Market Power and Redistribution: Evidence from the Affordable Care Act¹

Maria PolyakovaStephen P. RyanStanfordWashington University in St. Louisand NBERCESifo and NBER

SITE August 2022

¹We gratefully acknowledge funding from AHRQ (Grant No. R03HS024800).

Broad motivation

- Negative effects of market power on consumers long recognized but focus on aggregates, not the distributional consequences
- > Yet market power can have substantial distributional implications
- Many government policies create markets that aim to both: (1) get efficiency gains from competition and (2) implement redistributional policies
- In this paper we use the empirical laboratory of publicly-subsidized health insurance markets to examine if these policy objectives may be in direct conflict with each other

Our Goals and Contributions

- 1. Outline general economic forces that govern distributional consequences of strategic intermediaries
 - Heterogeneous consumers
 - Uniform pricing
 - Firms with market power
- 2. Highlight general mechanism: a **demographic externality** wherein my price depends on demographic composition of neighbors
- 3. Quantify the efficiency and distributional losses from market power in an important program with strategic intermediaries and means-tested public transfers

Empirical context:

- ▶ Market for health insurance plans created in 2010 under the Affordable Care Act
- ▶ Why is ACA a good environment to study distributional effects of market power?
 - 1. In-kind means-tested subsidies
 - 2. Scope for intermediaries' market power

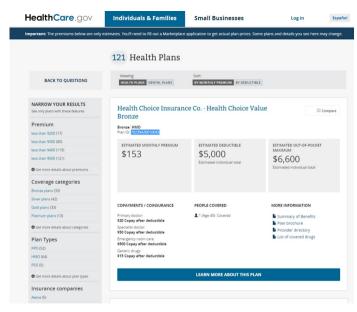
Preview of Results

- Market power:
 - ► 21% lower average CS
 - 15pp lower rate of insurance coverage
 - ► Firms capture 50% of surplus from public transfers
- Impact of market power varies across income groups
 - ▶ Willingness to pay for insurance low among low-income (subsidized) consumers
 - Larger relative losses from market power among low-income consumers
- Means-tested subsidy design *exacerbates* distortions from market power and is inefficient under a utilitarian welfare function
- Need high preferences for redistribution for the means-testing in the presence of market power to be the CS-maximizing policy

Setting and Data

Conceptual Mode

Empirical Model


Policy Simulations

- ACA Marketplaces individual health insurance contracts
- Ca. 9 million potential consumers
- Markets (roughly) at county level (2,561 counties)
- Consumers don't have to buy, but insurers have to sell
- ► Uniform list prices conditional on age and market²
- Consumers with low incomes eligible for means-tested subsidies

²Smoking status can be underwritten, but in practice is not verifiable.

Means-Tested Subsidies

- A key feature of the market is that list prices are uniform conditional on age, but consumers are eligible for means-tested subsidies
- CAP := maximum amount that tax family f "should" be spending on health insurance premiums
- SLSP := premium of the second cheapest Silver (70%) plan in family f's market for the coverage family
- Compute subsidy (tax credit) for tax family
 - ▶ If *CAP* > *SLSP*, subsidy=0
 - If CAP < SLSP, subsidy = (SLSP CAP)
 - Subsidy at most equal to actual premiums paid

- Online interface for plan choice personalizes premiums and cost-sharing
- Plans are highly multi-dimensional

Data

For year 2017 (closest to equilibrium set of institutions),

- Choice set data:
 - > CMS data on all plan features, plan premiums, and where plans are offered
- Enrollment data:
 - > Outside option (i.e. potential market size) data provided by KFF
 - CMS enrollment data: county by metal; county by demographic group; plan-level
- Demographics:
 - ACS survey restrict the sample to individuals without public insurance (incl. Medicaid expansion) or ESI

Summary Statistics

	Mean ³	Std. Dev.	10th pctile	90th pctile		
A. Choice set						
Number of large insurers Average annual premium (age 40), \$	2.16 5,106	1.13 902	1 3,978	4 6,351		
B. Enrollment						
Market size	7,867	25,756	479	15,671		
Share outside option	0.60	0.17	0.43	0.76		
Plan-level enrollment	3,165	12,040	39	6,353		
C. ACS Sample of Potential Consumers						
Age	39	2	36	42		
Income in % FPL	295	52	231	365		
Annual max premium subsidy, \$	2,349	1,244	919	4,226		

