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SUMMARY

Human functional MRI (fMRI) research primarily
focuses on analyzing data averaged across groups,
which limits the detail, specificity, and clinical
utility of fMRI resting-state functional connectivity
(RSFC) and task-activation maps. To push our un-
derstanding of functional brain organization to the
level of individual humans, we assembled a novel
MRI dataset containing 5 hr of RSFC data, 6 hr
of task fMRI, multiple structural MRIs, and neuro-
psychological tests from each of ten adults.
Using these data, we generated ten high-fidelity,
individual-specific functional connectomes. This
individual-connectome approach revealed several
new types of spatial and organizational variability
in brain networks, including unique network
features and topologies that corresponded with
structural and task-derived brain features. We
are releasing this highly sampled, individual-
focused dataset as a resource for neuroscientists,
and we propose precision individual connectomics
as a model for future work examining the orga-
nization of healthy and diseased individual human
brains.
INTRODUCTION

Over the past 30 years, functional magnetic resonance imaging

(fMRI) and, more recently, resting-state functional connectivity

(RSFC) fMRI studies based on the blood-oxygen-level-depen-

dent (BOLD) signal have significantly advanced our knowledge

of humanbrain function andorganization. By spatially coregister-

ing and combining data from dozens, hundreds, or even thou-

sands of individuals, neuroscientists have been able to reliably

identify central tendencies of both task-induced activation pat-

terns (Martin, 2007; Petersen and Posner, 2012; Rugg and Vil-

berg, 2013; Wager and Smith, 2003) and the large-scale network

organization of the brain (Beckmann et al., 2005; Power et al.,

2011; Smith et al., 2009; Yeo et al., 2011). However, unlike struc-

tural MRI, which demonstrates clear clinical utility by describing

the physical structure of individual brains, fMRI and RSFC

research approaches have generally shied away from studying

individuals,with the notable exception of studies focusedon spe-

cific regions of the cortex using functional localizers (Kanwisher,

2017) or high-field imaging (Cheng, 2016) (though see Huth et al.,

2016 for an alternative approach to studying individual brains).

Instead, much of systems neuroscience has focused on exam-

ining the group-average brain. While group averaging has re-

vealed many basic principles of functional brain organization,

the lack of emphasis on understanding individuals means that

clinical applications of fMRI and RSFC have been limited to pre-

surgical functional mapping (Mitchell et al., 2013; Sunaert, 2006).
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Because the temporal signal-to-noise ratio of BOLD MRI data

is relatively low (Welvaert and Rosseel, 2013), results obtained

in individuals using small quantities of per-subject fMRI data

(5–20min) cannot precisely characterize brain function and orga-

nization (Anderson et al., 2011; Laumann et al., 2015; Xu et al.,

2016). Hence, neuroimaging researchers have generally chosen

to aggregate small amounts of data across many individuals.

This approach identifies group-level central tendencies that

generalize across individuals, but it obscures subject-specific

features. Similarly, studies describing cross-individual variability

in functional brain organization have tended to use large data-

sets with relatively small amounts of per-individual data (Gordon

et al., 2017a, 2017b; Langs et al., 2016; Mueller et al., 2013;

Wang et al., 2015), although this quantity has increased very

recently (Chen et al., 2015; Xu et al., 2016). Thus, detailed char-

acterization of individual brains has so far been limited (Laumann

et al., 2015; Poldrack et al., 2015).

We contend that it is now appropriate to expand the stan-

dard human functional neuroimaging approach by developing

methods to systematically characterize brain function and orga-

nization in single individuals. Individual-specific neuroimaging

will be critical for determining whether differences in brain orga-

nization are behavior-related, disease-dependent, or epiphe-

nomenal. This approach will also empower the study of individ-

uals with idiosyncratic brain lesions (Fair et al., 2006; Pizoli

et al., 2011), rare disorders, or unusual cognitive skills (Dresler

et al., 2017) that could deepen our understanding of the funda-

mental principles of human brain organization. Finally, precise

descriptions of brain organization in individual neurological,

neurosurgical, and psychiatric patients may enable custom

treatment approaches beyond basic presurgical functional map-

ping (Hacker et al., 2013).

Recently, Laumann et al. (2015) characterized an individual’s

functional brain organization by analyzing many hours of RSFC

data collected from a single person acrossmore than a year (Pol-

drack et al., 2015). This work suggested that 1) with sufficient

data, reliable estimates of brain networks can be produced in a

single individual; 2) features of an individual’s network map

closely correspond with task-driven fMRI activations; and,

most notably, 3) individual brain networks are more detailed

than group-average networks, as small features are often

obscured by averaging across groups. Together, these findings

provided a single example of how individual specificity can be

achieved using extensive within-individual data collection.

The present work represents a critical next step toward estab-

lishingprecision individual connectomics asa researchparadigm.

To advance this nascent area of neuroscience, we collected

a large quantity of data from ten individuals (24–34 years; 5F),

each of whom underwent many hours of RSFC, task-based

fMRI, structural MRI, and a neuropsychological testing battery

(Figure 1, Table 1). To standardize time-of-day effects (Shannon

et al., 2013) and reduce data acquisition costs, every scan started

at midnight. Therefore, we refer to this dataset as the Midnight

Scan Club (MSC) data. The completeMSC dataset is freely avail-

able from openfmri.org (Poldrack et al., 2013) and neurovault.org

(Gorgolewski et al., 2015) as a resource for neuroscientists.

Here we present a collection of novel and recently developed

(Laumann et al., 2015) analyses to characterize the functional
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brain organization of the ten MSC individuals. This characteriza-

tion includes 1) assessment of within-subject quality of RSFC

data, including the reliability of multiple connectional and

graph-theoretical measures of network function; 2) precise

description of the brain network organization of each individual

MSC subject, including both the physical topography and

network topology; and 3) convergence between individuals’

task activation patterns, RSFC-derived brain networks, and dis-

tributions of cortical myelin.

RESULTS

Figure 1 shows a graphical summary of theMSCdataset. In each

of the ten subjects, we collected 3.5 hr of structural MRI data;

5 hr of RSFC data; 6 hr of task-based fMRI data across three

different tasks, including a blocked motor task, a mixed blocked

and event-related perceptual and language task, and an event-

related incidental memory task with multiple stimulus types;

and a neuropsychological testing battery (Table 1).

Fidelity of RSFC Depends on Measure of Interest, Data
Quantity, and Quality
Averaged activity time courses were extracted from individual-

specific parcels (defined following Laumann et al., 2015) and

concatenated across sessions. Iterative split-data reliability ana-

lyses (as in Laumann et al., 2015) for multiple FC measures were

conducted in each individual. Reliability was assessed for 1) the

parcel-to-parcel connectivitymatrix and 2) the networkmember-

ship assigned to each parcel. Previous work has evaluated brain

networks using three fundamental graph-theoretic concepts:

the brain’s hub structure, efficiency of information transfer, and

modular organization (Bassett and Bullmore, 2009; Bullmore

and Sporns, 2009). Therefore, we also examined the reliability

of three measures commonly employed to evaluate these prop-

erties: 3) the participation coefficient (PC), a measure of the

diversity of a region’s cross-network connectivity contributing

to its hub status (Guimerà et al., 2007; Power et al., 2013);

4) global efficiency, a whole-brain measure of network informa-

tion transfer (Rubinov and Sporns, 2010); and 5) modularity, a

measure of how well the whole-brain graph can be represented

as a set of discrete networks (Newman, 2004).

Figures 2A–2E illustrate that all measures exhibited relatively

poor reliability given ‘‘typical’’ quantities of data (<10 min re-

tained after motion censoring). Reliability of many measures

sharply increased with inclusion of additional data. In one indi-

vidual (MSC08), parcel-to-parcel connectivity similarity was

low (Figures 2A and 2H), most likely owing to residual motion

effects (Figure S2). However, MSC08’s data was much less

reliable than the overall relationship between residual motion

effects and reliability would predict. This subject repeatedly re-

ported falling asleep and exhibited frequent, prolonged eye clo-

sures and systematic increases in head motion over the course

of each run (See Figure S1). Thus, low reliability likely is attribut-

able to high levels of drowsiness (Laumann et al., 2016; Taglia-

zucchi and Laufs, 2014).

The quantity of data required for reliable estimation depended

on the measure of interest. Excluding subject MSC08, we

observed that 30 min of motion-censored data was required to

http://openfmri.org
http://neurovault.org


Figure 1. Per-Subject Data Available in the MSC Dataset

Data includes four high-resolution T1 scans, four high-resolution T2 scans, four magnetic resonance angiogram (MRA) scans, four pairs of magnetic resonance

venogram (MRV) scans, five hours of fMRI RSFC data, six hours of fMRI task data across three different tasks, and four neuropsychological assessments

producing 21 individual assessment scores.
achieve an average (across subjects) correlation matrix reliability

of r > 0.85 (Figure 2A). Network assignment required even more

data (90 min) to achieve an average Dice coefficient > 0.75 (Fig-

ure 2B). Modularity achieved an average difference of < 3% from

the split-data sample (Figure 2E) with only 10 min of data, while

global efficiency required 90 min to achieve the same reliability

(Figure 2D). The PC measure never achieved a high degree of

split-data similarity in most subjects (maximum r = 0.5–0.65; Fig-

ure 2C). Reliabilities calculated at each graph density are shown

in Figures S2A–S2C.

Regarding global efficiency and modularity, increasing the

amount of data not only increased reliability but also altered

expectation values, suggesting that thesemetrics systematically

depend on data quantity. This effect is illustrated in Figures 2F

and 2G. Across all subjects, global efficiency calculated from

less than 20 min of motion-censored data was systematically

elevated (Figure 2F) while modularity calculated from less than

20 min of data was systematically depressed (Figure 2G).

