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Abstract

The degree to which consumers treat different options as distinct or differ-
entiated is a key determinant of market competition and pricing. To facilitate
the measurement of differentiation, we develop a flexible yet tractable model of
random choice in a multi-attribute setting. We show the analyst can separately
identify vertical and horizontal differentiation from binary comparison data alone.
We characterize the binary choice rules that arise from our model using four easily
understood axioms. In multinomial choice, we show that the intersection of our
model with the classic random utility framework yields random coefficients with an
elliptical distribution. We provide applications to consumer demand with differen-
tiated products and to measuring the complexity faced by an agent in individual
decision-making problems.
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1 Introduction

The degree to which consumers treat different options as distinct or differentiated is a key

determinant of market competition and pricing. Measuring differentiation is therefore

important for determining the substitutability of different products in demand analysis;

evaluating the impact of mergers and acquisitions; assessing the welfare consequences of

product innovation; and understanding how the competitive environment of an industry

evolves over time.

To facilitate the measurement of differentiation, in this paper, we develop and analyze

a model of random choice in a multi-attribute setting. We make two main contributions:

first, we provide a flexible framework in which vertical and horizontal product differen-

tiation are uniquely revealed from observed choice frequencies. Second, we establish

behavioral foundations for applying our framework by providing two characterization

theorems that determine the testable implications of the model for binary comparison

choice and for multinomial choice.

We start with the analysis of random choice in binary comparison problems. In our

linear differentiation model, which we introduce in detail in Section 3, differentiation

takes the form of a generalized Euclidean distance between options. This distance is

parameterized by a positive definite matrix, which flexibly accommodates the degree to

which each observable attribute contributes to choice options being treated as more or

less differentiated by decision makers. Our formulation allows us to obtain a unique

decomposition of the differentiation between the options into its vertical and horizontal

components (Proposition 1) and to fully identify these components and the remaining

parameters of the model from binary choice data (Proposition 2). In Theorem 1, we

fully characterize the binary choice behavior that arises from this model using four

easily understood axioms.

Next, we extend the analysis from binary choice to multinomial choice. In The-

orem 2, we characterize the intersection of the linear differentiation model with the

classic random coefficients framework of discrete choice estimation. Formally, we com-

bine the multinomial choice postulates from the random expected utility theory of Gul

and Pesendorfer (2006) with our binary choice postulates, and we show this yields a

very convenient elliptical distribution for the random coefficients representation, which

is unique up to scaling.

We offer two applications of our results. Our first application is to aggregate con-

sumer demand with differentiated products. In this setting, the random choice model
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captures the heterogeneity of tastes in a population of standard rational consumers, and

choice probabilities represent the market shares of different products. Our theory offers

a direct application for empiricists in that it provides a new interpretation of typical

estimated parameters from demand models. Using the automobile demand estimates of

Berry et al. (1995), we illustrate how our vertical and horizontal differentiation measures

can shed light on the product differentiation strategies employed by firms.

Our second application contributes to a growing literature that models imprecision

and noise in individual decision making (see Woodford, 2020, for a recent review). In this

application, the choice probabilities of our random choice model reflect the variability of

individual choices due to imperfect information, mistakes, or rationally inattentive be-

havior. We show that our vertical and horizontal differentiation decomposition resolves

the existing theoretical and empirical ambiguity concerning the fundamental relation-

ship between the ability of a decision maker to correctly discriminate between options

and the distance between those options in the attribute space. In particular, we show

that our horizontal differentiation measure offers a precise and quantifiable notion of the

complexity of the tradeoffs faced by an agent in binary decision-making problems. We

illustrate the measurement of complexity in a simple application using the experimen-

tal choice data from Tversky and Russo (1969), where subjects compare rectangles of

different sizes.

1.1 Related Literature

The axiomatic literature on random choice has largely focused on the shortcomings of the

classic logit model (Luce, 1959), proposing generalizations to address its limitations (Gul,

Natenzon and Pesendorfer, 2014; Fudenberg, Iijima and Strzalecki, 2015; Echenique

and Saito, 2019; Dutta, 2020; Horan, 2021; Faro, 2023; Chambers, Cuhadaroglu and

Masatlioglu, 2023). We share with this literature the goal of accounting for the role of

product differentiation in choice, which is assumed away by the classic logit model. We

take a different starting point, however, in that we offer a generalization of the classic

probit model (Thurstone, 1927). A second important departure from this literature is

that we explicitly model the observable attributes of the choice options, and our axioms

directly relate to the observable characteristics of the choice objects. This allow us to

provide a novel measurement of product differentiation uniquely decomposed into its

vertical differentiation and horizontal differentiation components, and to directly relate

our results to applications with real-world data.
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Our elliptical random coefficients model belongs to the class of random parameter

models studied by Apesteguia and Ballester (2018), who show this class satisfies desirable

monotonicity properties.

Our Theorem 2 builds on Gul and Pesendorfer (2006), who characterize a random

expected utility model with four axioms in the context of risky choice. In Theorem 2, we

bring their postulates from the choice over lotteries environment to choice options that

are vectors in an Euclidean space. We impose three additional postulates to obtain our

elliptical coefficient representation. These three additional postulates put restrictions

solely on binary choice comparisons, and yield the representation that allows us to pin

down vertical and horizontal differentiation uniquely from choice data.

He and Natenzon (2023) study binary choice in an abstract setting, that is, without

any observable attributes. They show that a wide variety of random choice models are

special cases of the moderate utility binary choice formula proposed in Halff (1976).

They prove that the moderate utility formula is equivalent to the moderate transitivity

postulate, which is one of the key assumptions in our Theorems 1 and 2. Hence, both

our linear differentiation model and our random elliptical coefficients model are special

cases of the very general moderate utility formula.

Our results also relate to the demand estimation literature in industrial organiza-

tion. Accounting for the degree of differentiation between choice options is essential

for the analysis of demand in several markets such as automobiles (Berry et al., 1995),

ready-to-eat cereal (Nevo, 2001), online newspapers (Gentzkow, 2007), and health plans

(Einav et al., 2013). Formally, we study what the industrial organization literature calls

a pure characteristics model (Berry and Pakes, 2007). Our Theorem 2 offers a complete

non-parametric characterization of the pure characteristics models with elliptically dis-

tributed coefficients. In Proposition 4, we also characterize the important special case

of independent Gaussian coefficients commonly assumed in the literature.

Often, empiricists estimate these models with additional iid error terms to utility,

both in an effort to account for unobserved factors and for computational convenience

(McFadden and Train, 2000). Lu and Saito (2022) study the effects of these additional iid

error terms, and their analysis implies predictable deviations from our random choice

postulates. Those differences aside, our results allow us to re-interpret some of the

demand estimates obtained in this literature. In Section 5.1 we use the demand estimates

from Berry et al. (1995) to illustrate how our vertical and horizontal differentiation

measures can provide insight into the product characteristics decisions of firms.
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Finally, our paper also relates to the behavioral economics literature that studies

stochastic individual choice due to imperfect information, imperfect perception, and

noisy cognition— e.g. Natenzon (2019) and He (2023); see Woodford (2020) for a recent

review.

In particular, we touch on a theoretical and experimental literature that attempts to

quantity the complexity faced by decision makers, and to relate measures of complexity

to stochastic choice behavior (e.g. Oprea, 2022; Enke et al., 2023; Enke and Graeber,

2023; Puri, 2023). Puri (2023), for example, shows the number of prizes in the support

of a lottery is a quantitatively meaningful indicator of the effect of complexity on choice

behavior. Our results contribute to this literature by providing foundations for a new

measure of complexity, endogenously obtained from choice data. In Section 5.2, we show

our horizontal differentiation measure captures the complexity of evaluating tradeoffs

between two options, independent from utility. We also relate our complexity measure

to the literature of endogenous information acquisition, aka rational inattention (Sims,

2003; Matejka and McKay, 2015; Hebert and Woodford, 2021; Pomatto et al., 2023;

Dean and Neligh, 2023).

The rest of the paper is organized as follows. Section 2 introduces the setup. Sec-

tion 3 presents the linear differentiation model; introduces our vertical and horizontal

differentiation decomposition; and contains the identification and characterization re-

sults for binary choice. Section 4 introduces the elliptical random coefficients model and

contains the analysis of multinomial choice. Section 5 contains our applications to ag-

gregate consumer demand with differentiated products and to measuring the complexity

faced by an agent in individual choice problems.

2 Model

We consider a setting in which choice options are differentiated across multiple attributes.

Each option x = (x1, . . . , xn) is identified with its location in Rn. A decision problem is

a finite subset A ⊂ Rn. The primitive observed by the analyst is a choice rule ρ mapping

each option x ∈ Rn and each decision problem A to a probability 0 ≤ ρ(x,A) ≤ 1. A

choice rule assigns ρ(x,A) > 0 only if x ∈ A and satisfies∑
x∈A

ρ(x,A) = 1
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for every decision problem A.

In the population interpretation of random choice, ρ describes market shares. That

is, ρ(x,A) is the proportion of consumers that choose x when the set of available options

in the market is A. Alternatively, ρ may describe the stochastic behavior of a single

agent, where ρ(x,A) is the probability that the individual chooses x from A.

Binary choice problems are common in the experimental literature and play a special

role in the theoretical analysis that follows. For a binary decision problem A = {x, y},
with x ̸= y, we will write ρ(x, y) instead of ρ(x, {x, y}). When a choice rule ρ is restricted

to binary choice problems, we will call it a binary choice rule. Let D = {(x, y) ∈
Rn × Rn : x ̸= y} be the set of all ordered pairs of distinct options in Rn. Then, a

binary choice rule is a function ρ : D → [0, 1] such that ρ(x, y) + ρ(y, x) = 1 for every

x ̸= y. In the population interpretation of random choice, ρ(x, y) is the proportion of

a heterogeneous population that preferes x to y. In the individual stochastic choice

behavior interpretation, ρ(x, y) is the probability that the individual chooses x in a

binary comparison against y. We start with the analysis of the special but important

binary choice case, and we leave the general multinomial choice analysis to Section 4.

3 Binary choice

We now introduce the linear differentiation model, a parametric representation for a

binary choice rule ρ. A linear function U(x) captures the utility of each option, and a

generalized Euclidean distance ∥x−y∥ measures the differentiation between the options.

An option x is chosen over y with probability

ρ(x, y) = F

(
U(x)− U(y)

∥x− y∥

)
(1)

where F is a continuous, strictly increasing transformation. Note that since ρ(x, y) +

ρ(y, x) = 1, we must have F (t) + F (−t) = 1 for all t and, in particular, F (0) = 1/2.

