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The amygdala is central to the pathophysiology of many psychiatric
illnesses. An imprecise understanding of how the amygdala fits into
the larger network organization of the human brain, however, limits
our ability to create models of dysfunction in individual patients
to guide personalized treatment. Therefore, we investigated the
position of the amygdala and its functional subdivisions within
the network organization of the brain in 10 highly sampled
individuals (5 h of fMRI data per person). We characterized three
functional subdivisions within the amygdala of each individual. We
discovered that one subdivision is preferentially correlated with the
default mode network; a second is preferentially correlated with the
dorsal attention and fronto-parietal networks; and third subdivision
does not have any networks to which it is preferentially correlated
relative to the other two subdivisions. All three subdivisions are
positively correlated with ventral attention and somatomotor
networks and negatively correlated with salience and cingulo-
opercular networks. These observations were replicated in an
independent group dataset of 120 individuals. We also found
substantial across-subject variation in the distribution and magni-
tude of amygdala functional connectivity with the cerebral cortex
that related to individual differences in the stereotactic locations
both of amygdala subdivisions and of cortical functional brain
networks. Finally, using lag analyses, we found consistent tempo-
ral ordering of fMRI signals in the cortex relative to amygdala
subdivisions. Altogether, this work provides a detailed framework
of amygdala–cortical interactions that can be used as a foundation
for models relating aberrations in amygdala connectivity to psy-
chiatric symptoms in individual patients.
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Psychiatric disorders are a leading cause of morbidity and
mortality worldwide (1, 2). Over the past few decades, little

progress has been made in reducing this burden, in part because
we lack personalized brain-based models of mental illnesses that
can be used to diagnose and guide treatment in individual patients
(3). The amygdala is a structure in the medial temporal lobe that
will be essential to any personalized model of mental illness that
could serve to transform this outlook (4). In research settings,
functional connectivity of the amygdala as measured with func-
tional magnetic resonance imaging (fMRI) has been extensively
correlated with symptoms (5–7), longitudinal course (8–10), and
treatment response (11–13) in many different psychiatric disor-
ders. A substantial roadblock in translating these research findings
into clinical practice biomarkers, however, is that we have an in-
adequate understanding of the amygdala’s role within the larger
functional network organization of the brain in individuals. As a

result, we have a limited ability to create models of function and
dysfunction in individual patients to guide personalized treatment.
A basic organizing principle of the human brain is that it can

be divided into ∼10 to 20 large-scale, distributed functional brain
networks (14–16). fMRI studies have established the connectivity
properties within and between these large-scale brain networks
in human adults (14, 17), as assessed by correlations in infra-slow
activity (ISA, <0.1 Hz) between brain regions. Moreover, in-
formation regarding the temporal direction of these within- and
between-network connections has been provided by computing
the temporal offset between ISA from two brain regions that
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maximizes their correlation (18–22). Altogether, these tools have
established an increasingly sophisticated network model of the
human brain in which ISA propagates in specific directed pat-
terns within and between networks. Variation in the strength and
timing of these connections has been linked to risk for psychiatric
illnesses (23, 24).
The biology and function of the amygdala is informed by its

position within this network-level organization. Anatomical studies
have delineated the cortical inputs and outputs of major amygdala
nuclei in rodents (25–27) and nonhuman primates (27–30). This
detailed description of the basic amygdala circuitry has led to a
model in which lateral amygdala nuclei integrate sensory inputs and
current physiological state, while the central amygdala nucleus sends
widespread outputs to direct appropriate behavioral and physio-
logical responses (31, 32). Pioneering work in rodents, in particular,
has identified the specific cortical connections that drive amygdala
responses to external stimuli (33, 34), as well as up-regulation (35,
36) and down-regulation (37, 38) of these responses. Moreover,
work in both rodents (39–41) and nonhuman primates (42, 43) has
linked individual variation in the behavioral response to threatening
stimuli to variation in amygdala biology and cortical connectivity.
In contrast to this rich description of amygdala circuitry in