Session-level RSFC matrix similarity was examined both

within and across subjects using an a priori group-level par-

cellation (Gordon et al., 2016). Within-subject similarity was

high across sessions (diagonal blocks in Figure 2H; worst in

MSC08), with intersession variability most prominent in primary
somatosensory and motor cortex (see Figures S2E and S2F).

For each session, correlation matrix similarity was greater within

subject than across subjects (all t > 3.34; all p% 0.001), meaning

that individual RSFC patterns were distinct. In the following

sections, we report detailed topographical and topological

characterization of these individually distinct networks.

High-Fidelity Individual RSFC Mapping Reveals
Individual-Specific Brain Network FeaturesObscured by
Group Averaging
To compare network topographies across individuals, we used

a graph-theory-based community detection approach (Power

et al., 2011). Networks were defined in each individual by

collapsing across density thresholds (Laumann et al., 2015)

and assigning identities based on similarity to a set of template

networks (Figure S3A). Identified networks included the default

mode (DMN); medial and lateral visual (mVis, lVis); cingulo-oper-

cular (CON); salience; fronto-parietal (FPN); dorsal attention

(DAN); ventral attention (VAN); hand, face, and leg somatomotor

(hSMN, fSMN, lSMN); auditory; premotor; parietal memory

(PMN); contextual association (CAN); and anterior and posterior

medial temporal networks (aMTL, pMTL). Network topographies

were consistent across density thresholds (Figures S3B and
Neuron 95, 791–807, August 16, 2017 793



Table 1. Subject Demographic Information And Neuropsychological Assessment Scores

01 02 03 04 05 06 07 08 09 10 AVG SD

Gender M = 5, F = 5 M M F F M F F F M M – –

Age 34 34 29 28 27 24 31 27 26 31 29.1 3.3

Education (years) 22 28 18 22 20 17.5 20 21 19 19 20.7 3.0

KBIT-2

Verbal Standard 129 129 117 127 102 119 127 129 135 135 124.9 9.9

Nonverbal Standard 125 130 112 130 132 125 132 115 115 132 124.8 7.9

IQ 131 134 117 133 120 126 134 126 129 138 128.8 6.6

BIS/BAS

BAS Drive 12 15 11 9 15 9 9 8 12 13 11.3 2.5

BAS Fun Seeking 7 12 10 10 15 11 13 9 10 15 11.2 2.6

BAS Reward Responsiveness 17 17 17 16 19 18 12 15 18 19 16.8 2.1

BIS 23 24 22 26 19 23 26 24 27 26 24.0 2.4

NEO-FFI

Neuroticism 35 15 18 30 17 18 35 33 41 28 27.0 9.3

Extraversion 17 38 26 27 37 26 30 20 27 30 27.8 6.5

Openness 39 34 30 36 36 27 41 30 32 38 34.3 4.5

Agreeableness 24 31 31 34 29 36 38 30 28 25 30.6 4.5

Conscientiousness 26 31 31 40 39 25 35 30 38 28 32.3 5.4

NIH Toolbox

Cognition Crystallized Composite 146.3 137.9 139.3 146.8 132.1 135.8 132.7 141.4 151.1 154.0 141.7 7.5

9-Hole Pegboard Dexterity 112.7 105.0 99.7 102.2 98.8 102.6 100.0 110.7 92.5 104.1 102.8 5.8

Dimensional Change Card Sort 121.4 109.7 99.2 99.1 95.7 91.4 115.5 93.7 113.4 115.1 105.5 10.7

Flanker Inhibitory Control & Attention 113.8 111.7 103.2 84.8 90.8 108.2 106.0 98.5 113.4 92.8 102.3 10.2

List Sorting Working Memory 112.7 131.8 97.6 123.7 123.7 118.1 127.4 123.7 128.2 117.2 120.4 9.8

Oral Reading Recognition ENG 136.1 130.3 128.3 131.6 120.7 126.2 126.5 130.3 131.9 130.3 129.2 4.1

Pattern Comparison Process Speed 124.4 126.2 83.2 90.9 116.5 103.1 107.9 121.7 148.9 137.7 116.0 20.3

Picture Sequence Memory 112.3 134.8 134.8 130.2 112.4 112.4 114.9 98.3 121.7 134.8 120.7 12.6

Picture Vocabulary 128.0 128.1 136.7 145.0 133.8 133.8 127.5 136.8 149.2 151.1 137.0 8.7
S3C). With the exception of a small region in parieto-occipital

sulcus, cross-subject variability in RSFC patterns was not

related to cortical folding (Figure S3D).

We observed broad consistencies in network topographies

across the ten individual datasets (Figures 3A and 3B). For

example, all network maps showed hallmark DMN features in

medial parietal cortex, medial prefrontal cortex, and bilateral

angular gyri that are consistently seen in group-average data

(Raichle and Snyder, 2007). Similarly, all subjects showed

canonical FPN features in lateral prefrontal cortex, lateral parietal

cortex, dorsomedial prefrontal cortex, and lateral temporal

cortex.

However, certain network features were observed that were

absent from the group average. For example, five of ten MSC

subjects had a region of CON in anterior inferior/middle frontal

gyrus (Figure 3A, purple arrows); six subjects had an lVis feature

in lateral parietal cortex (Figure 3A, dark blue arrows); seven sub-

jects had a salience feature in ventromedial prefrontal cortex

(Figure 3B, black arrows); and five subjects had an FPN feature

in middle cingulate cortex (Figure 3B, yellow arrows). None of

these features were present in the group-average network

map. As an example, we highlight the connectivity of the salience
794 Neuron 95, 791–807, August 16, 2017
network feature in ventromedial prefrontal cortex in one subject.

Although this region has long been considered a core node of the

DMN (Raichle et al., 2001), here we show that in subject MSC06,

a region in the medial prefrontal cortex (Figure 3C: seed B, black

arrow) was strongly correlated with pregenual cingulate, frontal

pole, ventral insula, and temporal-parietal junction, but was un-

or anti-correlated with canonical DMN regions (white circles).

An adjacent seed in a portion of the vmPFC identified as DMN

network (Figure 3C, seed A, red arrow) showed the expected

strong medial parietal and angular gyrus connectivity. By

contrast, the same two seeds showed almost no connectivity

differences in the MSC group average (Figure 3C).

Global Network Organization of Individual Connectomes
Differs from the Group Average
Characterizing brain networks requires understanding the

brain’s global network structure, especially the relationships

within and between networks. To pursue this analysis in a well-

defined, individual-specific network space (Wig et al., 2011),

we identified parcel-level brain networks using the individual-

specific cortical parcellations employed in the RSFC reliability

analyses (above). The topographies of individual-specific brain



H

F

D

A

G

E

B C

Figure 2. Reliability, Bias, and Similarity of RSFC Measures

(A–E) The reliability of various brain-network measures increases with quantity of analyzed data. A given amount of motion-censored data (x axes) was randomly

selected and compared to a random independent sample of 70 min of data from the same subject; this was repeated 1,000 times. Shown are (A) correlations of

connectivity matrix upper triangles; (B) Dice coefficients representing overlap of the node-wise categorical assignments; (C) correlation of node-wise partici-

pation coefficients; (D) percent difference in global efficiency; and (E) percent difference in modularity.

(F–G) The expectation value of graph-theoretic measures depends on quantity of analyzed data. Shown are (F) expectation value of global efficiency and (G)

expectation value of modularity.

(H) Pairwise similarity of correlation matrices between all individual subject sessions, as well as the group average (last row and column).
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networks were nearly identical vertex-wise (Figure 3A) and par-

cel-wise (Figure S4), suggesting that the network topographies

are consistent across these two spatial scales. Network struc-

tures for each subject and for the group average were visualized

using spring-embedded plots (Dosenbach et al., 2008; Power

et al., 2011) across a wide range of thresholds (.5% to 5%; see

Movie S1). Figures 4A and 4B show spring-embedded plots

from the center of the threshold range (2.5% edge density).

The overall network structure of the MSC-average data (Fig-

ure 4A) closely matched previous reports (Power et al., 2011).

In the group result, sensory, motor, and association networks

were arranged around centrally located FPN (yellow) and DAN

(green) networks (Figure 4A, yellow arrow). By contrast, none

of the individual brain networks exhibited this organization (Fig-

ure 4B). In eight of ten MSC subjects, the association networks

were arranged in a circular pattern. Within the circle, networks

were pairwise connected as follows:

DMN4FPN4DAN4CON4VAN4DMN:

A variety of single nodes were centrally positioned in this cir-

cle, but they were not preferentially FPN or DAN nodes. Individ-

ual sensory and motor networks tended to be linked to the CON

and DAN networks, as in the group results.

In two individuals (MSC02 and MSC06, Figure 4B, gray ar-

rows), the networks were linearly, as opposed to circularly, con-

nected. Although spring-embedded layouts may change with

graph density, the observed topologic distinctions (linear versus

circular arrangement) were generally consistent across all but

the sparsest or densest connection thresholds (Movie S1).

Post hoc analyses indicated that these two subjects lack strong

links between VAN regions and other regions outside the VAN or

DMN (Figure S5).

We also observed a second pattern of topological distinction.

In the MSC-average graph, as well as in most individuals, the

DAN and FPN networks were adjacent or intermixed. However,

in two individuals (MSC02 and MSC10; Figure 4B, green arrows)

links between the DAN and FPN were absent and the DAN was

adjacent to the lVis network. Again, this observation was consis-

tent across thresholds (Movie S1).