³Across counties; not population-weighted

Setting and Data

Conceptual Model

Empirical Model

Policy Simulations

Overview of Conceptual Model

Conceptual model has three key ingredients:

- 1. Heterogeneous consumers \rightarrow marginal cost, demand, subsidy
- 2. Uniform pricing rule
- 3. Firms that may have market power
- Three aims for the model:
 - 1. Uniform pricing rule has distributional implications per se
 - 2. Amplified with the introduction of type-specific subsidies
 - 3. Further amplified with the exercise of market power
- > Assume that subsidy schedule embeds policymaker's preferences for redistribution
- Bottom line: cautions against the use of private intermediaries in environments with redistributional objectives

Demand

• Unit mass of consumers faces a menu options, j = 1, ..., J, with associated utility:

$$U_{ij} = u_j(p_j, w_i, \theta_i, \epsilon_{ij}), \qquad (1)$$

where *i* indexes the consumer, p_j is the product's price, w_i are consumer characteristics, θ_i is a vector of utility parameters, and ϵ_i is a vector of preference shocks

- ▶ Usual discrete choice DGP: $U_{ij} > U_{ik}$, $\forall k$ and $U_{ij} > 0$.
- Market-level demand from aggregating demands:

$$s_j(p) = \int s_{jd}(p_j, w)g(w)dw, \qquad (2)$$

where $s_{jd}(p; d)$ is the share of consumers within group d who buy good j and density consumer characteristics g(w)

Uniform Pricing Rule Without Market Power

▶ Under perfect competition, prices are set equal to average marginal cost:

$$\bar{p}_j = \frac{1}{s_j(\bar{p})} \int c_{dw} \cdot s_{jw}(\bar{p}, w) g(w) dw.$$
(3)

- First observation: the regulatory prohibition on price discrimination has distributional implications
- Uniform pricing: pools together consumers of different types, competitive price that is the sum of marginal costs weighted by each consumer type's share of market demand
- Even without market power, the equilibrium price depends on the demographic composition of their market via a pooling mechanisms in the vein of Rothschild and Stiglitz (1976) and Waldfogel (2003)
- ► We label this economic relationship a "demographic externality"

Targeted Subsidies Introduce Another Dimension of Heterogeneity

• Denoting schedule of targeted subsidies as Z(w), demand shifts outward:

$$s_j(p, Z(w)) = \int s_{jw}(p, z_w)g(w)dw, \qquad (4)$$

Competitive price now determined by:

$$\hat{p}_j = \frac{1}{s_j(\hat{p}, Z(w))} \int c_{jw} \cdot s_{jw}(\hat{p}, z_w) g(w) dw.$$
(5)

- ► Second primary observation: pass-through (out-of-pocket reduction in expenditures) will generally not equal z_w since $\bar{p} \neq \hat{p}$
- Change in price in response to a marginal change in the subsidy to only type *a*:

$$\frac{d\hat{p}_{j}}{dz_{a}} = -\frac{(\hat{p}_{j} - c_{ja})\frac{\partial s_{ja}(\hat{p}, z_{a})}{\partial z_{a}}g(a)}{\int s_{jw}(\hat{p}, z_{w}) + (\hat{p}_{j} - c_{dw})\frac{\partial s_{jw}(\hat{p}, z_{w})}{\partial \hat{p}_{j}}g(w)dw} \neq 0$$
(6)

With Market Power

- Third observation: intermediaries with market power will further distort the equilibrium distribution of benefits from the targeted subsidy
- Key point: firms with market power equate marginal revenues and costs instead of average revenue and cost:

$$\int s_{jd}(\tilde{p}, z_d) + \tilde{p}_j \cdot \frac{\partial s_{jd}(\tilde{p}, z_d)}{\partial \tilde{p}_j} dD = \int c_{jd} \cdot \frac{\partial s_{jd}(\tilde{p}, z_d)}{\partial \tilde{p}_j} dD.$$
(7)