The linear differentiation model (1) writes the strength with which x is preferred

to y as a ratio: strength of preference is directly proportional to utility difference, and

inversely proportional to differentiation. The transformation F maps strength of prefer-

ence to choice probabilities. It follows from (1) that two options x ̸= y are chosen equally

often in a binary comparison if and only if they have the same utility. For example, in

Figure 1 options x and x̂ lie on the same indifference curve and therefore ρ(x, x̂) = 1/2.
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Note the important role of differentiation in the denominator: for any fixed utility

difference U(x) − U(y), increasing the differentiation ∥x − y∥ between x and y drives

choice probabilities closer to 1/2, capturing the fact that more differentiated options are

less substitutable and harder to compare. For example, in Figure 1 option y has lower

utility than x and x̂, and therefore ρ(x, y) > 1/2 and ρ(x̂, y) > 1/2. However, y is more

differentiated from x than from x̂, that is, ∥x − y∥ > ∥x̂ − y∥. A larger differentiation

between x and y means that choice is less decisive, that is, ρ(x̂, y) > ρ(x, y) > 1/2.

The differentiation ∥x−y∥ in the linear differentiation model is given by a generalized

Euclidean distance. This means the norm ∥ · ∥ is generated by an inner product, and

there is a unique n× n symmetric positive-definite matrix Σ such that, for every x, y,

∥x− y∥ =
√

(x− y)′Σ(x− y).

Moreover, the utility function U is linear, so there is a unique utility vector u ∈ Rn such

that U(x) = u′x for every x. Writing the parameters as a triple (u,Σ, F ), the linear

differentiation model becomes

ρ(x, y) = F

(
u′(x− y)√

(x− y)′Σ(x− y)

)
. (2)

3.1 Vertical and horizontal differentiation

Our framework allows us to obtain a unique decomposition of the difference x−y between

any two options x, y into two components, which we call the vertical and horizontal

differentiation, following the language used in the spatial differentiation literature in

industrial organization (see e.g. Lancaster, 1979).

We say that x and y are (purely) vertically differentiated if they solve the choice

probability maximization problem maxx,y ρ(x, y). In other words, vertical differentiation

maximizes the agreement among consumers over the ranking of two options. Conversely,

we say that x and y are (purely) horizontally differentiated when the agreement among

consumers is minimized, that is, when ρ(x, y) = 1/2. The interpretation is that vertical

differentiation reflects quality differences that generate consensus, while horizontal dif-

ferentiation reflects variety instead of quality, with the ranking of options depending on

the tastes or location of each particular consumer.

Our definitions of vertical and horizontal differentiation are behavioral, written solely

in terms of observable choices given by ρ. Our first result relates vertical and horizontal
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differentiation to the parameters (u,Σ, F ) of the linear differentiation model.

Proposition 1. Let ρ be a linear differentiation model with parameters (u,Σ, F ). Then:

(i) x and y are vertically differentiated if and only if x− y = αΣ−1u for some α ̸= 0;

(ii) x and y are horizontally differentiated if and only if u′x = u′y;

(iii) x, y vertically and w, z horizontally differentiated implies (x− y)′Σ(w − z) = 0;

(iv) Any x− y is uniquely decomposed into vertical and horizontal differentiation by:

x− y =

[
Σ−1uu′

u′Σ−1u

]
(x− y) +

[
I − Σ−1uu′

u′Σ−1u

]
(x− y).

We prove Proposition 1 in the Appendix. This result shows that in the model the dif-

ferentiation between any two options x and y admits a unique decomposition into verti-

cal and horizontal differentiation components and, moreover, that these two components

are always orthogonal according to the inner product that generates the differentiation

norm.

To illustrate the vertical and horizontal differentiation decomposition, consider again

options x and y in Figure 1. Option x has a higher value than option y and lies on a

higher indifference curve. An orthogonal projection of y onto the indifference curve for x

using the inner product given by Σ yields option x̂. To see this, note that differentiation

from y is represented by the gray ellipsoids centered around y. Option x̂ lies on the

ellipsoid that is exactly tangent to the indifference curve containing x. Hence it has the

smallest differentiation among the options indifferent to x.

This, in turn, means that x̂ and y in Figure 1 are vertically differentiated, that is,

ρ(x̂, y) attains maximum choice probability. To see why, note that along the indifference

curve containing x, every option has the same difference in utility compared to y, that is,

the same numerator in equation (2). However, the options along the indifference curve

containing x have varying levels of differentiation from y, corresponding to different

denominators in (2). Since x̂ yields the minimum denominator, it achieves the maximum

choice probability against y. By Proposition 1 we have

∥x− y∥ =
√
∥x− x̂∥2 + ∥x̂− y∥2

where ∥ · ∥ denotes the inner product norm generated by Σ. Next, we show how vertical

and horizontal differentiation can be uniquely identified from binary choice data.
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u

x

y

x̂

Figure 1: Linear differentiation model. Straight black lines represent indifference curves.
Each ellipsoid centered on y represents options that are equally differentiated from y.
Among the options indifferent to x, there is a unique option x̂ that is closest to y. The
difference x− y admits a unique orthogonal decomposition: x̂− y maximizes agreement
among consumers (pure vertical differentiation), while x−x̂ minimizes agreement among
consumers (pure horizontal differentiation).

3.2 Identification

The parameters (u,Σ, F ) of the linear differentiation model are unique up to scaling by

three positive constants:

Proposition 2 (Uniqueness). Let (u,Σ, F ) represent linear differentiation model ρ with

u ̸= 0 and let T =
√
u′Σ−1u. Then (û, Σ̂, F̂ ) also represent ρ iff there exist A,B,C > 0

such that:

(i) û = Au;

(ii) Σ̂ = B2 (Σ− uu′/T 2) + C2 (uu′/T 2);

(iii) F̂ (t) = F
(
tB/

√
A2 + (B2 − C2)(t/T )2

)
for all t ∈ [−AT/C,AT/C].

Proposition 2 determines the permissible transformations of the model parameters.

Item (i) says utility is unique up to scaling by a constant A > 0. Item (ii) says the

differentiation metric is unique up to scaling by two constants B,C > 0. The constant
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B > 0 scales the horizontal differentiation component, while the constant C > 0 scales

the vertical differentiation component. Item (iii) determines the only permissible trans-

formations of F , providing an explicit formula for how to obtain F̂ from F and the

scaling factors A,B,C > 0. In particular, when B = C we obtain a simple rescaling of

the domain F̂ (t) = F (tB/A).

One main takeaway from Proposition 2 is that all the parameters of the model

are uniquely pinned down with three straightforward normalizations. First, we must

normalize the scale of the utility vector by imposing, for example, the normalization

u2
1 + · · · + u2

n = 1. Second, we must normalize the scale of the differentiation metric

along the horizontal and vertical dimensions, for example, by imposing u′Σ−1u = 1 and

Trace(Σ) = 2. Proposition 2 then yields that no further transformations are permissible,

and (u,Σ, F ) are uniquely pinned down.

A second important takeaway from Proposition 2 is that horizontal differentiation

and vertical differentiation can be uniquely measured from binary comparison choice

data, each one with their own scale. Separate scales for horizontal and vertical differ-

entiation means that statements such as “x and y are more horizontally differentiated

than w and z”, or “x and y are more vertically differentiated than w and z” are mean-

ingful. But to compare the total amount of differentiation across pairs of options, we

need additional information that pins down the relative scales of horizontal and vertical

differentiation.

To pin down these relative scales, we may use a special regressor. This is an observable

attribute, such as price, that unambiguously affects the utility of the options but does

not affect differentiation. If a special regressor is available, Proposition 2 implies the

relative scale of horizontal and vertical differentiation is uniquely pinned down. We

illustrate this with a classic example of automobile demand estimates in Section 5.1.

3.3 Characterization

We provide four straightforward postulates on a binary choice rule ρ which we use to fully

characterize the linear differentiation model in Theorem 1. First, it is immediate from

the formula in (1) that every linear differentiation model is continuous in the domain

D. Second, the assumptions that utility is a linear function and that differentiation is a

norm imply the model is linear, that is, we have

ρ(x, y) = ρ(αx+ (1− α)z, αy + (1− α)z)
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for any options x, y, z and 0 < α < 1. Third, the assumption that the differentiation

norm comes from an inner product implies the model is balanced : whenever ρ(x, y) =

1/2, ρ(x, z) > ρ(y, z) > 1/2, and 1/2 < α < 1, we have

ρ(αx+ (1− α)y, z) > ρ(αy + (1− α)x, z).

Finally, the model is also moderately transitive: if ρ(x, y) ≥ 1/2 and ρ(y, z) ≥ 1/2, then

we must have ρ(x, z) > min{ρ(x, y), ρ(y, z)} or else ρ(x, z) = ρ(x, y) = ρ(y, z). These

four postulates are not only necessary but also sufficient:

Theorem 1. A binary choice rule ρ is a linear differentiation model if and only if ρ is

continuous, linear, balanced and moderately transitive.

We prove Theorem 1 in the Appendix. This characterization result shows that four

straightforward properties exhaust the testable implications of the linear differentiation

model. Continuity and linearity are familiar postulates from the random choice litera-

ture (e.g. Gul and Pesendorfer, 2006). Moderate transitivity is one of several possible

transitivity postulates for binary random choice. While stronger and weaker transitivity

postulates have been extensively used, moderate transitivity provides a useful compro-

mise between flexibility and predictive power (He and Natenzon, 2023). Finally, the

postulate that ρ is balanced is, to the best of our knowledge, novel in the random choice

literature and therefore deserves some additional discussion and motivation.

To interpret the postulate, suppose x and y are two political candidates that divide

the population of voters equally ρ(x, y) = 1/2 by having the same overall quality but

very distant political platforms and proposals. Now suppose z is a candidate of lower

quality than x and y but much closer to x in terms of political platform and proposals.

Being of higher quality, both x and y would beat z in an runoff election. The contest

between y and z involves significant tradeoffs in terms of platforms, making the election

more divisive, and y beats z with a small margin. However, in a contest between x and z

the platform tradeoffs are much smaller and x’s higher quality makes the choice easier for

many voters. Hence x beats z by a larger margin. In other words, ρ(x, z) > ρ(y, z) > 1/2.

The balanced postulate requires the inequality ρ(x, z) > ρ(y, z) to be preserved when

both x and y move their platforms towards their midpoint x/2 + y/2. In fact, for each
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mixture weight 0 < β < 1 we have

βx+ (1− β)
(x
2
+

y

2

)
=

(
1

2
+

β

2

)
x+

(
1

2
− β

2

)
y = αx+ (1− α)y

βy + (1− β)
(x
2
+

y

2

)
=

(
1

2
+

β

2

)
y +

(
1

2
− β

2

)
x = αy + (1− α)x

where α = 1/2 + β/2 > 1/2 for every β.