We investigated whether these visually apparent differences in

network organization were reflected in quantitative differences in

global efficiency or modularity, which are whole-brain measures

of network organization, as computed for each session in each

subject. Analysis of covariance (ANCOVA) tests for the effect

of subject identity were computed separately for each measure

at each density threshold, controlling for data quantity and qual-

ity (see STAR Methods). After correction for multiple compari-

sons, we found a significant main effect of subject at every den-
Figure 3. Brain Network Maps from Highly Sampled Subjects

(A and B) Shown are (A) lateral and (B) medial views of brain networks identified in

of contiguous vertices in the same network), highlighted, were observed across in

network pieces in anterior middle/inferior frontal gyrus; dark blue arrows: lateral v

network pieces in posterior cingulate cortex; back arrows: salience network piec

(C) Individual-specific features of brain networks reflect strong differences in fu

arrows: seed A; black arrows: seed B) are in default and salience networks, re

demonstrates strong positive connectivity with posterior cingulate and angular

negative connectivity with these regions. Only minimal differences are observed
sity threshold for global efficiency (at 2.5% density: F[9,87] =

7.81, corrected p < .001), but not for modularity (at 2.5% density:

F[9,87] = 0.84, p > 0.5). Figure 4C shows these effects at

the 2.5% density threshold; Figures S6A and S6B illustrate

mean (cross-session) values for each subject at every density

threshold. Post hoc pairwise comparisons revealed that the

global efficiency effect was driven primarily by the two subjects

with more linear graphs (MSC02 and MSC06), in whom global

efficiency was low compared to all other subjects. We also

observed significant global efficiency increases in MSC09. See

Figure S6C for complete pairwise comparisons.

High-Fidelity Mapping of Individual fMRI Task
Activations
Task-based fMRI allows functional localization at the individual

level. The topography of task-fMRI responses in each individual

was examined using data averaged over scanning sessions. Mo-

tor task responses are shown in Figure 5. Subject-specific soma-

totopy is evident in responses to movements of the tongue

(ventrolateral somatomotor strip), hand (dorsolateral somatomo-

tor strip), and foot (dorsomedial somatomotor strip). Including all

data from all subjects produced group-average somatotopic

maps thatwerestatistically robustbut spatially nonspecific, incor-

porating large swaths of white matter. By contrast, including only

onesession fromeachsubject (i.e., using thesame total amountof

data) producedaveragemapswith very few statistically robust re-

sponses. These results indicate that fMRI task responsesbecome

blurred in group averaged data, even when the individuals have

been mutually coregistered using advanced nonlinear methods.

Task Activation Patterns Closely Conform to RSFC
Network Maps in Individuals
Previous work has demonstrated individual-specific correspon-

dence between RSFC and task fMRI in one highly sampled sub-

ject (Laumann et al., 2015) and for multiple lower-data subjects

(Tavor et al., 2016). Here, we extend this approach to demon-

strate correspondence between RSFC networks and task re-

sponses across multiple tasks for ten highly sampled subjects

(Figure 6). Strong activations in response to hand and tongue

movements (hand > tongue contrast) tightly respected individ-

ual-specific RSFC-defined hSMNand fSMNnetwork boundaries

(Figures 6A and 6B; cyan and orange outlines, respectively).

Similarly, responses to visual scenes (scene > face contrast) re-

spected the boundaries of each individual’s resting-state-

defined CAN network (Figures 6C and 6D). By contrast, individ-

ual motor and scene-related responses did not respect network

boundaries derived from other subjects or the group average,

thus demonstrating individual topographic specificity (Figures
group average data (top) and in ten individuals. Several network ‘‘pieces’’ (sets

dividuals but absent from the group average. Purple arrows: cingulo-opercular

isual network pieces in superior parietal cortex; yellow arrows: fronto-parietal

es in ventromedial prefrontal cortex.

nctional connectivity. Adjacent seeds in ventromedial prefrontal cortex (red

spectively, in subject MSC06. At middle and right, the default seed (seed A)

gyrus (white circles), but the salience seed (seed B) demonstrates weak or

in group average data (bottom).
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Figure 4. Graph Analysis of Brain Networks

(A and B) ‘‘Spring-embedded’’ plots visualize networks such that well-connected groups of nodes are pulled together. Note that a few sparsely connected

peripheral nodes are not visualized here. In (A) the group average, Fronto-Parietal (yellow) and Dorsal Attention (green) networks are central (yellow arrow). In (B),

many individual graphs exhibit a broadly circular organization without a central feature. Two individuals (gray arrows) exhibited a more linear organization. In

addition, in two individuals, the dorsal attention and fronto-parietal networks were not adjacent (green arrows).

(C) ANCOVAs tested for the effect of subject identity on global efficiency (top) and modularity (bottom) while controlling for data quality and quantity. Boxplots

illustrate subject means (horizontal line), range of data in the middle 50th percentile (box height), and range of nonoutlier data (bars). Significant effects (red

asterisks) of subject identity were observed for global efficiency, but not modularity. Black diamonds represent group average modularity and global efficiency.
6E and 6F). Task-rest convergences can be seen for all pairwise

subject comparisons in Figure S7.

Quantitative assessment of topographic correspondence be-

tween task responses and resting-state networks was evaluated

in terms of response magnitude inhomogeneity within all
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discrete network regions. Inhomogeneity was defined as the

standard deviation of all t-score values within a given region,

adjusted for the size of that region and summed across regions

(see STAR Methods for details). Low inhomogeneity indicates

that network boundaries accurately predict the spatial pattern



Figure 5. Highly Sampled Task fMRI Data

Enables Precise Localization of Responses

in Individual Subjects

Regions near the central sulcus show BOLD

responses to foot, hand, and tongue move-

ments. The ‘‘hands’’ and ‘‘feet’’ activation patterns

represent contrasts between left- and right-sided

movement, and are thresholded at jtj > 5 and

jtj > 3, respectively. ‘‘Tongue’’ activations repre-

sent a tonguemovement versus baseline contrast,

and are thresholded at jtj > 10. Responses are

robust but poorly localized when all data from all

subjects are tested (MSCavg). Average responses

are sparse when data quantity is matched to the

individual contrasts (Data-matched avg).
of task-evoked activity. Individual topographic specificity was

quantified by contrasting within- versus across-individual inho-

mogeneity (Figure 6G). In eight of ten subjects, the task versus

network topographic correspondence was better within than

across subjects in every instance. In two subjects (MSC07 and

MSC08), this result was not strictly obtained (one other subject

demonstrated lower inhomogeneity). However, in aggregate,

these results demonstrate the tight correspondence between

task-evoked responses and network boundaries in individuals.

Spatially Variable Myelin Features Closely Conform to
RSFC Network Maps in Individuals
Cortical myelin content can be derived from the ratio between

T1- and T2-weighted images (Glasser and Van Essen, 2011;

Glasser et al., 2016). A region of high cortical myelin in lateral

occipito-temporal cortex, previously identified as the human

MT+ complex (Glasser and Van Essen, 2011), was found

in each MSC subject. The spatial location of this highly myelin-

ated region varied across subjects (Table S1). Here, we tested

whether anatomical differences in putative MT+ correspond to

differences in RSFC network topography.

In all subjects, the entire putativeMT+ region fell within a single

RSFC-derived network, often requiring the network to exhibit ex-

trusions encompassing the region (Figures 7A and 7B). Further,

MT+ regions did not respect network boundaries derived from

other subjects or the group average. These results demonstrate

convergence of topographic specificity between RSFC networks

and cortical myelin distributions in individuals (Figure 7C).

Notably, theMT+ regionwasassigned to the lVis network in seven

subjects but to the DAN in three other subjects (MSC02, MSC08,

and MSC10). Seed maps of the MT+ region were grossly similar

across subjects (Figure S8). Thus, these individual differences

likely reflect network assignment rather than network topography.

DISCUSSION

Descriptors of brain organization such as RSFC, task-based

fMRI, and cortical myelin content have enhanced our scientific
understanding of human brain function,

and they have the potential to improve

the clinical care of neurological, neuro-

surgical, and psychiatric patients beyond
current presurgical planning applications. However, functional

neuroimaging may not achieve its full potential until very accu-

rate, individual-level brain network estimates can be achieved

(Gordon et al., 2017a, 2017b; Harrison et al., 2015; Laumann

et al., 2015; Wang et al., 2015).

To advance the goal of characterizing brain networks in

individuals, we are providing this highly sampled, ten-subject

dataset as a public resource for neuroscientists. In addition to

300 min of resting-state data, each subject also contributed

350 min of task fMRI, 200 min of high-resolution structural and

vascular imaging, and extensive neuropsychological testing

(Figure 1; Table 1). This quantity of data represents at least a

3-fold increase in per-subject data for each of the resting state,

task, and structural modalities over any other currently publicly

available dataset (e.g., Chen et al., 2015; Van Essen et al.,

2013). This greater quantity of data allowed us to develop

procedures to assess data reliability as well as to conduct exten-

sive, individualized delineation of task responses, connectome

profiling, and cross-modal comparisons against task activations

and myelin maps with greater precision than would be possible

with any other dataset.

Highly Sampled fMRI Data Allow Reliable,
Individual-Specific, and Externally Valid Descriptions
of Brain Organization
Descriptions of an individual’s brain network organization are of

greatest value if they are both reliable and externally valid. That

is, we must be able to demonstrate 1) that repeated character-

izations of the network organization produce the same answer

in the same individual and 2) that the individual’s brain network

organization corresponds to external measures of brain function

or structure.

Reliability

We observed that, for most subjects, several RSFC-derived

measures converged to stable estimates given sufficient data.

Convergence of correlation matrices, network assignments,

global efficiency estimates, and modularity estimates are illus-

trated in Figures 2A–2E. These findings extend previous work
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illustrating single-subject reliability of RSFC correlations and

network assignments (Anderson et al., 2011; Laumann et al.,

2015; Xu et al., 2016). The quantity of data needed for reliable

characterization of individual-specific measures varied from

10 min to 80 min, depending on the specific measure. Less

than 10 min of data (retained after motion correction) yielded

low reliability estimates for all measures as well as systematically

biased graph-theoretic measures (see below).

Although modularity and global efficiency measures exhibited

reasonable reliability with sufficient data (< 4% error), the PC

measure was poorly reliable (similarity < r = 0.65), even when

large quantities of data were included in the comparisons (Fig-

ure 2C). A possible explanation for this result is that evaluating

PC requires nonlinear transforms of the correlation matrix,

including thresholding and community assignment. Requiring

precision from both measures simultaneously may account for

the instability of PC estimates.