Change in prices with targeted subsidy:

$$\frac{d\tilde{p}_{j}}{dz_{a}} = -\frac{\frac{\partial s_{ja}(\tilde{p}, z_{a})}{\partial z_{a}} + (\tilde{p}_{j} - c_{ja}) \cdot \frac{\partial^{2} s_{ja}(\tilde{p}, z_{a})}{\partial \tilde{p}_{j} \partial z_{a}}}{\int 2 \frac{\partial s_{jd}(\tilde{p}, z_{d})}{\partial \tilde{p}_{j}} + (\tilde{p}_{j} - c_{jd}) \cdot \frac{\partial^{2} s_{jd}(\tilde{p}, z_{d})}{\partial \tilde{p}_{j}^{2}} dD} \leq 0$$
(8)

- Higher-order analogue of perfectly competitive counterpart
- Sign of expression is ambiguous: empirical matter

Summary: Equilibrium Consumer Prices with Targeted Subsidies

	Subsidy	Рн	PL
Competitive, $mc_i = \overline{mc}$	Yes	p = mc	p-s
Competitive, $mc_i = \overline{mc}$	No	p = mc	р
Incidence		0	5
Competitive, $mc_i \neq \overline{mc}$	Yes	$ar{p}^c = AVC(s>0)$	$ar{p}^c-s$
Competitive, $mc_i \neq \overline{mc}$	No	$p^c = AVC(s = 0)$	p^{c}
Incidence		$p^c-ar{p}^c$	$p^c - \bar{p}^c + s$
Market Power	Yes	$\widetilde{ ho}^m$	\widetilde{p}^m-s
Market Power	No	p^m	p^m
Incidence		$p^m - ilde{p}^m$	$p^m - \tilde{p}^m + s$

- ► Difference between intended redistribution and actual outcomes is: $p^m - \tilde{p}^m - p^c + \bar{p}^c$
- Bottom line: caution when using strategic intermediaries in environments with redistributional objectives

Setting and Data

Conceptual Mode

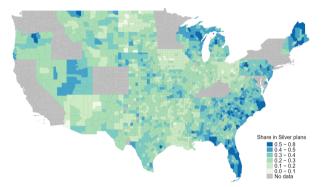
Empirical Model

Policy Simulations

Demand Model

We posit that individual i in family f in market t chooses plan j from the available choice set J, so as to maximize average family utility:

 $u_{ij} = -\alpha_{d(i)} p_{ij} + \psi_{d(i)} + \gamma A V_{ij} + \delta_j +$


Family f chooses a single plan or the outside option to maximize the average utility across family members:

$$\epsilon_{fj} + \frac{1}{N_f} \sum_{i \in f} u_{ij} > \epsilon_{fk} + \frac{1}{N_f} \sum_{i \in f} u_{ik}, \forall k \in J \text{ s.t. } k \neq j$$

- *p_{ij}* is the premium that depends on income and age
- $\psi_{a(i)}$ average level of utility that consumers of age a get from purchasing any plan
- ► AV_{ij} actuarial value of the plan that depends on income
- $\blacktriangleright~\delta_j$ non-parametrically captures the average utility from purchasing plan j
- > ϵ_{fj} family-level idiosyncratic taste shock for plan j
- \blacktriangleright Allow for demographic-group level variation in α

Demand Estimation and Identification

▶ Moments: market-metal; market-demographic cells; plan level (e.g. silver shares)

Price regulation as a source of identifying variation (similar in spirit to Tebaldi, Torgovitsky, Yang 2019) – consumers face regulation-induced different prices for the same plan due to differences in age composition of their coverage family and household income

Demand Estimates

Demand: parameters of utility function	Mean	Age ${<}25$	Age 25–40	Age >40
Coefficient on premium, \$000 (α)				
$\rm Income < 200\% \ FPL$		-5.17	-2.47	-2.21
		(0.33)	(0.16)	(0.14)
Income ${>}200\%$ FPL and ${<}400\%$ FPL		-4.32	-0.64	-3.94
		(0.27)	(0.04)	(0.26)
${\rm Income} > \!\! 400\% ~{\rm FPL}$		-1.13	-0.20	-0.46
		(0.07)	(0.01)	(0.04)
Age-specific intercepts		1.52	-1.72	base
		(0.10)	(0.11)	Dase
Actuarial Value	26.83			
	(1.69)			

▶ Higher-income consumers are less price sensitive at any age

Supply Model: Payoffs

• Profit function of firm f offering plan portfolio J_f :

$$\Pi_f(\mathbf{b}) = \sum_{j \in J_f} \sum_{d \in D} \left[(b_j au^d - c_j \kappa^d) s_j^d(p(b)) M^d
ight]$$