Voting is more decisive in favor of x against z than in favor of y against z. The

postulate requires voting to remain more decisive when we substitute the mixture αx+

(1 − α)y which gives more weight to x for x, and the mixture αy + (1 − α)x which

gives more weight to y for y. This intuitive property holds because the norm in the

linear differentiation model comes from an inner product. Figure 2 shows an example

where relaxing the assumption of inner product norm in the linear differentiation model

generates a binary choice rule ρ that fails to be balanced.

u

αy + (1− α)x

αx+ (1− α)y

x

z
y

x/2 + y/2

Figure 2: Relaxing the inner product norm assumption in the linear differentiation model
allows binary choice rules which fail to be balanced. Each rectangle represents options
that are equally differentiated from option z. The rectangular shape is compatible with
a norm that cannot be generated from an inner product. In this norm, x and z are less
differentiated than y and z, but the mixture αx+(1−α)y and z are more differentiated
than the opposite mixture αy + (1− α)x and z.

Together with Propositions 1 and 2, Theorem 1 provides behavioral foundations for

measuring vertical and horizontal differentiation using binary choice data. Binary choice
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data is commonly collected in lab experiments. However, many applications in economics

involve choice data from menus with more than two options. In the next Section, we

extend the analysis to multinomial choice.

4 Multinomial choice

A choice rule ρ is a random coefficients model when there exists an n-dimensional random

vector β such that, for each menu A and each option x ∈ A,

ρ(x,A) = P {β′x ≥ β′y ∀y ∈ A} . (3)

Note that for (3) to hold, the random vector β must satisfy the following regularity

condition:

P {β′x = β′y} = 0, for all x ̸= y. (4)

In other words, utility ties always have zero probability in a random coefficients model,

for otherwise there would be some x, y with ρ(x, y) + ρ(y, x) > 1 and the represented

ρ would fail to be a choice rule. This requirement rules out, for example, that the

distribution of β has any atoms.

The random coefficients model is a workhorse in industrial organization (e.g. Haus-

man and Wise, 1978; Berry et al., 1995; Nevo, 2000), where the random vector β cap-

tures heterogeneity of tastes in a population of rational, utility maximizing consumers.

In the setting of choice under risk, this formulation yields the random expected utility

model (Gul and Pesendorfer, 2006). Our next Theorem characterizes the intersection

of our linear differentiation model (1) with the random coefficients framework (3), and

pins down the distribution of the random coefficients vector β.

A k-dimensional random vector ε has a spherical distribution when Γβ and β have

the same distribution for every orthogonal k × k matrix Γ. If a k-dimensional ε has

a spherical distribution, u is a vector in Rn for some n ≥ k, and Λ is an n × k full-

rank matrix, then u + Λε has an elliptical distribution. The distribution is unbounded

when it has an unbounded support. The class of elliptical distributions with unbounded

support contains the multivariate Gaussian, multivariate Cauchy, multivariate t, and

multivariate exponential as special cases.

Definition. A random coefficients model ρ in Rn is an elliptical coefficients model

when the random coefficient vector β = u+ Λε is elliptical and the spherical vector ε is
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(n− 1)-dimensional and unbounded.

The next result shows that if two random coefficient models represent the same choice

rule ρ, then they must have the same distribution for β up to a simple positive scaling.

Proposition 3 (Uniqueness). The distribution of the random coefficients vector β is

unique up to scaling in the elliptical coefficients model.

Since the elliptical coefficients model is a random coefficients model (3), it inherits

four postulates for a multinomial choice rule from the Gul and Pesendorfer (2006) ran-

dom expected utility representation: ρ is continuous, linear, extreme and monotone. We

now define and discuss each one.

The continuity postulate in Gul and Pesendorfer (2006) extends the continuity pos-

tulate from Theorem 1 from binary to multinomial choice rules. Note that ρ maps each

finite menu of options in Rn to a probability measure on the Borel sigma-algebra in Rn.

We endow the set of all finite subsets of Rn with the topology induced by the Hausdorff

metric, and we endow the set of probability measures on the Borel sigma-algebra with

the topology of weak convergence. A multinomial choice rule ρ is continuous when this

induced mapping is continuous.

A multinomial choice rule ρ is linear if for each x ∈ A, y ∈ Rn and 0 < α < 1,

ρ(x,A) = ρ(αx+ (1− α)y, {αz + (1− α)y : z ∈ A}).

This definition is a straightforward extension of our linearity postulate from binary

choice to multinomial choice.

A choice rule ρ is monotone if ρ(x,A) ≥ ρ(x,B) whenever A ⊆ B. This means

the market share of a product x can only decrease when new competing products are

introduced. This postulate ties together the choices from menus with different numbers

of options, and therefore imposes no restrictions when only binary choices are available.

Finally, a choice rule ρ is extreme if ρ(x,A) > 0 implies x is an extreme point of A.

It is easy to see that both options are extreme in any binary menu, hence this postulate

only restricts behavior from menus with three options or more.

We provide a characterization of the model under the assumption that choice prob-

ability one is achieved for some pair of options. A choice rule ρ is full if ρ(x, y) = 1 or

some x, y. Together with linearity, this postulate implies there exists a direction in the

attribute space —such as a price decrease, for example— which all consumers agree is

desirable.
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Theorem 2. A multinomial choice rule ρ is an elliptical coefficients model if and only

if ρ is continuous, linear, monotone, extreme, balanced, moderately transitive, and full.

We prove this result in the appendix. The four postulates from Gul and Pesendorfer

(2006) yield their random coefficients representation for multinomial choice; only two

of them (ρ is continuous and linear) put restrictions on binary choice. Adding two ad-

ditional postulates on binary choice (ρ is balanced and moderately transitive) we can

invoke Theorem 1 to yield the linear differentiation representation for binary choices.

The main step in the proof uses this linear differentiation representation to show the

distribution of the coefficients in the random coefficients representation must be ellipti-

cal.

The proof also reveals the mapping between the two parametric representations. Re-

call the linear differentiation representation has three parameters (u,Σ, F ). By Propo-

sition 2, it is a permissible transformation to rescale the vertical differentiation distance

by a constant C > 0; a corresponding adjustment in the transformation F maintains

the binary choice behavior the same. Taking the limit C → 0 we obtain a new triple

(u, Σ̂, F̂ ) where the new Σ̂ now has rank n − 1 and still represents an inner product

norm along the horizontal differentiation dimensions, while giving the vertical differen-

tiation dimension length zero. The new F̂ obtained using the formula in Proposition 2

with C → 0 is a strictly increasing cumulative distribution function with unbounded

support on the real line. These parameters describe the distribution of the elliptical β

coefficients: we have β = u + Λε where Σ̂ = ΛΛ′ and F̂ is the marginal cumulative

distribution function that fully characterizes the spherical ε.

Theorem 2 shows the extension of the linear differentiation model to multinomial

choice using the random coefficients framework yields random coefficients with an el-

liptical distribution. The result provides behavioral foundations for the measurement

of vertical and horizontal differentiation in multinomial choice. In the next Section we

provide a natural application of this result to model aggregate consumer demand.

5 Applications

Our first application is to aggregate consumer demand with differentiated products,

using the population interpretation of ρ. Our second application uses the individual

random choice interpretation of ρ to offer a measure of the complexity faced by an agent

in binary decision-making problems.
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Some applications have a natural restriction of the domain of choice options to strict

subsets of Rn. For example, prices are positive reals in consumer demand, and lotteries

are restricted to a probability simplex in risky choice. We start with a lemma showing

that our results apply to many kinds of restricted domains without any loss of generality.

Lemma 1. If K ⊂ Rn has a non-empty interior and the choice rule ρ on K is linear,

then ρ has a unique linear extension to all of Rn.

Proof. Let the choice rules ρ′ and ρ′′ be two linear extensions of ρ to Rn, let A be a

finite subset of Rn and let x ∈ A. We must show that ρ′(x,A) = ρ′′(x,A). Since K has

a non-empty interior, there exists an option z in the interior of K. That is, there exists

an open ball centered on z and contained in K. Hence, for 0 < α < 1 sufficiently small

we have αA+ (1− α)z contained in K. By linearity, we have

ρ′(x,A) = ρ′(αx+ (1− α)z, αA+ (1− α)z)

= ρ(αx+ (1− α)z, αA+ (1− α)z)

= ρ′′(αx+ (1− α)z, αA+ (1− α)z)

= ρ′′(x,A).

5.1 Consumer demand

To analyze consumer demand data, we assume the analyst observes the price px ≥ 0 for

each option x, in addition to observing the vector of n product characteristics, and we

write each option x = (x1, . . . , xn, px) as an n+ 1 dimensional vector in Rn × R+.

Consider a demand system described by a multinomial choice rule ρ satisfying the

postulates of Theorem 2. In this application ρ is full as a consequence of assuming that

every consumer prefers to pay less for the same product, that is,

px < py and xi = yi for i = 1, . . . , n− 1 implies ρ (x, y) = 1. (5)

By Theorem 2, ρ admits an elliptical coefficients representation, in which the indirect

utility of each option x = (x1, . . . , xn, px) can be written as

V (x) =
n∑

i=1

βixi + βn+1px (6)
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where β = u+Λ′ε is the elliptical vector of random coefficients, and ε is spherical with

unbounded support and of dimension n.

The coefficient −βn+1 captures the distribution of the marginal utility of income in

the population. Assumption (5) implies βn+1 < 0 almost surely. Moreover, since ε has

unbounded support we must have βn+1 < 0 is in fact constant, and the covariance matrix

for random coefficients takes the form

ΛΛ′ =

[
M 0

0 0

]

where M is a symmetric n× n positive definite matrix.

Even though the coefficient βn+1 is constant, the model still accommodates a hetero-

geneous marginal utility of income in the population. To see this, let the true distribu-

tion of marginal utility of income be given by any random variable γ with γ > 0 almost

surely. Multiplying every βi by −γ/βn+1 we obtain an equivalent random coefficients

model where −γ is the random coefficient on price. Hence, under the postulates of The-

orem 2, the heterogeneity of marginal utility of income is absorbed into the n elliptical

random coefficients β1, . . . , βn without loss of generality.

Some multinomial choice models commonly used in empirical industrial organization

(Hausman and Wise, 1978; Berry, Levinsohn and Pakes, 1995; Nevo, 2000) are special

cases of this framework, fixing a particular elliptical distribution for the coefficients:

Example 1. The random coefficients model of Hausman and Wise (1978) assumes a

linear utility function V (x) = β1x1 + · · · + βnxn where the vector of coefficients β =

(β1, . . . , βn) is random with a joint Gaussian distribution β ∼ N
(
β̄,Σ

)
. The probability

that x is preferred to y in this model is given by

ρ(x, y) = P{V (x) > V (y)} = Φ

(
β̄′x− β̄′y√

(x− y)′Σ(x− y)

)
.