Of note, one subject exhibited substantially lower reliability of

connectivity matrices (MSC08). As data quantity was matched

across subjects for this analysis, this poor reliability most

likely reflects drowsiness (Laumann et al., 2016; Tagliazucchi

and Laufs, 2014). Previous work suggests that subjects

who are drowsy may repeatedly transition into sleep states,

resulting in less reliable RSFC data (Laumann et al., 2016;

Yeo et al., 2015a). We believe that drowsiness did not signifi-

cantly contaminate the data obtained in the other subjects,

as they 1) self-reported continued wakefulness, 2) did not

exhibit prolonged eye closures (as measured with eye tracking),

and 3) did not display the gradual within-session head

motion increases characteristic of drifting off to sleep (see

Figure S1).

We also observed that RSFC measures were highly subject

specific: session-to-session similarities were high within subject,

but much lower across subjects (Figure 2H). Similar findings

have been reported by others as the basis for connectivity-

based ‘‘fingerprinting’’ of individuals (Anderson et al., 2011;

Finn et al., 2015; Miranda-Dominguez et al., 2014; Pannunzi

et al., 2017; Xu et al., 2016). However, the ability to distinguish

subjects may be explained at least in part by differences in the

spatial locations of brain networks across individuals (Gordon

et al., 2017a; Laumann et al., 2015; Satterthwaite and Davatzi-

kos, 2015). Additionally, systematic differences in other uncon-

strained biological (e.g., brain size, gyral folding patterns) or

nonbiological (e.g., data quality) factors may contribute to sub-

ject discrimination. We suggest that discriminating between indi-

viduals is a less important objective than accurately character-

izing each individual’s functional connectome, which requires

large quantities of high-quality data.
Figure 6. Task-Evoked BOLD Responses Align Closely with Individual

(A and B) Hand > tongue (A) and scene > face (B) task contrast maps for a singl

tomotor (orange) (A), and contextual association (white) (B) RSFC networks are s

(C and D) Hand > tongue (C) and scene > face (D) task contrasts and RSFC netw

(E and F) Hand > tongue (E) and scene > face (F) task contrasts from MSC01 co

(G) In each subject, the t-map inhomogeneities across many task contrasts w

within pieces of other subjects’ networks (black) or group-average networks (blu

motion > right handmotion; 3) left legmotion > right legmotion; 4) face stimulus >w

and 7) noun-verb stimulus > baseline.
Bias

For two graph-theoretic measures of network organization—

global efficiency and modularity—insufficient data not only re-

sulted in unreliable measures but also produced systematically

biased values that were independent from the increased

variance (Figures 2F and 2G). This effect converges with theoret-

ical predictions that noise may subtly bias network measures

(Sporns, 2014). Here, the effect may be driven by retained noise

in limited data inducing the appearance of factitious cross-

network connections that artificially shorten paths between

nodes, increasing the apparent global efficiency and reducing

modular structure.

These findings raise important issues to be considered when

conducting RSFC studies using short scan times. Limited quan-

tities of data increase noise in single-subject RSFC estimates.

Additionally, for somemeasures, short scan times introduce sys-

tematic bias, which potentially compromises group compari-

sons. Theoretically, limited-data scans could be used in group

comparisons as long as the groups are both large enough to

overcome the noise and strictly matched for quantity of data re-

tained after motion censoring to equalize the bias. Future work

should explore the nature of these biases to determine the feasi-

bility of such approaches.

Validity

We observed precise, subject-specific correspondences be-

tween the spatial topography of RSFC-derived brain networks

and the spatial extent of activations for motor and perceptual

tasks (Figure 6). The scene-related activation elicited activity

in regions consistent with previous reports that localized

contextual processing to retrosplenial cortex (Bar and Aminoff,

2003), but it did so in a highly subject-specific fashion. Broadly,

these observations are consistent with previous task-rest

correspondences observed in group average (Smith et al.,

2009) and individual-specific data (Laumann et al., 2015; Tavor

et al., 2016).

Individual-specific RSFC network topography also colocal-

ized with a highly myelinated region in lateral occipito-temporal

cortex (Figure 7) that likely represents the human MT+ complex

(Glasser and Van Essen, 2011), one of the most spatially variable

cortical areas described to date (Van Essen et al., 2012). Interest-

ingly, this area was usually (in seven of ten subjects) within the

lVis network, despite previous arguments that area MT+ may

be a primary node of the DAN (Fox et al., 2006). Indeed, these

seven subjects had no strong connections between putative

MT+ and DAN (Figure S8).

Together, these findings reinforce the notion 1) that individual

differences in the topography of resting state networks corre-

spond to individual differences in the representation of function
-Specific Networks Derived from Resting-State Data

e subject. Boundaries of this subject’s hand somatomotor (cyan), face soma-

hown on the same surface.

ork boundaries for each subject.

mpared to network boundaries of every subject.

ere lower within all pieces of the subject’s own RSFC networks (red) than

e). Seven task contrasts were tested: 1) tongue motion > baseline; 2) left hand

ord stimulus; 5) scene stimulus > face stimulus; 6) glass dot pattern > baseline;
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Figure 7. Regions of Elevated Cortical Myelin Density Align Closely

with Individual-Specific Networks Derived from Resting-State Data

(A) Cortical myelin densitymap for a single subject, thresholded at T1:T2 ratio >

1.9 for visualization purposes. A magenta arrow indicates the putative MT+

complex. Boundaries of this subject’s lateral visual (blue) and dorsal attention

(green) RSFC networks are shown.

(B) Myelin maps showing the location of MT+ and RSFC network boundaries

for each subject and the MSC average. Network boundaries align well with

myelin maps on an individual-specific basis.

(C) Myelin maps showing the location of MT+ in MSC01 compared to the

network boundaries of every subject and the MSC average, demonstrating

that myelin maps do not align well with RSFC boundaries from other subjects.
as determined by task fMRI, and 2) that this correspondence

emerges because both task activations and RSFC network

maps represent anatomically variable cortical regions such as

the MT+ complex.
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Precision Mapping of Individual Brains Reveals
Phenomenology Obscured by Group Averaging
Group-level analyses commonly assume that the organization

of resting-state networks is constant when evaluating variable

correlation magnitude across individuals. The present results

demonstrate how individual-specific brain networks violate this

assumption. Network pieces varied anatomically across individ-

uals, even after nonlinear coregistration of the cortical surface. It

is for this reason that group averaging obscures the small,

spatially variable network pieces that characterize individual

brains (Figure 3). This result extends previous reports of small,

individual-specific network pieces that are absent from group-

average networks (Gordon et al., 2017b; Harrison et al., 2015;

Laumann et al., 2015; Wang et al., 2015).

Interestingly, individual-specific network features were

frequently observed across the ten MSC subjects. For example,

seven of the subjects had a piece of the salience network

(Seeley et al., 2007) in ventromedial prefrontal cortex, a region

generally assigned to the DMN (Buckner et al., 2008; Raichle

and Snyder, 2007). Similarly, six subjects had an FPN network

piece in posterior cingulate, another classical DMN region; six

subjects had Visual network pieces in superior parietal cortex;

and seven subjects had somatomotor network pieces in middle

opercular cortex. Comparable observations were previously

made on the basis of less extensively sampled data (Gordon

et al., 2017b; Tavor et al., 2016; Sepulcre et al., 2012; Eickhoff

et al., 2010).

The functional significance of these individual-specific

network features is not yet clear. Task fMRI data that is spatially

convergent with RSFC networks (Figure 6) will be critical for

understanding the function of these regions. In future work,

comparing activated regions to RSFC networks (as has been

done previously at the group level; Smith et al., 2009; Yeo

et al., 2015b) will allow a functional annotation of the network

features in each individual. Such data will aid not only in under-

standing the function of these features, but also in matching

them across individuals.

Global Network Topology

The global network topology of individual-specific functional

connectomes fundamentally differs from the network topology

of group-average data (Figures 4A and 4B). Specifically, in

the spring-embedded representation of the group-average

network, the FPN and DAN occupy a central position (yellow

arrow), as previously reported (Power et al., 2011). This observa-

tion has been interpreted as suggesting that these networks

integrate information across more peripheral processing sys-

tems (Cole et al., 2013; Power and Petersen, 2013; Power

et al., 2011). However, while many of the sensory and motor pro-

cessing systems remain peripheral in individual data, there is no

consistent ‘‘central’’ network in the spring-embedded represen-

tation. Instead, in individual network topologies, ‘‘primary’’ net-

works (i.e., visual, auditory, motor) tend to be connected to the

CON (Dosenbach et al., 2006, 2007, 2008), likely via individual-

specific network nodes in lateral parietal and posterior temporal

cortex (Driver and Noesselt, 2008; Sepulcre et al., 2012). Mean-

while, ‘‘association’’ networks (i.e., CON, VAN, DMN, FPN, DAN)

tend to be arrayed in a broadly circular formation (though two

subjects did not share this arrangement—see below). Rather



than a central integrating network, individual nodes from many

networks were observed in the structure’s center.

It is plausible that the central position of the FPN in group-

average data reflects mixing of signals from different networks.

As we have shown (Figure 3), different networks exist at the

same anatomical location across subjects. Additionally, group-

average parcels may not precisely fit a given individual’s brain

organization. These factors contribute to signal mixing frommul-

tiple networks both within and across subjects. Signal mixing is

likely to be prominent in FPN regions, which are among the most

individually variable in the brain (Mueller et al., 2013).

Eight of the tenMSC individuals exhibited a ‘‘circular’’ network

structure, but two individuals exhibited a more linear organiza-

tion (gray arrows, Figure 4B). This linearity was the result of the

VAN being more weakly linked to non-DMN regions (Figure S5).

