics

 Share equation is super nonlinear:

𝑠𝑗 = ∫ 𝑠𝑗 𝑋; 𝛽 𝑑𝐹(𝛽)

 Key point: integrate out the nonlinear part and then use the fact that any vector of shares can be rationalized by a 

unique vector of numbers, 𝛿 (mean utilities)

 Regress mean utilities on X’s, solve out for the unobservable, 𝜉, that rationalizes aggregate shares, minimize:

min
𝜎(𝑋)

𝐸[𝜉(𝜎 𝑋 )′𝑍]
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RANDOM COEFFICIENTS: MOMENT FOREST APPROACH

 Key observation is that a random coefficient model can be consistently estimated a point using the non-RC basis functions

 In this case, the basis function is the logit function

 Note that, at a given set of characteristics:

𝑠𝑗 𝛽 𝑋 = 𝑥 = ∫ 𝑠𝑗 𝑋, 𝛽 𝑑𝐹(𝛽)

 The implication of this is that the moment forest will only split on variables which have a random coefficient!

 The resulting approximation will show two things:

 Which dimensions have random coefficients

 A low-order approximation to the integral (digression on basis functions, quadrature, FKRB, and grid methods)

 One could use the moment forest solely as classifier, run FKRB on data with restricted basis afterwards

 Seems like there is a lot of information in moment forest, however! How to use?



MONTE CARLO SETUP

 To showcase the performance of the estimator, we consider three data-generating process

 Linear model with two explanatory variables, three Z

𝑌 = 𝑋′𝛽 𝑍 + 𝜖

 Error is standard normal (so irreducible mean prediction error cannot be lower than 1.0)

1. Fully heterogeneous parameters: both parameters vary with Z: 𝛽 = −1,1 if 𝑍1 < 0, {0.33,−1.05} otherwise

2. One heterogeneous parameter: parameter on X2 varies with Z: 𝛽 = −1,1 if 𝑍1 < 0, {−1,−1.05} otherwise

3. Fully homogeneous parameters: parameters are fixed across Z



MONTE CARLO EVIDENCE

𝛽 𝑍 = {𝛽1(𝑍), 𝛽2 𝑍 } 𝛽 𝑍 = {𝛽1, 𝛽2 𝑍 }



MONTE CARLO EVIDENCE

 Few takeaways:

 Bottom line: it works

 MSPE is lower in the model with homogeneity restrictions

 Classification rate is almost exactly 100%

 Convergence rate is parametric in restricted model

𝛽 𝑍 = {𝛽1, 𝛽2}



MONTE CARLO EVIDENCE: PARTIALLY LINEAR MODEL

 Make X1 a complex function now:

 2.5*Math.sin(zi.get(0,0)) + 

0.25*Math.pow(zi.get(0,0),2)



MONTE CARLO EVIDENCE: PARTIALLY LINEAR MODEL

 Results:

 Get (nearly!) 100% perfect classification of both parts

 Models converge to irreducible error (1.0)

 Slight but noticeable gain in precision

 Posit: more stark when the dimensionality gets beyond 2

 Possible efficiency gains will be higher when I implement 

orthogonalization



APPLICATION: GASOLINE ENGEL CURVES

 Schmalensee and Stoker (ECMA, 1999) estimate semiparametric models of household gasoline demand

 In homage to this pioneering use of the semiparametric framework, we perform their analysis using updated data

 Data comes from 1997 National Household Travel Survey

 Detailed household data on age, income, vehicles, gasoline usage

 Their approach is to estimate the following consumption equation (in logs of gallons of gasoline):

ln 𝑔𝑎𝑙𝑙𝑜𝑛𝑠 = 𝑔 𝑎𝑔𝑒, 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝑥′𝛽 + 𝜖

 Where there are a vector of continuous and categorical variables in the linear component

 Our approach will mimic their empirical function. We want to answer two questions:

 What components should be in the linear component and which should be in the nonparametric component?

 What do the nonparametric functions looks like? Especially the Engel curve of consumption against age for various incomes



ORIGINAL S&S



SUMMARY OF FINDINGS

 We recreate their specification

 I allow the moment forest to split on all the X’s (Z=X)

 Digression on dummy variables

 Ask the forest what variables it splits on and how often across trees

 What do I find?

 In 5% (comparable to their original sample) and 20% sample: all the parameters are homogeneous!



APPLICATION: GASOLINE ENGEL CURVES



THANK YOU!

 We propose an estimator for determining parametric and semiparametric components of nonlinear models

 We use a moment forest as a classifier and estimator (although one could use any well-behaved approach here)

 Show sufficient conditions that this approach works

 Excited about the application of the framework to some real empirical settings

 Clustered standard errors

 Random coefficients

 Partially linear models



OBSERVATIONS

 Estimation with categorical variables can be treated as entering the model through a constant as a function of Z, 

where the categorical variables are in Z but not directly in X

 Also, can treat the categorical variables as continuous. Tree will partition if it needs to down to single groups. Much, 

much faster than all the combinations of bipartite partitions.

 For orthogonalization, in a sense our estimator is telling us what the structure of the model is; you can then use the 

two-step methods ala Robinson and S&S once that is done

 Can we formally show the equivalence of splitting on X and post-tree construction homogeneity testing?