An important caveat, however, is that the full econometric specification used in the

empirical literature often includes additional additive independent error terms to utility.

Lu and Saito (2022) show these additional noise terms introduce systematic deviations

from our postulates. Here, we ignore these additional error terms and focus on the main

structural component of these demand estimation models, sometimes called the “pure

characteristics” model (Berry and Pakes, 2007).

By Proposition 3, the parameters of Example 1 are unique up to scaling and therefore

17



can be uniquely pinned down with one single normalization of scale. This can also be seen

directly using the uniqueness result in Proposition 2. Since F = Φ is fixed in Example 1

to be the standard Gaussian cdf, item (iii) in Proposition 2 implies the only remaining

permissible transformations must have three equal scaling parameters A = B = C > 0.

Hence, a single normalization (for example setting the utility vector u to have unit norm)

pins down all the remaining parameters using binary choice comparison data alone.

The estimation literature often assumes the random coefficients β1, . . . , βn are inde-

pendent Gaussian variables (e.g. Berry, Levinsohn and Pakes (1995)), which corresponds

to assuming a diagonal matrix Σ in Example 1. Our next result pins down the empirical

content of this parametric restriction.

We say that a choice rule ρ is factorable if

ρ(x, {x, y, z}) = ρ(x, y) · ρ(x, z)

whenever y differs from x only in the i-th attribute and price, and z differs from x only

in the j-th attribute and price, with i ̸= j.

Proposition 4. An elliptical coefficients model ρ has independent Gaussian coefficients

if and only if ρ is factorable.

Figure 3 illustrates our decomposition of vertical and horizontal differentiation in

real-world data using the automobile demand estimates in Berry, Levinsohn and Pakes

(1995). The two plotted attributes are acceleration and size. Let β1 and β2 be the ran-

dom coefficients that represent the marginal utility for acceleration and size, respectively.

To plot the Figure we the estimated averages of these random coefficients β̄1 = 2.833

and β̄2 = 3.460; and their estimated standard deviations σ1 = 4.628 and σ2 = 2.056.

The black parallel lines in Figure 3 are estimated indifference curves, given by sets

of points (x1, x2) for which β̄1x1 + β̄2x2 is constant. Two products placed on the same

indifference curve (and with the same price) divide the market exactly in half in a

duopoly. Likewise, changes in a product’s characteristics along the same indifference

curve reflect variety and maximize disagreement in the population: for each consumer

that likes the change, there is another consumer that dislikes it.

The dashed line in Figure 3 is the estimated vertical differentiation dimension, which

by Proposition 1 is unique and given by

Σ−1β̄ =

[
1/σ1 0

0 1/σ2

]
·

[
β̄1

β̄2

]
=

[
β̄1/σ1

β̄2/σ2

]
(7)
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Each component of the vertical differentiation direction vector has an average marginal

utility β̄i divided by the variance of marginal utility σi in the population. A larger

variance σi means the marginal utility of attribute i is more heterogeneous in the pop-

ulation. In particular, a larger σi increases the left tail of the distribution, so that a

higher fraction of the population dislikes attribute i. Since vertical differentiation is by

definition the direction of maximum agreement among consumers, a larger variance σi

reduces the component of attribute i in (7). Conversely, a smaller variance σi means

there is larger agreement on the desirability of attribute i and corresponds to a larger

i-th component in vector (7).

The gray ellipsoids in Figure 3 represent iso-differentiation curves centered on the

Honda Accord. The Ford Taurus is the most differentiated automobile from the Accord,

lying on the largest ellipsoid, while the Chevrolet Cavalier is the least differentiated from

the Accord, lying on the smallest ellipsoid.

Decomposing the differentiation between the products into horizontal and vertical

components can provide further insight into the strategic product positioning by firms.

For example, take the Ford Taurus, an automobile notorious for its size. In fact, a

main point of emphasis in the 1989 “Ford Competition Today” sales training video (see

Figure 4) is the comparison to the Accord along the size dimension: the video illustrates

with colorful cube props that the Taurus offered 11 cubic feet of additional interior space

and 3 cubic feet of additional trunk space. Is this additional space vertical or horizontal

differentiation? A closer look at Figure 3 reveals the Taurus is the closest model to the

Accord in vertical differentiation, and the large differentiation between the Taurus and

the Accord is mostly horizontal.
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Figure 3: An illustration of estimated vertical and horizontal differentiation for six
automobiles from 1990 using demand estimates in Berry et al. (1995). The horizontal
axis represents a measure of acceleration and the vertical axis is size. Gray ellipses
represent the iso-differentiation curves centered at the Honda Accord. Black lines are
indifference curves. The dashed line is the unique vertical differentiation direction.
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Figure 4: Screenshot from the sales training video “Ford Competition Today” comparing
the Ford Taurus to the Honda Accord. “Taurus has a full 11 cubic feet of passenger room
volume more than Accord. Now that’s this much room, room that’ll really be appreciated
by American buyers...” (Ford, 1989).

5.2 Complexity in individual choice

A rapidly growing literature in economics introduces imprecision and noise into stan-

dard models of individual decision making (see e.g. Woodford (2020) for a review). A

key concept from this literature is the psychometric function. This concept originates

in experimental psychology and describes the relationship between the probability of

correctly discriminating between two options x and y and the observable characteristics

of the options. In this section, we apply our results to provide a novel, quantitatively

precise answer to a fundamental question in this literature: does the distance in char-

acteristics between x and y make the task of discriminating between x and y easier or

harder?

The existing theoretical and empirical literature offers an ambiguous answer: the

effect of increasing the distance between two objects can go either way. On the one

hand, objects that are closer to each other will be closer in utility, and when two options

are close to indifference it is harder to choose between them. On the other hand, objects

that are more distant in the attribute space can have very different mixes of attributes

and involve more complex tradeoffs, making the comparison more difficult. Therefore,

the overall effect of distance remains unclear clear. However, our formulation (2) allows

us to uniquely decompose the differentiation between x and y into vertical and horizontal
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components. We now show this decomposition fully resolves the ambiguity.

First, we fix a linear differentiation model representation (u,Σ, F ). Using the formu-

las that we obtained in Proposition 1, we define v(x, y) to be the signed vertical distance

between x and y:

v(x, y) =
u′(x− y)√
u′Σ−1u

note that v(x, y) can be positive or negative, and the vertical differentiation between x

and y is given by its absolute value |v(x, y)|. Also note that v(x, y) is directly propor-

tional to the difference in utility between x and y. Using Proposition 2, we can rescale

vertical differentiation, if necessary, so that without loss of generality u′Σ−1u = 1 and

therefore v(x, y) = u′(x− y).

Next, define h(x, y) to be the horizontal differentiation between x and y:

h(x, y) =
√

(x− y)′Σ(x− y)− v(x, y)2.

With these definitions the linear differentiation model becomes simply

ρ(x, y) = F

(
v(x, y)√

v(x, y)2 + h(x, y)2

)

by taking partial derivatives of this expression with respect to v and h, it is straightfor-

ward to check that increasing vertical differentiation always makes discrimination easier,

while increasing horizontal differentiation always makes discrimination harder.

Figure 5 plots the probability of choosing x over y as a function of v(x, y), for several

fixed values of h(x, y). For a fixed value of h(x, y) this probability follows the typical

sigmoid curve compatible with the classic Fechnerian utility model. Increasing the value

of h(x, y) results in a flatter sigmoid curve, meaning that discrimination between x and y

is more imprecise for each utility difference v(x, y). Hence, the horizontal differentiation

distance h(x, y) can be interpreted as a measure of the complexity involved in evaluating

the tradeoffs between x and y. This measure of complexity is orthogonal to utility, and

our results show that it can be uniquely measured from binary choice data alone.

For a concrete illustration, we now fit the linear differentiation model to the choice

data in the classic experiment of Tversky and Russo (1969). We use data from their

Table 2, which presents the choice frequencies for n = 3744 binary choice trials. Subjects

compared pairs of rectangles projected on a screen, and were rewarded if they correctly

identified the rectangle with the largest area in each pair.
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Figure 5: Probability of choosing x over y as a function of their difference in value.
Each sigmoid curve is obtained by fixing a different value h for the amount of horizontal
differentiation between x and y. Higher values of h are associated with more imprecise
discrimination —flatter sigmoid curves— reflecting higher complexity in the comparison
between x and y.
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Figure 6: Log height and log width of rectangular objects shown to subjects in Tversky
and Russo (1969). The height is five times the width in rectangles a1 to a5; whereas in
rectangles b1 to b5 the height is just 1.5 times the width. The thin black lines represent
indifference curves: the area of rectangle ai is equal to the area of rectangle bi for each
i = 1, . . . , 5. Using logs, the indifference curves are parallel straight lines, conforming to
our linearity postulate.
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Figure 6 shows the ten different rectangle options used for comparison, coming in five

different sizes (areas), and two different height/width proportions. Rectangles a3 and

b3 have the same area equal to 1. The data provided in Table 2 of Tversky and Russo

(1969) describe the frequency with which the unit area rectangles a3 and b3 were chosen

against each of the smaller a1, a2, b1, b2 and each of the larger a4, a5, b4, b5 rectangles.

Fitting the linear differentiation model to this type of experimental data provides a

clean and straightforward illustration since the “correct” choice (the largest rectangle)

is objectively observed. This type of experimental data is often used for illustration in

the rational inattention literature (Dean and Neligh, 2023). We fit a simple specification

where the subject maximizes a noisy signal of the true area of a rectangle x with height

x1 and width x2:

U(x) = β1 log x1 + β2 log x2 + β3x3

where we assume the random coefficients β = u+ Λε are elliptical with

u =

 1

1

0

 and Λ =


√
c21 + c22 0 0

c1 c2 0

0 0 c3


and only three free parameters c1, c2, c3 > 0 need to be estimated. These assumptions

amount to imposing that utility is given by the objectively given rectangle area and that

for a given difference in area, the rate of mistakes is the minimized when rectangles have

the same height/width ratio. The use of logs for height and width means indifference

curves are straight parallel lines, conforming to the linearity postulate in Theorem 1.

The coefficients β1 and β2 reflect the noisy perception of height and width, respectively.