This difference in network organization was associated with

significantly reduced global efficiency (Figure 4C), indicating

that longer ‘‘paths’’ are required to traverse the graph. Caution

is required in interpreting the global efficiencymetric in functional

connectivity data, as the ‘‘paths’’ we observe represent corre-

lated activity rather than physical links (Power et al., 2013).

We also observed a difference across individuals in the topol-

ogy of the DAN. In eight of ten subjects, as well as in the group

average, the DAN was closely linked to the FPN. However, in

two subjects, this network was not strongly connected to the

FPN, but was closely tied to the lVis network (green arrows, Fig-

ure 4B). Interestingly, the highly myelinated putative MT+ region

in these two subjects was also part of the DAN instead of the lVis

network (the network containing MT+ in the majority of subjects)

(Figure 7; Figure S8).

Further investigation of these apparent DAN variants is

needed. We currently favor the possibility that variable inter-

and intranetwork connections of DAN regions may explain

different subnetwork configurations in different individuals. Spe-

cifically, it appears that the ‘‘DAN’’ identified in these two sub-

jects is lacking superior parietal regions (possibly because they

are incorporated into premotor or FPN networks) but has instead

incorporated lateral occipito-temporal regions (including MT+).

These alternate DAN configurations may represent networks

with only partially overlapping functions that are nonetheless

assigned the same network label. This idea is supported

by the observation that theMT+ region showed relatively consis-

tent functional connectivity across individuals, despite being

assigned to a different subnetwork by the community detection

algorithm (Figure S8).

Future work must develop approaches to identify and validate

the types of network variants discussed above, to quantify how

they may be distributed in different populations, and to explore

what their functional consequences might be. It is tempting to

hypothesize that presently observed network variants may relate

to differences in demographics, cognitive abilities, or personality

measures. Demographic information and neuropsychological

batteries were collected to ensure that our subjects were rela-

tively homogeneous across a wide variety of measures (Table 1).

However, the MSC dataset was not designed to examine brain-

behavior correspondences, as reliable brain-behavior correla-

tions cannot be computed in a sample of only ten subjects.

A power analysis shows that, to be 80%powered in ten subjects,
such correlations would have to be extremely strong (uncorrec-

ted for multiple comparisons: r = 0.71; corrected: r = 0.87).

Exploratory testing did not discover any effects of that

magnitude (all rs < 0.60, all ps > 0.05). Thus, the relationship

between global network variants discovered in the MSC data

and behavior will need to be tested in other datasets. However,

given the homogeneous and normal-to-supernormal neuropsy-

chological measurements across subjects, the variants we

describe are unlikely to be associated with medically significant

harm to cognitive function.

Future benefits of Precision Functional Mapping of
Individual Human Brains
For Systems Neuroscience

The observed differences between individual and group-average

network descriptions carry important implications for future

brain network analyses (Dubois and Adolphs, 2016; Sat-

terthwaite and Davatzikos, 2015). The majority of extant RSFC-

based network analyses define nodes based on regions of inter-

est (ROIs) derived from group-averaged data applied identically

in every individual. However, the present findings indicate that

group-averaged ROIs may encompass multiple individual-spe-

cific network features, resulting in time series with mixed signals.

This effect is illustrated by our finding that individual task re-

sponses only aligned well with each subject’s own resting-state

networks (Figure 6). Thus, the precision of task responses and

networkmeasures can be improved by delineating brain features

in an individual-specific fashion. Alternative techniques for indi-

vidualized network analyses include machine learning tech-

niques (Glasser et al., 2016; Hacker et al., 2013), mapping of

semantic representations (Huth et al., 2016), and projection of in-

dividual data into an abstract representational space (Guntupalli

et al., 2016; Langs et al., 2016). The convergence between

RSFC, task activation, and myelin measures also indicates that

task activation and/or myelin mapping may be useful as priors

to help identify RSFC networks in circumstances where network

identity or function is unclear—e.g., when brain damage has

caused networks to reorganize into a nonstandard configuration

that cannot be matched against a template.

For Medicine

For over 25 years, functional MRI has tantalized us with the

largely unfulfilled promise of clinical relevance—of the ability to

noninvasively evaluate a patient’s brain function in order to pre-

dict a clinical outcome or influence treatment. So far, the quantity

of RSFC data typically collected in patients (5–15 min) is

adequate for presurgical planning around a few brain networks,

but insufficient for precisely mapping function. To make predic-

tions about individuals, machine learning algorithms can classify

subjects as patients or controls using small quantities of data

(Fair et al., 2013; Greene et al., 2016). However, these classifica-

tion approaches have yet to be translated into routine clin-

ical use.

Collecting hours of RSFC or task fMRI data per subject may

help to fulfill the clinical promise of functional neuroimaging.

Unlike neurodiagnostic techniques such as CT and PET, which

expose patients to ionizing radiation, or invasive electrophysi-

ology (electrocorticography, depth electrodes), fMRI is without

significant medical risk. Thus, intensive fMRI scanning could
Neuron 95, 791–807, August 16, 2017 803



be utilized in diagnostic workups, especially when accurate indi-

vidualized assessment is critical. The risks and costs of even

multiple hours of fMRI scanning compare favorably to a brain bi-

opsy or to the implantation of electrical grids for recordings in

neurosurgical patients.

Conclusions
We present preliminary analyses of the multi-modal, highly

sampled Midnight Scan Club dataset. The primary purpose of

this work is to describe the dataset, which is now publicly avail-

able as a general resource for neuroscientists. We have also

presented several novel findings that emerged from our ana-

lyses of these data, including the reliability of, and potential

biases within, multiple functional connectivity and graph-theo-

retic measures; the identification of variants in global network

architecture; and the demonstration of individual-specific corre-

spondences between task-evoked brain activity, resting-state-

derived networks, and the distribution of cortical myelin content.

Together, these analyses underscore the scientific value of the

MSC dataset for precision functional mapping of individual

brains.

We observed interesting differences in global network organi-

zation across ten individuals. However, additional individuals

must be characterized to understand the prevalence of brain

network variants in the general population. An important next

step will be to study many more highly sampled individuals

in order to investigate which differences are linked to behavioral

measures and which are degenerate or epiphenomenal.

Currently, the most significant impediment to high-fidelity indi-

vidual brain mapping is cost per subject. We aim to reduce this

cost by making the MSC dataset publicly available to other re-

searchers so that they may utilize it to further describe individ-

ual-specific aspects of brain function and organization.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and processed MRI data This paper https://openfmri.org/dataset/ds000224 Accession # ds000224

Task fMRI activations This paper http://neurovault.org/collections/2447/ Accession # 2447

Psychological Image Collection at

Stirling 2D face set

http://pics.psych.stir.ac.uk/

CNBC Tarrlab ‘‘Face Place’’ repository Righi et al., 2012 wiki.cnbc.cmu.edu/Face_Place

Park Aging Mind Laboratory

Face Database

Minear and Park, 2004 http://agingmind.utdallas.edu/download-stimuli/face-database/

Libor Spacek’s Facial Imaging

Database

cmp.felk.cvut.cz/�spacelib/faces/

English Lexicon Project Balota et al., 2007 http://elexicon.wustl.edu/

Software and Algorithms

MATLAB Mathworks RRID: SCR_001622 https://www.mathworks.com/

Connectome Workbench Marcus et al., 2011 RRID: SCR_008750 http://www.humanconnectome.org/software/

connectome-workbench

Freesurfer Dale et al., 1999 RRID: SCR_008750 https://surfer.nmr.mgh.harvard.edu/

FSL Smith et al., 2004 RRID: SCR_002823 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

4dfp tools ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/

Freesurfer to fs_LR pipeline Van Essen et al., 2012 http://brainvis.wustl.edu

Parcellation code Gordon et al., 2016 http://www.nil.wustl.edu/labs/petersen/Resources_files/

Surface_parcellation_distribute.zip

Brain connectivity toolbox Rubinov and Sporns, 2010 RRID: SCR_004841 http://www.brain-connectivity-toolbox.net

Infomap Rosvall and Bergstrom, 2008 www.mapequation.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Dr. Nico Dosenbach

(ndosenbach@wustl.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data were collected from ten healthy, right-handed, young adult subjects (5 females; age: 24-34). Two of the subjects are authors

(NUFD and SMN), and the remaining subjects were recruited from the Washington University community. Informed consent

was obtained from all participants. The study was approved by the Washington University School of Medicine Human Studies

Committee and Institutional Review Board. Other findings using these participants have been previously reported in Laumann

et al. (2016).

METHOD DETAILS

Neuropsychological evaluation
The following behavioral assessments were administered to each subject: 1) The Kaufman Brief Intelligence Test, Second Edition

(KBIT-2). This tool assesses overall intelligence in verbal and nonverbal domains (Kaufman and Kaufman, 2013). 2) The Behavioral

Inhibition / Approach System (BIS/BAS) scale. This tool assesses the strength of three motivational drives and one aversive drive

(Carver and White, 1994). 3) The NEO Five-Factor Inventory (NEO-FFI). This tool assesses personality traits within five independent

factors (Costa andMacCrae, 1992). 4) TheNIH Toolbox. This is a standardized set of tools to assess neurobehavioral function across

a broad set of domains (www.nihtoolbox.org).
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MRI image acquisition
Imaging for each subject was performed on a Siemens TRIO 3T MRI scanner over the course of 12 sessions conducted on separate

days, each beginning at midnight. Structural MRI was conducted across two separate days. In total, four T1-weighted images

(sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 3.74ms, TR = 2400 ms, TI = 1000ms, flip angle = 8 degrees), four T2-weighted

images (sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 479 ms, TR = 3200 ms), four MRAs (transverse, 0.6 3 0.6, x 1.0mm,

44 slices, TR = 25ms, TE = 3.34ms) and eight MRVs, including four in coronal and four in sagittal orientations (sagittal: 0.8 3 0.8 3

2.0mm thickness, 120 slices, TR = 27ms, TE = 7.05ms; coronal: 0.73 0.73 2.5mm thickness, 128 slices, TR = 28ms TE = 7.18ms),

were obtained for each subject. Analyses of the MRA and MRV scans are not reported here.