- d is consumer type (age/income)
- \blacktriangleright τ is a statutory age-adjustment revenue multiplier
- s^d_j(p(b)) the share of consumers in age-income group d that buys plan j; p(b) is the link function between list price and consumer price
- ▶ Demand (shares), subsidies, and costs vary by *d*
- ► The insurer maximizes profits by choosing a one uniform price for each plan j ∈ f that then gets age-adjusted exogenously with τ
- The chosen bid satisfies the FOC or the MLR constraint

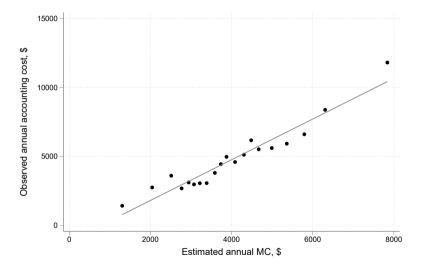
First-order Conditions

- Each insurer f chooses a vector of baseline list prices **b** to maximize profits
- Subject to regulatory constraints on profit margins (MLR), the optimal list price b_j for each plan $j \in J_f$ has to satisfy the following first-order condition:

$$\sum_{k \in J_f} \sum_{d \in D} \left[(b_k \tau^d - c_k \kappa^d) \frac{\partial s_k^d(p(b))}{\partial b_j} M^d + 1(j=k) \cdot \tau^d s_j^d(p(b)) M^d \right] = 0$$

Subsidies introduce a new term in the FOC that links premiums and plan list prices:

$$rac{ds_j(p(b))}{db_k} = rac{\partial s_j(p(b))}{\partial p_k} \cdot rac{\partial p_k}{\partial b_k}$$


 Last term varies between zero for highly subsidized consumers and one for unsubsidized consumers

Supply Model Estimates

Supply: inversion of first-order conditions	Mean	Std. dev.	Min	Max
Marginal cost for a 20 year old with income ${<}200\%$ FPL, $\$	$1,561^{\circ}$	457°	732°	$4,102^{-1}$
60% actuarial value plans	1,332	265	747	2,710
70% actuarial value plans	1,506	368	732	3,268
80% actuarial value plans	$2,\!137$	467	$1,\!173$	4,102
Estimated cost multipliers ^{\ddagger}				
$\rm Income < 200\% \ FPL$	$2.77^{\ddagger\ddagger}$			
Income $>200\%$ FPL and $<400\%$ FPL	$2.15^{\ddagger\ddagger}$			
Income $>400\%$ FPL	$1.97^{\ddagger\ddagger}$			

- Cost of coverage increases with plan generosity
- ► Lower-income consumers are more expensive for the firms to cover

Inverted MCs Highly Correlated with Accounting costs

Consumer Surplus

Baseline surplus for consumer *i* with a vector of marginal utilities θ_i takes the following form:

$$CS(heta_i) = rac{1}{lpha_i} \left[\gamma + \ln \left[1 + \sum_{j=1}^J \exp(u_{ij}(heta_i))
ight]
ight]$$

- $\blacktriangleright \gamma$ is Euler's constant
- Consumer surplus with preference for redistribution (Atkinson, 1970):

$$CS_i^{\lambda} = \begin{cases} \frac{1}{1-\lambda} [(y_i + CS_i)^{1-\lambda} - y^{1-\lambda} & \text{if } \lambda \neq 1, \\ \log(y_i + CS_i) - \log(y_i) & \text{if } \lambda = 1 \end{cases}$$
(9)

As \(\lambda\) increases, transfers to lower-income households become more valued by the society than equivalent transfers to higher-income households.