The third attribute x3 is an unobserved attribute that affects the differentiation

between the options but not their value. In this context, we interpret x3 to represent

the location of the rectangles on the screen from left to right (e.g. x3 = 0 when the

rectangle is placed on the left of the screen and x3 = 1 when the rectangle is placed on the

right). For the purpose of our estimation, differences in the attribute x3 are interpreted

as any fixed but unobserved amount of differentiation between the two options. The

coefficient β3 is assumed to be zero-mean, uncorrelated with β1, β2. Since differences in

x3 are assumed to be constant across choice trials, β3 effectively acts as an additional

zero-mean error term.

To make things even more computationally simple, we assume the spherical distri-

bution of ε is uniform on the surface of the three-dimensional unit ball. Then, it is know
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that the marginal distribution of each εi is just the uniform distribution on the interval

[−1, 1] with a closed form cdf given by F (t) = 1/2 + t/2. By Lemma 11 in the proof of

Theorem 2, this specification is a linear differentiation model (u,Σ, F ) with Σ = ΛΛ′.

It is also a random coefficients model. However, it is a departure from our elliptical

random coefficients definition, since ε is full-dimensional and bounded.

The likelihood function is maximized at (c1, c2, c3) = (1.01744, 0.428679, 0.0530072),

generating the choice probabilities given by the yellow and blue sigmoids in Figure 7.

The blue sigmoid corresponds to comparisons with low complexity (low horizontal dif-

ferentiation), such as a3 versus a1, a2, a4, a5 and b3 versus b1, b2, b4, b5.
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Figure 7: Black dots indicate the choice frequencies observed in the experiment (Tver-
sky and Russo, 1969, Table 2), grouped by comparisons of rectangles with the same
height/width ratio and comparsions with rectangles with different height/width ratio.
The vertical bars denote 95% confidence intervals for the true choice probabilities. The
two sigmoid curves depict our model’s fitted choice probabilities for high complexity
(yellow) and low complexity (blue) comparisons.

In terms of measurement, Proposition 2 implies that we cannot compare the units of

vertical and horizontal differentiation. For that we need to observe a special regressor,

such as price in the application in Section 5.1. We can, however, make quantitatively
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meaningful comparisons along the horizontal differentiation dimension. For example,

the horizontal differentiation between a1 and a3 is estimated to be 0.053 while a1 and

b3 have an estimated horizontal differentiation of 0.269. So the task of comparing a1

versus a3 is roughly five times more complex than the the task of comparing a1 versus

b3, despite the difference in true value (area) being the same in both comparisons.

The fit of our model to the experimental data also helps illustrate our resolution of

the fundamental psychometric question posed at the start of this subsection. Compare,

for instance, the choice problem a1, a3 and the choice problem a2, a3. The first pair

is more differentiated than the second (Figure 6); and discrimination is easier in the

more differentiated pair (Figure 7). The opposite holds, however, when we compare

choice problems b1, a3 and a1, a3. Figure 6 shows the first pair is more differentiated

than the second pair; but Figure 7 this time shows discrimination is easier in the less

differentiated pair. The ambiguous role of differentiation is resolved when we decompose

it into its horizontal and vertical components: in the first case, the paired comparisons

a1, a3 and a2, a3 differ solely in vertical differentiation, which, as we have shown, always

helps discrimination. In contrast, horizontal differentiation always makes discrimination

harder, and explains why choices from b1, a3 are noisier than the choices from a1, a3.

This simple empirical illustration allowed us to obtain a remarkably good fit to the ex-

perimental data despite imposing several restrictions on the parameters (u,Σ, F ). First,

we fixed the utility parameter u because the area of a rectangle is objectively observed;

in more general economic applications, where utility is subjective and unobserved, u can

be estimated to reveal the underlying preferences.

Second, we restricted Σ such that the vertical differentiation direction —that is, the

direction of maximum choice probability and fewest mistakes— is a multiple of u. In

more general applications, this direction can be freely estimated.

Finally, we fixed F to be the computationally convenient cdf of the uniform distri-

bution in [−1, 1]. F can be more flexibly estimated to capture variations in the overall

amount of noise. For instance, suppose we ran the same experiment with two different

treatments: one treatment has higher incentives and leads subjects to exert more effort.

If this treatment induces more accurate choice behavior, the difference between treat-

ments can be captured by two different levels of variance in the spherical error vector

ε. Crucially, both treatments can be accommodated by the same Σ. So our measure

of complexity, encoded by Σ, is a fixed feature of the architecture of the choice envi-

ronment. The underlying spherical error distribution can capture variations in effort,
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ability, time spent contemplating the options, and other factors that affect the overall

amount of information acquired by subjects before making a choice.

This last point means our complexity measure could be useful to study endogenous

information acquisition. For example, in the rational inattention literature (Sims, 2003),

cost functions for obtaining information based on mutual information have been com-

monly assumed (Matejka and McKay, 2015). A known limitation of such cost functions

is that they ignore physical features of the choice environment such as the similarity

between different payoff-relevant states (Hebert and Woodford, 2021; Pomatto et al.,

2023; Dean and Neligh, 2023). Our complexity measure could therefore be useful for

incorporating such features in the analysis of optimal information acquisition.

6 Conclusions

We provided behavioral foundations for measuring product differentiation from both

binary and multinomial choice data, assuming that choice options are described by a

finite-dimensional vector of attributes. Our model enables not only the measurement of

differentiation but also its unique decomposition into horizontal and vertical components,

respectively reflecting the variety and quality dimensions of product offerings. While the

axiomatic underpinnings of random choice models constitute our central contribution,

we further showcase the practical applicability of our results by demonstrating their

potential in two key areas: (i) providing a new lens to examine the product differentiation

strategies employed by firms, and (ii) quantifying the complexity of tradeoffs faced by

individuals in decision-making situations. We think these are promising areas for further

research and the development of novel applications that draw on the strengths of our

theoretical framework.

A Appendix: Proofs

Proof of Proposition 1

To prove (i), consider the maximization problem

max
x,y

ρ(x, y) = max
x,y

F

(
u′(x− y)√

(x− y)′Σ(x− y)

)
.
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Since F is increasing, the maximum is achieved by maximizing the ratio

u′(x− y)√
(x− y)′Σ(x− y)

=
u′Σ−1/2Σ1/2(x− y)√
(x− y)′Σ1/2Σ1/2(x− y)

= (Σ−1/2u)′
(

Σ1/2(x− y)

∥Σ1/2(x− y)∥e

)

where ∥·∥e denotes the standard Euclidean norm. The right-hand side is just (Σ−1/2u)′v

subject to the constraint ∥v∥e = 1. By Cauchy-Schwarz this is (uniquely) maximized

when v is in the same direction as Σ−1/2u, which happens if and only if the difference

x− y is different from zero and a multiple of Σ−1u.

To prove (ii), note that by the representation ρ(x, y) = 1/2 for x ̸= y if and only if

u′(x− y) = 0.

To prove (iii), suppose x, y are (purely) vertically differentiated and w, z are (purely)

horizontally differentiated. By (i) and (ii) we have x − y = αΣ−1u for some α ̸= 0 and

u′(w−z) = 0. This implies (x−y)′Σ(w−z) = α(Σ−1u)′Σ(w−z) = αu′Σ−1Σ(w−z) = 0.

Finally, (iv) follows from (i)–(iii) by projecting (x−y) onto the subspace spanned by

Σ−1u to obtain the vertical differentiation component and its orthogonal residual.

Proof of Proposition 2

Sufficiency is straightforward. To prove necessity, suppose (u,Σ, F ) and (û, Σ̂, F̂ ) are

two linear differentiation model representations for the same choice rule ρ with u ̸= 0.

It is easy to see that ûi ≥ 0 if and only if ui ≥ 0 because otherwise choice behavior

would differ for two options that are different only along dimension i. Since u ̸= 0 there

is some ui ̸= 0 and therefore ûi ̸= 0 with the same sign. Let A = ûi/ui. Now consider

any j ̸= i with uj, ûj ̸= 0. If we have A ̸= ûj/uj then u and û would fail to represent

the same stochastic indifference ρ(x, y) = 1/2 along the i, j subspace. Hence (i) holds.

To prove (ii), first note that for any vectors v and w we have

u′v

∥v∥Σ
≥ u′w

∥w∥Σ
if and only if

û′v

∥v∥Σ̂
≥ û′w

∥w∥Σ̂

since both (u,Σ, F ) and (û, Σ̂, F̂ ) represent the same ρ. By (i) we also have

u′v

∥v∥Σ
≥ u′w

∥w∥Σ
if and only if

u′v

∥v∥Σ̂
≥ u′w

∥w∥Σ̂

Restricting v, w to be vectors such that u′v = u′w = u′Σ−1u we obtain ∥w∥Σ ≥ ∥v∥Σ if
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and only if ∥w∥Σ̂ ≥ ∥v∥Σ̂. Now for any v with u′v = u′Σ−1u we have

∥v∥2Σ = ∥v − Σ−1u+ Σ−1u∥2Σ
= (v − Σ−1u+ Σ−1u)′Σ(v − Σ−1u+ Σ−1u)

= ∥v − Σ−1u∥2Σ + ∥Σ−1u∥2Σ

where the cross terms are zero by the assumption u′v = u′Σ−1u.

By (i) above and Proposition 1–(i) we have Σ−1u = B2Σ̂−1u for some B > 0. Hence

for every v with u′v = u′Σ−1u we also have ∥v∥2
Σ̂
= ∥v − Σ−1u∥2

Σ̂
+ ∥Σ−1u∥2

Σ̂
. This and

the last display equality imply that for every v, w with u′v = u′w = 0,

∥v∥Σ ≥ ∥w∥Σ if and only if ∥v∥Σ̂ ≥ ∥w∥Σ̂.

Now for each v ∈ Rn we have ,

u′
(
v − Σ−1uu′

u′Σ−1u
v

)
= u′

(
v − Σ̂−1uu′

u′Σ̂−1u
v

)
= 0

and ∥∥∥∥v − Σ−1uu′

u′Σ−1u
v

∥∥∥∥2
Σ

= v′Σv − v′uu′v

u′Σ−1u
= ∥v∥2

Σ− uu′
u′Σ−1u

while ∥∥∥∥∥v − Σ̂−1uu′

u′Σ̂−1u
v

∥∥∥∥∥
2

Σ̂

= v′Σ̂v − v′uu′v

u′Σ̂−1u
= v′Σ̂v −B2 v

′uu′v

u′Σ−1u
= ∥v∥2

Σ̂−B2 uu′
u′Σ−1u

Therefore for any v, w ∈ R2 if

∥v∥
Σ− uu′

u′Σ−1u

= C2∥v∥
Σ̂−B2 uu′

u′Σ−1u

for some C > 0, then we must also have

∥w∥
Σ− uu′

u′Σ−1u

= C2∥w∥
Σ̂−B uu′

u′Σ−1u

which yields (ii) as desired.