On ten subsequent days, each subject underwent 1.5 hr of functional MRI scanning beginning at midnight. In each session, we first

collected thirty contiguous minutes of resting state fMRI data, in which subjects visually fixated on a white crosshair presented

against a black background. Each subject was then scanned during performance of three separate tasks: motor (2 runs per session,

7.8 min combined), incidental memory (3 runs per session, 13.1 min combined), mixed design (2 runs per session, 14.2 min

combined). Across all sessions, each subject was scanned for 300 total minutes during the resting state and approximately 350 total

minutes during task performance. All functional imaging was performed using a gradient-echo EPI sequence (TR = 2.2 s, TE = 27ms,

flip angle = 90�, voxel size = 4 mm x 4 mm x 4 mm, 36 slices). In each session, one gradient echo field map sequence was acquired

with the same prescription as the functional images. An EyeLink 1000 eye-tracking system (http://www.sr-research.com) allowed

continuous monitoring of subjects’ eyes in order to check for periods of prolonged eye closure, potentially indicating sleep. Only

one subject (MSC08) demonstrated prolonged eye closures.

Task design
Motor task design

The motor task was adapted from that used in the Human Connectome Project (Barch et al., 2013). Subjects were presented with

visual cues that directed them to close and relax their hands, flex and relax their toes, or wiggle their tongue. Each block started

with a 2.2 s cue indicating which movement was to be made. After this cue, a centrally-presented caret replaced the instruction

and flickered once every 1.1 s (without temporal jittering). Each time the caret flickered, subjects executed the proper movement.

12 movements were made per block. Each task run consisted of 2 blocks of each type of movement as well as 3 blocks of resting

fixation, which lasted 15.4 s.

Incidental memory task

In this task, subjects made binary decisions about scenes, faces, and words, each of which was presented multiple times. Within

each session, a single scan run was collected of each type of stimulus. In each task run, subjects viewed 24 stimuli, 3 times

each. Stimuli were presented for 1.7 s with a jittered inter-stimulus interval ranging from 500-4900ms. For scenes, subjects indicated

whether an indoor or outdoor picture was presented. For faces, male/female judgments were made. For words, subjects made ab-

stract/concrete judgments. Subjects were instructed to make their decisions as quickly as possible irrespective of the number of

times a given stimulus had been presented. Subjects made their responses using a fiber-optic response box, and the finger used

for each response typewas counterbalanced within participants across sessions. Face stimuli were taken from several publicly avail-

able databases: The Psychological Image Collection at Stirling’s 2D face set (http://pics.psych.stir.ac.uk/); the CNBC Tarrlab ‘‘Face

Place’’ repository (wiki.cnbc.cmu.edu/Face_Place; Righi et al., 2012); the Park Aging Mind Laboratory Face Database (Minear and

Park, 2004); and Libor Spacek’s Facial Imaging Database (cmp.felk.cvut.cz/�spacelib/faces/). Scene stimuli were drawn from a

larger set reported by Chen et al. (2017). Lexical properties used to create the abstract and concrete word lists were sourced

from the English Lexicon Project (Balota et al., 2007).

Mixed block/event-related design task

This taskwas adapted from experimental conditions reported by (Dubis et al., 2016). One taskwas a spatial coherence discrimination

task, which used concentric dot patterns (Glass, 1969) that were either 0%or 50%coherent. During this task, subjects had to identify

each pattern as concentric or random. The other task was a verbal discrimination task. Subjects were presented with nouns and

verbs, and had to identify which type of word was being presented on the screen. Task blocks began with a 2.2 s cue screen indi-

cating which task was to be conducted in the following block. Blocks consisted of 30 trials (half concentric/half non-concentric for

coherence, half noun/half verb for verbal). Stimuli were presented for 0.5 s with a variable 1.7-8.3 s ISI. A stop cue displayed for 2.2 s

signaled the end of each task block. Each scan run consisted of two blocks of each task. Task blocks were separated by 44 s periods

of rest. For each task, the finger used for each response was counterbalanced within participants across sessions. No words over-

lapped between this task and the incidental memory task.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cortical surface generation
Generation of cortical surfaces from the MRI data followed a procedure similar to that previously described in (Glasser et al., 2013)

and (Laumann et al., 2015). First, anatomical surfaces were generated from the subject’s average T1-weighted image in native volu-

metric space using FreeSurfer’s default recon-all processing pipeline (version 5.3). This pipeline first conducted brain extraction and

segmentation. After this step, segmentations were hand-edited to maximize accuracy. Subsequently, the remainder of the recon-all
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pipeline was conducted on the hand-edited segmentations, including generation of white matter and pial surfaces, inflation of the

surfaces to a sphere, and surface shape-based spherical registration of the subject’s original surface to the fsaverage surface

(Dale and Sereno, 1993; Dale et al., 1999; Fischl et al., 1999; Ségonne et al., 2004). The fsaverage-registered left and right hemisphere

surfaces were brought into register with each other using deformation maps from a landmark-based registration of left and right fsa-

verage surfaces to a hybrid left-right fsaverage surface (‘fs_LR’; Van Essen et al., 2012) and resampled to a resolution of 164,000

vertices (164k fs_LR) using Caret tools (Van Essen et al., 2001). Finally, each subject’s 164k fs_LR surface was down-sampled to

a 32,492 vertex surface (fs_LR 32k). The various deformations from the original surfaces to the fs_LR 32k surface were composed

into a single deformation map allowing for one step resampling. A script for this procedure is available on the Van Essen laboratory

website (Freesurfer_to_fs_LR Pipeline, http://brainvis.wustl.edu). These various surfaces in native volumetric space were then trans-

formed into atlas volumetric space by applying the previously calculated T1-to-atlas transformation.

Myelin Mapping
Myelin mapping was performed following methods described in (Glasser and Van Essen, 2011) and (Glasser et al., 2013). This pro-

cedure is based on the insight that myelin content positively covaries with T1-weighted image intensity, but negatively covaries with

T2-weighted image intensity. Thus, dividing the T1 image by the T2 imagewill enhance image contrast formyelin content. At the same

time, taking the ratio of T1/T2 eliminates the intensity bias field, as it is the same in both the T1 and T2 images. To perform this pro-

cedure, the T2 image was registered to the T1 image in native 0.8mm resolution scanner space using in-house 4dfp tools for intensity

gradient-based cross-modal registration (Rowland et al., 2005). The resulting T1/T2 ratio image was then sampled to the surface us-

ing a specialized algorithm available in the Connectome Workbench suite of tools (‘-volume-to-surface-mapping –myelin-style’;

available at http://humanconnectome.org). The algorithm maps volumetric data to the midthickness surface by selectively sampling

voxels delimited by the white matter and pial surfaces, i.e., the cortical ribbon. To remove voxels presumed to predominantly reflect

large blood vessels, voxels with T1/T2 values exceeding ± 1 SD of all T1/T2 values within the cortical ribbon were excluded (Glasser

and Van Essen, 2011). The final value at each surface vertex was computed by averaging the remaining voxels around that position

using a Gaussian-weighted function (FWHM = 5 mm). Finally, to correct for variable residual bias across subjects, we used the

average MSC myelin map to estimate the expected low spatial frequency content of T1/T2 image intensity, following (Glasser

et al., 2013). The difference between the average myelin map and each subject’s myelin map was heavily smoothed (FWHM =

14 mm) and then subtracted from each subject’s myelin map, removing the low spatial frequency content of the group map while

preserving the higher spatial frequency content specific to each individual.

fMRI Preprocessing
Functional data were preprocessed to reduce artifact and to maximize cross-session registration. All sessions underwent correction

of odd versus even slice intensity differences attributable to interleaved acquisition, intensity normalization to a whole brain mode

value of 1000, and within run correction for head movement. Atlas transformation was computed by registering the mean intensity

image from a single BOLD session to Talairach atlas space (Talairach and Tournoux, 1988) via the average high-resolution T2-

weighted image and average high-resolution T1-weighted image. All subsequent BOLD sessions were linearly registered to this first

session. This atlas transformation, mean field distortion correction (see below), and resampling to 3-mm isotropic atlas space were

combined into a single interpolation using FSL’s applywarp tool (Smith et al., 2004). All subsequent operations were performed on the

atlas-transformed volumetric time series.

Distortion correction
A mean field map was generated based on the field maps collected in each subject (Laumann et al., 2015). This mean field map

was then applied to all sessions for distortion correction. To generate the mean field map the following procedure was used: (1) Field

mapmagnitude imagesweremutually co-registered. (2) Transforms between all sessionswere resolved. Transform resolution recon-

structs the n-1 transforms between all images using the n,(n-1)/2 computed transform pairs. (3) The resolved transforms were

applied to generate a mean magnitude image. (4) The mean magnitude image was registered to an atlas representative template.

(5) Individual session magnitude image to atlas space transforms were computed by composing the session-to-mean and mean-

to-atlas transforms. (6) Phase images were then transformed to atlas space using the composed transforms, and a mean phase

image in atlas space was computed.

Application of mean field map to individual fMRI sessions: (1) For each session, field map uncorrected data was registered to atlas

space, as above. (2) The generated transformation matrix was then inverted and applied to themean field map to bring themean field

map into the session space. (3) The mean field map was used to correct distortion in each native-space run of resting state and task

data in the session. (4) The undistorted data was then re-registered to atlas space. (5) This new transformation matrix and the mean

field map then were applied together to resample each run of resting state and task data in the session to undistorted atlas space in a

single step.