Setting and Data

Conceptual Mode

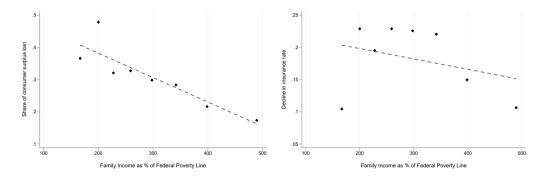
Empirical Model

Policy Simulations

 Quantifying the aggregate and distributional consequences of market power in ACA Marketplaces

Quantifying Market Power: Distortions in CS and Insurance Coverage

	With market power		Perfect competition		
	Observed	Remove (premium) subsidies	Keep subsidies; firms set $p = AC$	Remove subsidies; firms set $p = AC$	
Average across potential consumers (\$)					
Consumer surplus	2,495	2,152	3,147	2,534	
Insurer profit	729	338			
Taxpayer cost of subsidies	1,434	23	1,775	69	
Taxpayer cost net of savings on uncompensated care	614	-406	698	-548	
Insurance rate	0.45	0.23	0.59	0.34	
Average 20 year old list premium (unweighted), \$	2,401	2,239	1,743	1,592	
Among consumers buying insurance (\$)					
Average cost of covering a buyer	3,993	3,348	4,045	3,425	
Average list premium among buyers	5,618	4,788	4,044	3,426	
Insurer profit per buyer	1,625	$1,\!441$			
Taxpayer cost of subsidies per buyer	3,196	96	3,010	204	


▶ Market power leads to 21% lower CS and 15pp lower rate of insurance coverage

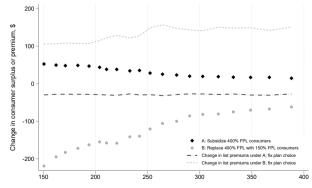
Quantifying Market Power: Distortions in Subsidy Pass-Through

	With market power		Perfect competition		
	Baseline – observed	Remove (premium) subsidies	Keep subsidies; firms set $p = AC$	Remove subsidies; firms set $p = AC$	
Average across potential consumers (\$)					
Consumer surplus	2,495	2,152	3,147	2,534	
Insurer profit	729	338			
Taxpayer cost of subsidies	$1,\!434$	23	1,775	69	
Taxpayer cost net of savings on uncompensated care	614	-406	698	-548	
Insurance rate	0.45	0.23	0.59	0.34	

- Subsidies crucial for stimulating enrollment, but consumers value insurance at less than its cash value
- With market power, \$1,400 subsidy spending per capita generates only \$734 extra CS+PS - large DWL
- Firms capture 53% of the generated surplus

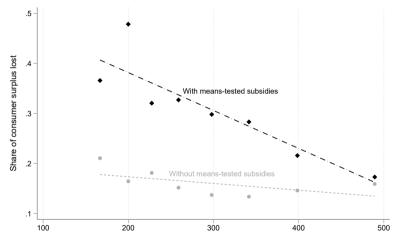
Distributional Effects of Market Power

 Higher relative loss in CS from market power among lower-income consumers; higher absolute loss in insurance coverage Role of subsidy design in driving the aggregate and the distributional effects of market power

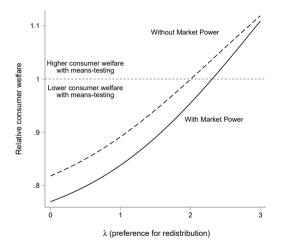

Demographic Externality

- Under (conditionally) uniform price regulation, the composition of consumer types matters for what prices firms set – a "demographic" externality
- At baseline, consumers vary in their demand (level and slope) and cost of coverage

 correlated with level of income
- Means-tested subsidies alter the demand dimension of heterogeneity
- Changes the composition of who buys the product and pricing incentives of firms with market power


Demographic Externality: Example of American Rescue Plan Act

- Which consumers are subsidized and the level of subsidies matters for prices that other consumers face
- Example: introducing subsidies for 400% FPL + consumers (American Rescue Plan Act) decreases prices slightly for everyone else.


Family Income as % of Federal Poverty Line

Means-Tested Subsidies Exacerbate Distributional Effects of Market Power

Family Income as % of Federal Poverty Line

Equity-Efficiency Tradeoff in Subsidy Design

 For any preference for redistribution, surplus losses from means-testing are higher when market power is present

 In the presence of market power, need higher preferences for redistribution to prefer means-testing over flat subsidies

Conclusion

- Long literature in IO critiquing public enterprise
- Policy response: "leverage the private sector"
- This paper: cautions against the use of private intermediaries in environments with redistributional objectives
- Bottom line: have to have strong preference for redistribution to make targeted subsidies in the ACA efficient
- Still to do: calculate change in provision marginal cost to equate public provision with private outcomes

THANK YOU!

THANK YOU!