To prove (iii), for each x with u′x = u′Σ−1u, define t(x) = (û′x)/∥x∥Σ̂ > 0. Proposi-
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tion 1 and items (i) and (ii) above imply for each such x

∥x∥2
Σ̂
= ∥x− Σ−1u∥2

Σ̂
+ ∥Σ−1u∥2

Σ̂
= B2∥x− Σ−1u∥2Σ + C2∥Σ−1u∥2Σ.

Let T := F−1(maxx,y ρ(x, y)) = [u′Σ−1u]/∥Σ−1u∥Σ. Substituting and rearranging we

obtain for each x with u′x = u′Σ−1u,

∥x− Σ−1u∥2Σ
∥Σ−1u∥2Σ

=
(AT )2 − C2t(x)2

B2t(x)2
.

By linearity, for each 0 < t ≤ AT/C we have t = t(x) for some x with û′x = û′Σ−1u,

thus

F̂ (t) = F̂ (t(x)) = ρ(x, 0)

= F

(
u′Σ−1u− u′0√

∥x− Σ−1u∥2Σ + ∥Σ−1u− 0∥2Σ

)

= F

(
T/

√
∥x− Σ−1u∥2Σ
∥Σ−1 − 0∥2Σ

+ 1

)

= F

(
T/

√
(AT )2 − C2t(x)2

B2t(x)2
+ 1

)

= F

(
Bt√

A2 + (B2 − C2)(t/T )2

)
.

and the results follows since F̂ (t) = 1− F̂ (−t) for all t.

Proof of Theorem 1

To show necessity, let U : Rn → R be linear, let ∥·∥ be a norm generated by an inner

product ∥x∥ =
√
⟨x, x⟩, and let F be a strictly increasing, continuous transformation

such that the representation (1) holds.

First, ρ must be continuous outside the diagonal since (i) U is linear; (ii) ∥·∥ is a

norm hence ∥x− y∥ > 0 for x ̸= y; and (iii) F is continuous.
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Second, ρ is linear since

ρ(αx+ (1− α)z, αy + (1− α)z) = F

(
U(αx+ (1− α)z)− U(αy + (1− α)z)

∥αx+ (1− α)z − [αy + (1− α)z]∥

)
= F

(
α[U(x)− U(y)]

α∥x− y∥

)
= ρ(x, y)

whenever 0 < α < 1 and x ̸= y, and the equality holds trivially when x = y.

To see ρ is balanced, suppose ρ(x, y) = 1/2 and ρ(x, z) > ρ(y, z) > 1/2, and let

1 > α > 1/2. By (1) we have U(x) = U(y) > U(z) and ∥x− z∥ < ∥y − z∥. Then,

∥αx+ (1− α)y − z∥2 = α2∥x− z∥2 + 2α(1− α) ⟨x− z, y − z⟩+ (1− α)2∥y − z∥2

< α2∥y − z∥2 + 2α(1− α) ⟨x− z, y − z⟩+ (1− α)2∥x− z∥2

= ∥αy + (1− α)x− z∥2

and by (1) we have ρ(αx+ (1− α)y, z) > ρ(αy + (1− α)x, z) as desired.

Finally, the proof that ρ is moderately transitive follows from Theorem 1 in He and

Natenzon (2023), since restricted to any three options x, y, z the linear differentiation

model is a special case of the abstract moderate utility model.

To show sufficiency, let the binary choice rule ρ on Rn be linear, continuous, balanced,

and moderately transitive. The result is trivial for constant ρ, so we now consider the

case in which ρ is not constant. For the remainder of the proof, we choose and fix two

options x̄, ȳ with ρ(x̄, ȳ) > 1/2.

Define the relation ≽ by x ≽ y if and only if ρ(x, y) ≥ 1/2. Since ρ is moderately

transitive, this ≽ is complete and transitive. Since ρ is linear and continuous, ≽ satisfies

all the vNM axioms and admits an expected utility representation. Let U : Rn → R be

a linear function representing ≽.

For each lottery x, let I(x) := {y ∈ Rn : ρ(x, y) = 1/2} denote the set of lotteries

that are stochastically indifferent to x. Note that I(x) is an affine subspace of dimension

n − 1. By linearity, ρ is entirely determined by the values of the mapping x 7→ ρ(x, ȳ)

for x ∈ I(x̄), where x̄, ȳ are the two lotteries with ρ(x̄, ȳ) > 1/2 that we fixed above.

For each 1/2 < p ≤ 1, define the upper contour sets B(p) := {x ∈ I(x̄) : ρ(x, ȳ) ≥ p}.

Lemma 2. B(p) is convex for all 1/2 < p ≤ 1.

Proof. Let x, x′ ∈ B(p) and let 0 < α < 1. Since I(x̄) is an affine subspace, αx + (1 −
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α)x′ ∈ I(x̄). Linearity implies ρ(αx+(1−α)x′, αȳ+(1−α)x′) = ρ(x, ȳ) ≥ p. Linearity

also implies ρ(αȳ + (1 − α)x′, ȳ) = ρ(x′, ȳ) ≥ p. Then, moderate transitivity implies

ρ(αx+ (1− α)x′, ȳ) ≥ p.

Lemma 3. B(p) is compact for all 1/2 < p ≤ 1.

Proof. B(p) is closed by continuity. Let | · | denote the standard Euclidean metric, not

necessarily equal to the metric we are going to construct for the representation. If B(p)

were not bounded, there would exist a sequence x(k) in B(p) with |x(k) − ȳ| ≥ k for

all k ∈ N. For each k, by linearity ρ(ȳ + (x(k)− ȳ)/|x(k)− ȳ|, ȳ) = ρ(x(k), ȳ) ≥ p. By

Bolzano-Weierstrass the sequence ȳ + (x(k) − ȳ)/|x(k) − ȳ| would have a subsequence

converging to some z ̸= ȳ. By the linearity of U we would have U(z) = U(ȳ) and

ρ(z, ȳ) = 1/2, contradicting continuity. Hence B(p) must also be bounded.

Lemma 4. The mapping x 7→ ρ(x, ȳ) has a unique maximizer x̂ on I(x̄).

Proof. Since ρ(x̄, ȳ) > 1/2 we have B(p) ̸= ∅ for some p > 1/2. Since ρ is continuous,

the mapping x 7→ ρ(x, ȳ) is continuous on I(x̄). B(p) is compact by Lemma 3, hence

the maximum ρ(x̂, ȳ) = p̄ is attained at some x̂ ∈ B(p). Hence B(p̄) is not empty,

and by the previous lemmas it is compact and convex. Since ρ is balanced, B(p̄) must

be a singleton. Otherwise, by Lemmas 2 and 3 there would exist a nontrivial segment

[x̂, x̂′] contained in B(p̄) with x̂′ on the boundary of B(p̄), so that the point x′′ =

x̂′ + (1/2)(x̂′ − x̂) lies outside B(p̄), that is ρ(x′′, ȳ) < p̄ = ρ(x̂, ȳ). But then the point

(2/3)x̂ + (1/3)x′′ = (1/2)x̂ + (1/2)x̂′ ∈ B(p̄) and the point (1/3)x̂ + (2/3)x′′ = x̂′ ∈
B(p̄), with ρ((1/3)x̂ + (2/3)x′′, ȳ) = p̄ = ρ((2/3)x̂ + (1/3)x′′, ȳ) contradicting that ρ is

balanced.

For the rest of the proof, we fix x̂ to be the unique maximizer of x 7→ ρ(x, ȳ) on I(x̄).

Lemma 5. x ∈ I(x̄) and ρ(x, ȳ) = p implies ρ(2x̂− x, ȳ) = p.

Proof. The statement trivially holds if x = x̂, so suppose x ̸= x̂. First note 2x̂ − x =

x̂ + (x̂ − x) ∈ I(x̄). If ρ(x̂ + (x̂ − x), ȳ) < p, by continuity there is a sufficiently

small ε > 0 such that ρ(x̂ + (1 − ε)(x̂ − x), ȳ) < p. Taking α = 1/(2 − ε) we have

x̂ = α(x̂+(1−ε)(x̂−x))+(1−α)x. By Lemma 4 we have ρ(α(x̂+(1−ε)(x̂−x))+(1−
α)x, ȳ) > ρ((1− α)(x̂+ (1− ε)(x̂− x)) + αx, ȳ) contradicting that ρ is balanced. Hence

ρ(2x̂− x, ȳ) ≥ p. An entirely analogous argument shows that ρ(2x̂− x, ȳ) ≤ p.
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Recall that x̂ is the unique maximizer ρ(x̂, ȳ) = p̄ on I(x̄). Let B = B(p) − x̂ for

some fixed p ∈ (1/2, p̄). We first define an auxiliary norm ∥·∥B on the n− 1 dimensional

subspace I(x̄)− x̂ using B as the unit ball.

Lemma 6. ∥x∥B := inf{λ ≥ 0 : x ∈ λB} is a norm on I(x̄)− x̂.

Proof. The Minkowski functional ∥·∥B defined above is a norm when B is a symmetric,

convex set such that each line through zero meets B in a non-trivial, closed, bounded

segment (Thompson, 1996). By definition ∥x∥B ≥ 0 for all x. Moreover, if ∥x∥B = 0

then x ∈ λB for all λ > 0 and therefore x = 0. Now for each α ≥ 0 we have x ∈ λB if

and only if αx ∈ αλB and therefore α∥x∥B = ∥αx∥B. Lemma 5 implies x ∈ λB if and

only if −x ∈ λB and therefore ∥x∥B = ∥−x∥B. To verify the triangle inequality, note

that B is closed by Lemma 3, and therefore x/∥x∥B ∈ B for all x ̸= 0. B is also convex

by Lemma 2, and therefore

x+ x′

∥x∥B + ∥x′∥B
=

(
∥x∥B

∥x∥B + ∥x′∥B

)
x

∥x∥B
+

(
∥x′∥B

∥x∥B + ∥x′∥B

)
x′

∥x′∥B
∈ B.

Thus, ∥∥∥∥ x+ x′

∥x∥B + ∥x′∥B

∥∥∥∥
B

≤ 1

and the triangle inequality ∥x+ x′∥B ≤ ∥x∥B + ∥x′∥B holds.

Lemma 7. If p̄ ≥ p ≥ q > 1/2 then B(p) = x̂+ λ [B(q)− x̂] for some 0 ≤ λ ≤ 1.