RSFC preprocessing
Additional preprocessing steps to reduce spurious variance unlikely to reflect neuronal activity were executed as recommended in

(Ciric et al., 2017; Power et al., 2014). First, temporal masks were created to flagmotion-contaminated frames.We observed that two
e3 Neuron 95, 791–807.e1–e7, August 16, 2017

http://brainvis.wustl.edu
http://humanconnectome.org


subjects (MSC03 and MSC10) had a high-frequency artifact in the motion estimates calculated in the phase encode (anterior-pos-

terior) direction that did not appear to reflect biological movement. We thus filtered the motion estimate time courses in this direction

only to retain effects occurring below 0.1 Hz, in these subjects only. Motion contaminated volumes were then identified by frame-by-

frame displacement (FD, described in (Power et al., 2012)), calculated as the sum of absolute values of the differentials of the 3 trans-

lational motion parameters (including one filtered parameter) and 3 rotational motion parameters. Frames with FD > 0.2 mm were

flagged asmotion-contaminated. Across all subjects, these masks censored 28%± 18% (range: 6% – 67%) of the data; on average,

subjects retained 5929 ± 1508 volumes (range: 2733 – 7667). Note that in this paradigm, even the worst subject retained almost two

hours of data. See Figure S1 for motion parameter estimates in each subject.

After computing the temporal masks for high motion frame censoring, the data were processed with the following steps: (i)

demeaning and detrending, (ii), multiple regression including: whole brain, ventricular and white matter signals, and motion regres-

sors derived by Volterra expansion (Friston et al., 1996), with censored data ignored during beta estimation, (iii) interpolation across

censored frames using least-squares spectral estimation of the values at censored frames (Power et al., 2014) so that continuous

data can be passed through (iv) a band-pass filter (0.009 Hz < f < 0.08 Hz) without re-introducing nuisance signals (Hallquist

et al., 2013) or contaminating frames near high motion frames (Carp, 2013; Power et al., 2012). Censored frames were then excised

from the data for all subsequent analyses.

Surface processing and CIFTI generation of BOLD data
Surface processing of the RSFCBOLD data proceeded through the following steps. First, the BOLD fMRI volumetric timeseries (both

resting-state and task) are sampled to each subject’s original mid-thickness left and right-hemisphere surfaces (generated as the

average of the white and pial surfaces) using the ribbon-constrained sampling procedure available in Connectome Workbench

1.0. This procedure samples data from voxels within the gray matter ribbon (i.e., between the white and pial surfaces) that lie in a

cylinder orthogonal to the local mid-thickness surface weighted by the extent to which the voxel falls within the ribbon (Glasser

and Van Essen, 2011). Voxels with a timeseries coefficient of variation 0.5 standard deviations higher than the mean coefficient of

variation of nearby voxels (within a 5 mm sigma Gaussian neighborhood) were excluded from the volume to surface sampling, as

described in (Glasser et al., 2013). Once sampled to the surface, time courses were deformed and resampled from the individual’s

original surface to the 32k fs_LR surface in a single step using the deformation map generated above (in ‘‘Cortical surface

generation’’). This resampling allows point-to-point comparison between each individual registered to this surface space.

These surfaces were then combined with volumetric subcortical and cerebellar data into the CIFTI format using Connectome

Workbench (Marcus et al., 2011), creating full brain time courses excluding non-gray matter tissue. Subcortical (including accum-

bens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus) and cerebellar voxels were selected based on the

FreeSurfer segmentation of the individual subject’s native-space average T1, transformed into atlas space. Finally, the resting-state

time courses were smoothed with geodesic 2D (for surface data) and Euclidean 3D (for volumetric data) Gaussian kernels

(s = 2.55 mm).

Within-subject reliability of RSFC and derived measures
First, each subject’s RSFC data was parcellated into discrete homogeneous parcels using the gradient-based parcellation technique

(Cohen et al., 2008; Gordon et al., 2016; Laumann et al., 2015; Nelson et al., 2010; Wig et al., 2014). Briefly, RSFC data from all ses-

sions were concatenated. Time courses from all points in the brain were correlated against each other to generate a correlation map

seeded from every point, and then these maps were correlated against each other to calculate the similarity of RSFC maps between

each pair of points in the brain. A map of spatial gradients was then calculated on each column of the resulting similarity matrix using

Workbench tools. Edges were identified in each of the resulting gradient maps using the watershed edge detection technique

(Beucher and Lantuejoul, 1979), and all resulting edge maps were summed. Parcels were built from the resulting summed edge

map by again applying the watershed edge detection technique. Neighboring parcels with edge counts less than a predefined

threshold (here, the 50th percentile of edge count values) were merged. Across subjects, the mean ± SD number of parcels created

was 620.8 ± 39.4.The average time course within each resulting parcel was then calculated.

We examined the reliability of five measures derived from these individual-specific parcel time courses:

1) Parcel-to-parcel RSFC matrix. All parcel time courses were correlated against each other to generate a parcel-to-parcel RSFC

matrix for each subject. Values in the resulting matrix were Fisher-transformed to improve normality. Values taken from the upper

triangle of this matrix represent all pairwise parcel relationships.

2) Parcel network identity. Network identification closely followed the procedures outlined in the ‘‘Vertex-wise network mapping’’

section below, except that the parcel-to-parcel matrix was used instead of the vertex-to-vertex matrix. Briefly, correlations between

parcels with centroids within 30 mm of each other were set to zero in the matrix. The matrix was thresholded at a range of graph

densities ranging from 0.3% to 5%, and the Infomap algorithm (Rosvall and Bergstrom, 2008) was applied to each thresholded

matrix. The resulting communities were assigned network identities based on similarities to known group-average networks, and

a consensus network assignment was computed by collapsing across thresholds.
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3) Participation coefficient. Participation coefficient (PC) is a measure of the degree to which a graph node is connected to multiple

networks. PC for each parcel was calculated as in (Guimerà et al., 2007). This calculation was done separately at each density

threshold using the Infomap-derived communities identified at that threshold, and these threshold-specific PC values were then

averaged across thresholds.

4) Global Efficiency. Global efficiency is a whole-graph measure of how efficiently information can be transferred over a graph. We

used the Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.net; Rubinov and Sporns, 2010) to calculate Global Ef-

ficiency at each density threshold, and we then averaged these threshold-specific Global Efficiency measures across thresholds.

5) Modularity. Modularity is a whole-graphmeasure representing the degree to which the graph can be well represented as a set of

discretemodules (Newman, 2004).We calculatedmodularity at each density threshold using the Infomap-derived communities iden-

tified at that threshold, and we then averaged these threshold-specific modularity measures across thresholds.

Thewithin-subject reliability of each of thesemeasures was assessed in each subject using an iterative comparison of randomdata

subsets, as in (Laumann et al., 2015). For each subject, the 10 sessions were split into two equal-sized, randomly selected subsets of

sessions. Seventy minutes of (post-motion censoring) data was randomly selected from one of the two subsets. A varying amount of

data (ranging from 2.5min to 100 min, when possible) was randomly selected from the other subset. This data was contiguous within

sessions but did not necessarily include temporally adjacent sessions. Each of the six above measures was calculated in each sub-

set, and measures from the two subsets were compared. The comparisons used were as follows: 1) Parcel RSFC matrices were

compared by correlating the upper triangles of the matrix. 2) Parcel network identities were compared via dice overlap. 3) Parcel

PC values were compared by correlation. 4-6) The whole-graph measures were compared by calculating the absolute difference be-

tween the values from the two subsets, expressed as a percentage of the value from the 70 min data subset.

To obtain robust estimates of the reliabilities of these measures for each subject, this procedure was iterated 1000 times for each

quantity of data tested, with a different random selection of data in each iteration.

Finally, to examine whether reliability of the three graphmetrics depends on the density threshold used, we conducted this iterated

reliability estimation procedure separately for each density threshold, calculated using the greater of 100 min or the maximum

amount of data available from each subject.

Within- and across-subject similarity of RSFC
To evaluate the within- and across-subject similarity of RSFC measures, we calculated the pairwise similarity between all subject

sessions. First, for each subject in each session, we generated a parcel-to-parcel RSFC matrix, as above, using a common set of

parcels (from Gordon et al., 2016). Although these group-derived parcels lack the individual specificity of the subject-derived

parcels, they allow direct comparisons of data between subjects. We then calculated a ‘‘similarity matrix’’ by correlating the upper

triangle of each session’s RSFCmatrix against the upper triangle of all other sessions in all other subjects.We then examinedwhether

the similarities of sessions were higher within a subject than across subjects. Finally, we averaged the connectivity matrices across

individuals and computed the similarity between each individual session matrix and this group average matrix.

Localization of within-subject variability in RSFC
To determine which regions of the brain tend to exhibit more within-subject variability in RSFC correlation patterns across sessions,

we generated a parcel-to-parcel connectivity matrix for each session in each subject. For each subject, we calculated the standard

deviation of each parcel-to-parcel connectivity value across sessions. We then averaged across the rows of this matrix in order to

determine the average standard deviation in connection strength for a given parcel. To identify regions that were commonly variable

in many subjects, we averaged these parcel-wise standard deviations spatially (i.e., at each vertex) across all subjects (except for

subject MSC08, who exhibited variability out-of-scale with the other subjects), excluding zero-values in border vertices.

Vertex-wise network mapping
The network organization of each subject’s brain was derived using the graph-theory-based Infomap algorithm for community detec-

tion (Rosvall and Bergstrom, 2008), following (Power et al., 2011). In this approach, we calculated the cross-correlation matrix of the

time courses from all brain vertices (on the cortical surfaces) and voxels (in subcortical structures), concatenated across sessions.

Correlations between vertices/voxels within 30 mm of each other were set to zero in this matrix to avoid basing network membership

on correlations attributable to spatial smoothing. Geodesic distance was used for within-hemisphere surface connections and

Euclidean distance for sub-cortical connections. Inter-hemispheric connections between the cortical surfaces were retained, as

smoothing was not performed across the mid-sagittal plane.

Thismatrix was then thresholded at a range of values calculated based on the resulting density of thematrix; the density thresholds

ranged from 0.3% to 5%. These thresholded matrices were used as inputs for the Infomap algorithm, which calculated community

assignments (representing brain networks) separately for each threshold. Small networks with 400 or fewer vertices / voxels were

considered unassigned and removed from further consideration. The above analysis was conducted in each individual subject,

and in data averaged across all subjects.

To identify putative networks we may find in each subject, we conducted a re-analysis of our previous work on group-average

data (Gordon et al., 2017a; Laumann et al., 2015), in which the Infomap algorithm was conducted in data averaged across a large,

independent group of 120 individuals with low amounts of per-subject data. Analysis procedures were identical to the analyses
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conducted on this group in (Gordon et al., 2017a; Laumann et al., 2015), except that the minimum density threshold tested was

reduced to 0.3%. As a result, we were able to identify group-average networks corresponding to a) early visual cortex, b) somato-

motor cortex associated with the foot, and c) to a strip along postcentral gyrus corresponding closely to ‘‘pre-motor’’ activation in the

Neurosynth platform (Yarkoni et al., 2011). See Figure S2A for these independent group-average networks.

Putative network identities were then assigned to each subject’s communities (and to the communities from the average of the

individual subjects) by matching them at each threshold to the above independent group networks. This matching approach pro-

ceeded as follows. At each density threshold, all identified communities within an individual were compared (using spatial overlap,

quantified with the Jaccard index) to each one of the independent group networks in turn. The best-matching (highest-overlap) com-

munity was assigned that network identity; that community was not considered for comparison with other networks within that

threshold. Matches lower than Jaccard = 0.1 were not considered (to avoid matching based on only a few vertices). Matches

were first madewith the large, well-known networks (Default, Lateral Visual, Motor, Cingulo-Opercular, Fronto-Parietal, Dorsal Atten-

tion), and then to the smaller, less well-known networks (Ventral Attention, Salience, Parietal Memory, Contextual Association, Medial

Visual, Motor Foot). See Figure S2B for ‘‘block’’ diagrams showing networks present at each threshold, following Power et al. (2011).

In each individual and in the average, a ‘‘consensus’’ network assignment was derived by collapsing assignments across thresholds,

giving each node the assignment it had at the sparsest possible threshold at which it was successfully assigned to one of the known

group networks. Note that the labeled ‘‘Auditory’’ networks often include high-noise regions and should not be considered a faithful

depiction of auditory processing. Preliminary work (not presented here) suggests that the development of more advanced denoising

techniques can resolve this particular issue.

Finally, contiguous network pieces that were smaller than 30 mm2 were removed, following (Gordon et al., 2017a), as such

regions are smaller than the approximate effective resolution of our data (originally 4mm isotropic voxels, smoothed 6mm FWHM

on the cortical surface). This procedure serves as a spatial filter, eliminating implausibly small objects without smoothing the

underlying data. Neighboring network identities were then dilated into the removed regions one vertex at a time until the region

was filled.

Across network density thresholds, we observed that the locations of borders between individual-specific networks were largely

consistent. However, this was not universally true; in some cases, the borders shifted substantially from threshold to threshold. This

shifting represents an uncertainty in the spatial topography of the networks that is not well captured by the consensus network map.

To characterize this uncertainty, in each subject we identified all cortical vertices that had inconsistent network assignments across

the above density thresholds. A vertex was deemed inconsistent if it changed network assignment from one density threshold to the

next, and both networks were present at both thresholds. This uncertainty can be seen in Figure S3.

Relationship between anatomical variability and functional connectivity variability
To ensure that anatomical variability across subjects did not drive RSFC variability in this data, we used spatial correlation to compare

the RSFC patterns of every cortical point between each pair of subjects. We then determined the differences in anatomy between

each pair of subjects at each cortical point by calculating the absolute difference in areal distortion—the amount of cortical shape

distortion needed to conduct the surface-based registration procedure (an index of how different the individual’s anatomy was

from the template)—between the subjects at each point. We then correlated the RSFC similarities with the anatomical differences

at each cortical point, across all subject pairings. Finally, these correlations were corrected for multiple comparisons by employing

a two dimensional surface-based permutation test (described in Gordon et al., 2017a), in which the identities of the anatomical

difference maps are randomly permuted and then correlated with the unpermuted RSFC similarity maps in order to generate

a null distribution of variously-sized patches. This approach established the correction threshold at R > .474 (corresponding to

p < .001 uncorrected) with a cluster extent threshold of 25 mm2; this corresponded to an overall corrected level of p < .05.

Parcel-wise network structure
Network structure for each subject and for the group average was visualized using spring-embedded plots, following (Power et al.,

2011). The parcel-wise RSFC matrix was thresholded at a variety of densities from 0.3% to 5% after removing local connections

within 30mm, as above. The surviving connections act as ‘‘springs’’ in the spring-embedded plot in order to position nodes (in

this case, parcels) in space such that well-connected groups of nodes are pulled together. For visualization purposes, nodes of

the spring-embedded plot are assigned a network identity in the same fashion as the vertex-wise networks (described above): by

conducting Infomap on the parcel-wise RSFC matrix across density thresholds, matching resulting networks to known group-

average networks, and generating a consensus assignment. This procedure allows easy visualization of each subject’s brain network

structure.

To quantify the visualized network structures, we calculated modularity and global efficiency in each individual. To determine

whether subjects differed from one another in these measures, we repeated these calculations for each individual session at

each density and calculated a one-way ANCOVA testing for a main effect of subject. As data quantity / quality can affect these

measures, we used the following threemetrics as continuous covariates of no interest: number of frames retained after motion scrub-

bing in each session; mean FD in retained framed in each session; and mean DVARS (Power et al., 2012) in retained frames in each

session.
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Task Analysis
Task evoked activations were modeled individually for each voxel with a general linear model (GLM) (Miezin et al., 2000), using

in-house image analysis software written in IDL (Research Systems, Inc.). First level analyses were conducted separately for each

session in a given subject, and second level analyses grouped data across the ten sessions of a single subject. The tasks had three

different types of designs (motor = block design, coherence/semantic = mixed block/event-related design, incidental memory =

event-related design). In the block design motor task, a block regressor was convolved with a canonical hemodynamic response

to model the five experimental conditions: tongue, left hand, right hand, left foot, right foot. In the event-related incidental memory

design, a finite impulse response (FIR) approach was used to model the time course of activations for each event, with a single delta

function used to model each of 8 time points after a response; this approach has the advantage of making no assumptions regarding

the shape of the hemodynamic response function (Ollinger et al., 2001). Separate regressors were included for each stimulus type

(male, female, indoor, outdoor, abstract, concrete) as well as the number of presentations of a given item (first, second, or third pre-

sentation). The coherence and semantic judgment tasks were jointly modeled in a mixed block-event-related design. Events were

modeled with an FIR model (as above, with 8 time points for each event); separate event regressors were included for the start

and end cues in each task, and for the different trial types (noun, verb, 50% coherence, 0% coherence). The block (sustained activity)

was modeled with a square block regressor, with separate regressors for sustained activity in the semantic and coherence task.

Given the low number of error trials, errors were not modeled in any task. In addition to these terms, constant and linear effects

were modeled for each run to remove any influences of baseline or linear signal drift.

Evaluating convergence between task activation patterns and vertex-wise RSFC topography
If RSFC-derived vertex-wise networks represent the individual-specific organization of the brain, then the physical shapes of these

networks should converge well with the physical shapes of task-derived activation patterns, and task activations should be relatively

homogeneous within pieces of the networks. First, for each subject, we visually compared RSFC-derived network shapes against the

shapes of activation patterns of all of the task contrasts.

Second, we tested the inhomogeneity of task activation in each contiguous network piece. The following seven task contrasts were

specifically examined: Motor task – 1) Tonguemotion > baseline; 2) Left Handmotion > Right Handmotion; 3) Left Legmotion > Right

Leg motion; Incidental Memory task – 4) Face stimulus > Word stimulus; 5) Scene stimulus > Face stimulus; Mixed task – 6) Glass

pattern > baseline; 7) Noun-Verb stimulus > baseline. To assess the functional inhomogeneity of these contrasts within a set of

networks, we computed the standard deviation of z-transformed t-values for each contiguous piece of the networks. A lower stan-

dard deviation indicates higher functional homogeneity within the network piece. As (in)homogeneity depends critically on the size of

the region in which it is tested (Gordon et al., 2016), the standard deviations were averaged over all network pieces while accounting

for the size of those pieces, following Schaefer et al. (2017):

PL
l =1sdljl j
PL

l = 1jl j
where sdl is the standard deviation of task activation z-values for network piece l and jl j is the number of vertices in network piece l.

This inhomogeneity value was calculated separately for each task contrast and averaged across contrasts for each subject.

Third, we tested whether the calculated inhomogeneity of an individual’s task activation within networks was lower than if network

maps were used that were not specific to that individual. For each subject, we repeated the above inhomogeneity calculation across

task contrasts; however, instead of using the subject’s individual-specific network map, we used a) the network maps from all other

subjects, and b) the group average network map.

DATA AND SOFTWARE AVAILABILITY

Raw MRI data, as well as segmented cortical surfaces, preprocessed volumetric and cifti-space RSFC time courses, myelin maps,

and subject-specific parcellations and networks, have been deposited in the Openfmri data repository (https://openfmri.org/) under

the label ‘‘Midnight Scan Club.’’ The accession number for the Openfmri Midnight Scan Club data is https://openfmri.org: ds000224.

Session- and subject-specific volumetric task responses have been deposited in the Neurovault repository (http://neurovault.org/)

under the label ‘‘Midnight Scan Club task data.’’ The accession number for the Neurovault Midnight Scan Club data is https://

neurovault.org: 2447.

Code to perform preprocessing and analysis is available at https://github.com/MidnightScanClub.
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