Proof. Moderate transitivity implies that, for any x ̸= x̂ in B(p), the function t 7→ ρ(tx̂+

(1−t)x, ȳ) is strictly increasing for 0 ≤ t ≤ 1. It suffices to show that if ρ(x1, ȳ) = ρ(x2, ȳ)

for x1, x2 ∈ I(x̄) and 0 < α < 1, then ρ(αx1+(1−α)x̂, ȳ) = ρ(αx2+(1−α)x̂, ȳ). To see

that equality must hold, suppose instead that ρ(αx1+(1−α)x̂, ȳ) < ρ(αx2+(1−α)x̂, ȳ).

Continuity implies ρ(βx2 + (1− β)x̂, ȳ) = ρ(αx1 + (1− α)x̂, ȳ) for some 0 < α < β < 1.

Letting

z1 = x1 +
β(1− α)

β − α
(x2 − x1)

z2 = x1 + x2 − z1

z3 = 2x̂− z1

z4 = αx1 + βx2 + (2− α− β)x̂− z1
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we have that the line segment [z1, z2] contains the line segment [x1, x2]; the line segment

[z1, z4] contains the line segment [αx1 + (1− α)x̂, βx2 + (1− β)x̂] and

z1/2 + z2/2 = x1/2 + x2/2

z1/2 + z3/2 = x̂

z1/2 + z4/2 = (βx2 + (1− β)x̂)/2 + (αx1 + (1− α)x̂)/2

By Lemma 5 we have ρ(z3, ȳ) = ρ(z1, ȳ). We must also have ρ(z2, ȳ) = ρ(z1, ȳ), for

otherwise ρ(z2, ȳ) ̸= ρ(z1, ȳ) and ρ(x1, ȳ) = ρ(x2, ȳ) would contradict that ρ is balanced.

And again since ρ is balanced we have ρ(z4, ȳ) = ρ(z1, ȳ). Now since 0 < α < β < 1 we

have

0 <
αβ(2− α− β)

α(1− α) + β(1− β)
< 1 <

α(1− β) + β(1− α)

α(1− α) + β(1− β)
.

Letting

z5 =

(
αβ(2− α− β)

α(1− α) + β(1− β)

)
z2 +

(
1− αβ(2− α− β)

α(1− α) + β(1− β)

)
z3

we have z5 belongs to the segment [z2, z3] and by Lemma 2 it must be ρ(z5, ȳ) ≥ ρ(z4, ȳ).

On the other hand, it is straightforward to verify the equality

z5 − x̂ =

[
α(1− β) + β(1− α)

α(1− α) + β(1− β)

]
(z4 − x̂)

so z4 lies in the interior of the segment [z5, x̂]. But then the mapping t 7→ ρ(tx̂ + (1 −
t)z5, ȳ) is not strictly increasing for 0 ≤ t ≤ 1, contradicting moderate transitivity.

Lemma 8. ∥·∥B is Euclidean, i.e., ∥x∥B =
√

⟨x, x⟩B where ⟨·, ·⟩B is an inner product.

Proof. We use a characterization of inner product spaces by Gurari and Sozonov (1970),

who showed that a normed linear space is an inner product space if and only if

∥x∥ = ∥y∥ = 1 and 0 ≤ α ≤ 1 imply

∥∥∥∥12x+
1

2
y

∥∥∥∥ ≤ ∥αx+ (1− α)y∥. (8)

If ∥x∥B = ∥y∥B = 1 then x, y are on the boundary of B, hence ρ(x + x̂, ȳ) = ρ(y +

x̂, ȳ) = p > 1/2 and ρ(x + x̂, y + x̂) = 1/2. A violation of condition (8) would entail

∥(1/2)x+ (1/2)y∥B > ∥αx+ (1− α)y∥B where, without loss of generality 1/2 < α < 1.
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Let

xα = α(x+ x̂) + (1− α)(y + x̂)

x1/2 = (1/2)(x+ x̂) + (1/2)(y + x̂)

x′ = (α− 1/2)(x+ x̂) + (3/2− α)(y + x̂)

x′′ = (y + x̂) + (1/2)(y − x)

By Lemma 7 the sets B (ρ(xα, ȳ))− x̂ and B
(
ρ(x1/2, ȳ)

)
− x̂ are dilations of B(p)− x̂,

hence ρ(xα, ȳ) > ρ(x1/2, ȳ). By construction, the segment [xα, x′′] contains the segment

[x′, y + x̂] and both have the midpoint (α/2 − 1/4)(x + x̂) + (5/4 − α/2)(y + x̂). Like-

wise, the segment [x+ x̂, x′] contains the segment [xα, x1/2] and both have the midpoint

(1/4+α/2)(x+ x̂)+(3/4−α/2)(y+ x̂). By Lemma 2, ρ(x′, ȳ) ≥ ρ(y+ x̂, ȳ). This last in-

equality must in fact be strict, for otherwise since ρ is balanced we would have ρ(x′′, ȳ) =

ρ(xα, ȳ) > ρ(y + x̂, ȳ) contradicting Lemma 2. Thus ρ(x′, ȳ) > ρ(y + x̂, ȳ) = ρ(x+ x̂, ȳ).

But then ρ(x′, ȳ) > ρ(x + x̂, ȳ) and ρ balanced would imply ρ(x1/2, ȳ) > ρ(xα, ȳ), a

contradiction. Hence ∥·∥B satisfies (8).

We extend the inner product ⟨·, ·⟩B on the n − 1 dimensional subspace I(x̄) − x̂

obtained in the last Lemma to an inner product ⟨·, ·⟩ in Rn. Let v1, . . . , vn−1 be an

orthonormal base for the subspace I(x̄)− x̂ endowed with ⟨·, ·⟩B. Let vn := x̂− ȳ and for

every 1 ≤ i, j ≤ n− 1 let ⟨vi, vj⟩ = 0 if i ̸= j and ⟨vi, vj⟩ = 1 if i = j. We let the norm

be induced by this inner product ∥x∥ :=
√
⟨x, x⟩ for all x ∈ Rn. Next, we show that

this inner product, together with the linear utility U obtained above provide an ordinal

representation for ρ.

Lemma 9. U and ∥·∥ provide an ordinal representation of ρ, that is, for any w ̸= x and

y ̸= z we have

ρ(w, x) ≥ ρ(y, z) ⇐⇒ U(w)− U(x)

∥w − x∥
≥ U(y)− U(z)

∥y − z∥
.

Proof. First, suppose ρ(w, x) ≥ ρ(y, z) > 1/2. Then w ≻ x, y ≻ z and since U represents
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≽ we have U(w) > U(x) and U(y) > U(z). Let

w′ = ȳ +
U(x̂)− U(ȳ)

U(w)− U(x)
(w − x)

y′ = ȳ +
U(x̂)− U(ȳ)

U(y)− U(z)
(y − z).

Since U is linear, U(w′) = U(y′) = U(x̄) and hence w′, y′ ∈ I(x̄). By the linearity of ρ,

ρ (w′, ȳ) = ρ(w, x) ≥ ρ(y, z) = ρ (y′, ȳ). By Lemma 7 the sets B(ρ(w′, ȳ)) and B(ρ(y′, ȳ))

are dilations of one another and hence ∥w′ − x̂∥B ≤ ∥y′ − x̂∥B. By construction, x̂ − ȳ

is orthogonal to I(x̄)− x̂, and therefore

∥w′ − ȳ∥2 = ∥w′ − x̂∥2 + ∥x̂− ȳ∥2 ≤ ∥y′ − x̂∥2 + ∥x̂− ȳ∥2 = ∥y′ − ȳ∥2.

Thus, ∥∥∥∥ U(x̂)− U(ȳ)

U(w)− U(x)
(w − x)

∥∥∥∥ = ∥w′ − ȳ∥ ≤ ∥y′ − ȳ∥ =

∥∥∥∥U(x̂)− U(ȳ)

U(y)− U(z)
(y − z)

∥∥∥∥
which implies

U(w)− U(x)

∥w − x∥
≥ U(y)− U(z)

∥y − z∥
.

Next, suppose ρ(w, x) ≥ 1/2 ≥ ρ(y, z) with w ̸= x and y ̸= z. Then U(w) ≥ U(x)

and U(z) ≥ U(y) which implies

U(w)− U(x)

∥w − x∥
≥ 0 ≥ U(y)− U(z)

∥y − z∥
.

Finally, suppose 1/2 > ρ(w, x) ≥ ρ(y, z). Then ρ(z, y) ≥ ρ(x,w) > 1/2 and the

desired inequality follows from the first step. Reversing the argument above to show the

converse is straightforward and left to the reader.

Lemma 10. The image of ρ is an interval [1− p̄, p̄].

Proof. Linearity implies ρ is entirely determined by the values of the mapping x 7→
ρ(x, ȳ) for x ∈ I(x̄). Hence, ρ achieves its maximum at p̄ = ρ(x̂, ȳ). Linearity also

implies ρ is entirely determined by the values of the mapping x 7→ ρ(x, ȳ) for x in a

unit sphere around ȳ. The continuity of ρ implies x 7→ ρ(x, ȳ) is continuous on the unit

sphere around ȳ. The result then easily follows from the intermediate value theorem.
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To construct F , we first define an auxiliary function f : [1−p̄, p̄] → R. Let f(1/2) = 0.

For each t ̸= 1/2, let f(t) = [U(x) − U(y)]/∥x − y∥ for any x, y such that ρ(x, y) = t.

By Lemma 9 and Lemma 10, the function f is well defined. To see that the image

of f must be a compact interval in R, take any lottery x ̸= x̂ with U(x) = U(x̂).

Then we have U (x̂+ t(x− x̂)) − U(ȳ) = U(x̂) − U(ȳ) for all t > 0 and ∥x̂ + t(x −
x̂) − ȳ∥ ≥ t∥x − x̂∥ − ∥x̂ − ȳ∥ which goes to infinity when t goes to infinity. Hence

[U (x̂+ t(x− x̂))− U(ȳ)]/∥x̂+ t(x− x̂)− ȳ∥ goes to zero when t goes to infinity. Thus

the image of f is the interval [−T, T ], where T = [U(x̂)− U(ȳ)]/∥x̂− ȳ∥. By Lemma 9

f is strictly increasing and has an inverse. Repeating the argument in the proof of

Lemma 10 shows f is continuous. Leting F = f−1 be the continuous inverse of f , it

follows that (U, ∥·∥, F ) is a linear differentiation representation for ρ.

Proof of Theorem 2

We start the proof with a useful result about elliptical distributions:

Lemma 11. Let β = µ + Λε be elliptical and F the marginal cdf of the spherical ε.

Then, for every x and y,

P{β′x ≥ β′y} =

 1{µ′x≥µ′y}, if Λ′(x− y) = 0

F

(
µ′(x−y)√

(x−y)′ΛΛ′(x−y)

)
, if Λ′(x− y) ̸= 0.

Proof. Since ε = (ε1, · · · , εk) has a spherical distribution, for any a ∈ Rk the random

variable ε′a has the same distribution as the random variable ∥a∥ε1 (see, for example,

Theorem 2.4 in Fang et al. (1990)). Hence for any x ̸= y, the random variable ε′Λ′(y−x)

has the same distribution as ∥Λ′(x− y)∥ε1 and

P{β′x ≥ β′y} = P{(µ+ Λε)′(x− y) ≥ 0}

= P{ε′Λ′(y − x) ≤ µ′(x− y)}

= P{∥Λ′(x− y)∥ε1 ≤ µ′(x− y)}.

When Λ′(x− y) = 0 we have ∥Λ′(x− y)∥ = 0 and therefore

P{β′x ≥ β′y} = P{0 ≤ µ′(x− y)} = 1{µ′x≥µ′y}.
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However, when Λ′(x− y) ̸= 0 we have ∥Λ′(x− y)∥ > 0 and

P{β′x ≥ β′y} = P
{
ε1 ≤

µ′(x− y)

∥Λ′(x− y)∥

}
= F

(
µ′(x− y)

∥Λ′(x− y)∥

)
as desired.

Lemma 11 applies to all elliptical distributions. Since the elliptical coefficients model

is a random coefficients model (3), by definition it must satisfy requirement (4). In

particular, Lemma 11 shows the elliptical coefficients model restricts the distribution of

β = µ+Λε to satisfy the regularity condition that µ′(x−y) ̸= 0 whenever Λ′(x−y) = 0.

To prove necessity, suppose ρ is an elliptical coefficients model. In particular, since ρ

is a random coefficients model, it must be continuous, linear, monotone and extreme by

Theorem 3 in Gul and Pesendorfer (2006). Using Lemma 11, it is also straightforward

to verify that ρ must satisfy the remaining binary choice postulates.

For sufficiency, our Theorem 1 implies the binary choice restriction of ρ admits a

linear differentiation model representation (2). In addition, Theorem 3 in Gul and

Pesendorfer (2006) implies ρ is a random coefficients model, that is, there exists a random

vector β satisfying (3) and (4). We now prove β has the required elliptical distribution.

The assumption that ρ is full means ρ(x, y) = 1 for some x, y. For ease of notation

we prove the case where ρ(x, y) = 1 in the direction x − y = (0, . . . , 0, 1). The general

case follows easily by using an orthogonal rotation in Rn. Let β be a random vector,

and let (u,Σ, F ) be the linear differentiation model parameters such that

P{β′(x− y) ≥ 0} = ρ(x, y) = F

(
u′(x− y)√

(x− y)′Σ(x− y)

)

for every x ̸= y.

Since x − y = (0, . . . , 0, 1) implies P{β′(x − y) > 0} = ρ(x, y) = 1 we have βn > 0

almost surely. Dividing every entry βi by βn > 0, if necessary, guarantees that the last

coordinate of β = (β1, . . . , βn−1, 1) is constant. For the same reason, it must be that

un > 0 and, by Proposition 2, we can assume un = 1 without loss of generality.

We obtain a new representation with parameters u, Σ̂, F̂ by taking the limit C → 0

for the vertical differentiation scaling constant in Proposition 2. The matrix Σ̂ =

(Σ− uu′/T 2) induces a semi-norm in Rn, in which every vector in the direction of max-
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imum choice probability has length zero. We let

F̂ (t) = F
(
t/
√
1 + (t/T )2

)
for each t ∈ R and, in addition, set F̂ (−∞) = F (−T ) and F̂ (+∞) = F (T ). Since ρ is

full we have F (T ) = 1 and hence F̂ is a strictly increasing and continuous cumulative

distribution function defined on the extended real line [−∞,∞]. The parameters u, Σ̂, F̂

yield a representation

ρ(x, y) = F̂

 u′(x− y)√
(x− y)′Σ̂(x− y)


for every x ̸= y, since a zero denominator occurs if and only if x − y is a multiple

of the maximum choice probability direction Σ−1u. In such cases, we have a non-zero

numerator divided by zero, yielding a ratio of ±∞ which by construction belongs to the

extended domain of F̂ .

Proposition 1 shows the maximum choice probability direction Σ−1u is unique, so

(0, . . . , 0, 1) is a positive multiple of Σ−1u. This implies the last column and row of Σ is

given by a multiple of u. Moreover, the matrix Σ̂ must have zeroes on the last row and

column, and can be written as

Σ̂ =

[
M 0

0 0

]
where M is an (n− 1)× (n− 1) positive definite matrix.

For each vector v = (v1, . . . , vn−1, vn) in Rn we write v−n = (v1, . . . , vn−1) ∈ Rn−1.

For each x, y with ∥x− y∥Σ̂ =

√
(x− y)′Σ̂(x− y) ̸= 0 we have

ρ(x, y) = P{β′(x− y) ≥ 0}

= P{(β − u+ u)′−n(x− y)−n + xn − yn > 0}

= P

{
u′
−n(x− y)−n

∥x− y∥Σ̂
+

xn − yn
∥x− y∥Σ̂

> (β − u)′−nM
− 1

2
M

1
2 (y − x)−n

∥x− y∥Σ̂

}
.

In addition, for any such x, y we have

ρ(x, y) = F̂

(
u′(x− y)

∥x− y∥Σ̂

)
= F̂

(
u′
−n(x− y)−n

∥x− y∥Σ̂
+

xn − yn
∥x− y∥Σ̂

)
.
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Fix any arbitrary unitary vector v in Rn−1 and any t ∈ R. Setting y−n = M−1/2v,

yn = 0, x−n = 0 and xn = t+ u′
−nM

−1/2v, the last two display equations yield

P{(β − u)′−nM
−1/2v < t} = ρ(x, y) = F̂ (t).

Since the unitary vector v and the constant t are arbitrary, this showsM−1/2(β−u)−n has

an unbounded spherical distribution with a marginal cdf F̂ (see, for example, Theorem

2.5 in Fang et al. (1990)) and therefore β has the required elliptical distribution.

Proof of Proposition 3

Let the elliptical coefficient vector be β = µ + Λε for some n × (n − 1) full rank (i.e.

rank n-1) matrix with ϵ of dimension n-1. By Lemma 11 and condition (4), we have

P{β′x ≥ β′y} = F

(
µ′(x− y)√

(x− y)′Σ(x− y)

)

where F is the one-dimensional marginal cdf of ε and Σ := ΛΛ′. Similarly, any alternative

elliptical coefficients vector β̂ := µ̂ + Λ̂ε̂ generates binary choice probabilities that can

be analogously parametrized by µ̂, Σ̂, F̂ where Σ̂ := Λ̂Λ̂′ and F̂ is the uni-dimensional

marginal of ε̂.

Notice that, by definition, the indifference sets {x ∈ Rn : 1
2
= P{β′x ≥ β′y}} are

hyperplanes of dimension n−1 and orthogonal to µ. Since β̂ generates the same choices,

we have µ = Aµ̂ for some constant A > 0.

Now since β and β̂ represents the same binary choices, µ′w
||w||Σ

≥ µ′v
||v||Σ

iff µ̂′w
||w||Σ̂

≥ µ̂′v
||v||Σ̂

which is equivalent to µ′w
||w||Σ

≥ µ′v
||v||Σ

iff µ′w
||w||Σ̂

≥ µ′v
||v||Σ̂

.

Observe that ||z||Σ = 0 iff ||z||Σ̂ = 0 because the direction of choice probability 1

(as in Lemma 11 with condition (4)) has to match in both elliptical coefficient models.

Among such z’s, since by condition (4) of elliptical coefficient models, µ′z ̸= 0, we can

fix for the following analysis a z such that µ′z = µ′µ. Then for any vector v, we have

||µ
′v

µ′µ
z||Σ = ||µ

′v

µ′µ
z||Σ̂ = 0 and µ′ µ

′v

µ′µ
z = µ′v.

Now for all the w, v such that µ′w = µ′v = µ′z, µ′w
||w||Σ

≥ µ′v
||v||Σ

iff µ′w
||w||Σ̂

≥ µ′v
||v||Σ̂

.

Therefore whenever µ′w = µ′v = µ′z we have ||w||Σ ≥ ||v||Σ iff ||w||Σ̂ ≥ ||v||Σ̂.
Observe for all v ∈ Rn, it holds that ||v||Σ = ||v− µ′v

µ′µ
z+z||Σ, and ||v||Σ̂ = ||v− µ′v

µ′µ
z+
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z||Σ̂, and also for all v ∈ Rn, µ′(v − µ′v
µ′µ

z + z) = µ′z. Therefore we have ||w||Σ ≥ ||v||Σ
iff ||w||Σ̂ ≥ ||v||Σ̂ for all v, w ∈ Rn.

Now suppose for some v we have ||v||Σ = B||v||Σ̂ > 0, and ||w||Σ = C||w||Σ̂ > 0.

We can find a λ so that ||v||Σ = ||λw||Σ = C||λw||Σ̂. So ||v||Σ̂ ≥ ||λw||Σ̂ ⇒ ||v||Σ/B ≥
||v||Σ/C. Also ||v||Σ̂ ≤ ||λw||Σ̂ ⇒ ||v||Σ/B ≤ ||v||Σ/C. Therefore B = C and Σ and Σ̂

are scalings of each other.

We have shown that µ̂ = Aµ, Σ̂ = BΣ for some A,B > 0. Since β̂ and β represents

the same choices, we must have F̂ (tA/B) = F (t). In other words,

β̂ = Aµ+BΛ
A

B
ε = Aβ.

Theorem 2.5 in Fang et al. (1990) shows the uni-dimensional marginal cdf pins down

the n-dimensional spherical distribution, as we wanted to show.

Proof of Proposition 4

To simplify notation, it suffices to show the statement for the two-attribute case. For

any option x = (x1, x2, p) the indirect utility is x1β1 + x2β2 − p. Consider the following

pair of alternatives ya = (x1 + 1, x2, p+ a) and yb = (x1, x2 + 1, p+ b). It is easy to see

that for this random coefficients model, we have

ρ(x, {x, ya}) = P{β1 < a}

ρ(x, {x, yb}) = P{β2 < b}

ρ(x, {x, ya, yb}) = P{β1 < a and β2 < b}

Factorable implies for any real values a, b we have

ρ(x, {x, ya, yb}) = ρ(x, {x, ya})× ρ(x, {x, yb})

which means for any real numbers a, b we have

P{β1 < a and β2 < b} = P{β1 < a} × P{β2 < b}.

Therefore β1 is independent of β2. This implies Σ is diagonal (covariance is zero at

off-diagonals). By Theorem 4.11 in Fang et al. (1990), β is Gaussian.
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