rodents and nonhuman primates, we do not have a detailed de-
scription of the brain networks that connect to specific amygdala
subdivisions, or of the direction and timing of these functional
relations, in individual humans. Prior human fMRI studies have
examined functional connections between the amygdala and spe-
cific cortical regions (44–48) and their associations with psychiatric
symptoms (5–7). However, this prior work has often relied on
describing functional connectivity between predefined anatomic
partitions of the amygdala and cortical locations defined by aver-
aging across large groups of subjects. Specifically, many prior
studies of amygdala connectivity in humans use a single spatial
template to define centromedial, superficial, and laterobasal par-
titions of the amygdala in all participants (44, 49–52). According
to this partitioning scheme, the centromedial partition includes
the central and medial nuclei; the superficial partition includes the
anterior amygdaloid area, the posterior cortical nucleus, and the
ventral cortical nuclei; and the laterobasal partition includes
the lateral, basolateral, basomedial, and paralaminar nuclei (53,
54). This three-partition template used for imaging studies is
derived from a study that examined postmortem cytoarchitecture
(54) and chemoarchitecture (53) in 10 individuals at an average
age of 65 y. Probabilistic locations of the centromedial, superfi-
cial, and laterobasal partitions were defined as spatial locations
in which at least five of these individuals had a particular parti-
tion. Yet there was substantial variation in the location and
spatial extent of the three amygdala partitions across individuals
(53, 54). In addition, recent work has revealed that individuals
vary in the layout of functional brain networks on the cerebral
cortex (17, 55–60) and that brain–behavior relations are stronger
in individualized network maps than in group-averaged tem-
plates (61). It is highly likely that this spatial variability in the
location of amygdala partitions and cortical networks has
confounded our ability to precisely define amygdala–cortical
network relations in individuals. One consequence is that there
is a suboptimal foundation for the use of amygdala functional
connectivity as a biomarker in clinical settings.
In the present study, we address these challenges and place the

amygdala and its subdivisions within the larger network organiza-
tion of the human brain by adopting an individualized approach
that is conceptually similar to the approach taken in rodents and
nonhuman primates (17, 55–59). We use repeated-sampling and
precision-mapping techniques to define three amygdala subdivi-
sions separately in 10 individuals, each with 5 h of resting-state
functional connectivity (rs-fc) data (the Midnight Scan Club, or
“MSC” dataset) (17). Amygdala subdivisions are defined for each
individual on the basis of connectivity patterns with cortex. For our

primary analysis, we specifically define three data-driven amyg-
dala subdivisions for each individual in an effort to recapitulate
the tripartite models of the amygdala prevalent in the human
neuroimaging literature; we also provide parallel analyses of the
whole amygdala and a two-cluster solution for each individual in
SI Appendix. Connectivity of amygdala subdivisions are related
to individual-specific functional brain networks on the cortex, and
lag analysis is used to determine the timing of ISA in amygdala
subdivisions relative to cortical networks. The strength, direction,
and timing of connectivity between the amygdala and cortex can
thus be directly related to each individual brain’s functional or-
ganization. For comparison, we performed the standard spatial
template-defined group-based functional connectivity mapping in
an independent dataset of 120 individuals collected at Washington
University in St. Louis (the “WU” dataset).

Results
Individualized Amygdala Subdivisions. Standard group-based stud-
ies typically use probabilistic structural templates to divide the
amygdala into three partitions, corresponding to group-average
anatomical locations of the centromedial, basolateral, and su-
perficial amygdala partitions (44, 51, 62, 63). We illustrate this
publicly available template in Fig. 1A. Note the high degree of
variability in the size and spatial extent of these partitions in the
original Amunts et al. study (54). As such, these probabilistic
templates may not accurately define the location of amygdala
subdivisions in all individuals.
To address this issue, we developed an approach to empirically

define three amygdala subdivisions separately in each of 10 in-
dividuals using functional connectivity. The number of subdivi-
sions was set to three in order to maintain consistency with prior
studies and to compare the location and variability with Amunts
et al. (54). Attempts to empirically determine the “optimal”
number of subdivisions within the amygdala post hoc were in-
conclusive, as detailed in SI Appendix. For completeness, we in-
clude analyses of two-cluster solutions and for the entire amygdala
for each individual in SI Appendix. For the main analysis, three
amygdala subdivisions were defined separately in each individual
by clustering amygdala voxels on the basis of cortical functional
connectivity patterns using k-means clustering. Subdivisions were
matched across individuals using a similarity algorithm (see SI
Appendix for details). Subdivisions were labeled according to the
network with which they had the highest positive functional con-
nectivity relative to the other two subdivisions, as described in
greater detail below.
The empirically defined individual amygdala subdivisions (Fig.

1B) resemble the publicly available amygdala partitions in both
average location and interindividual variability (Fig. 1A). One
empirically defined subdivision was anatomically superior in most
individuals, overlapped most strongly with the probabilistic loca-
tion of the centromedial partition as quantified by the Dice co-
efficient (SI Appendix, Table S2), and is referred to as the “default
mode” subdivision due to its greater connectivity with the default
mode network (DMN) compared to the other amygdala subdivi-
sions (see below). A second subdivision was located medial in most
individuals, overlapped most strongly with the probabilistic loca-
tion of the superficial partition, and is referred to as the “dorsal
attention” subdivision due to its greater connectivity with the
dorsal attention network (DAN) compared to the other amyg-
dala subdivisions. Finally, a third subdivision was located ventral
in most subjects and overlapped most strongly with the later-
obasal partition. We refer to this third subdivision as the “un-
specified subdivision,” because it did not show preferentially
stronger functional connectivity with any specific network com-
pared to the other amygdala subdivisions; rather, it demon-
strated connectivity properties that were shared across the
entire amygdala. As detailed in SI Appendix, the alternative two-
cluster solution defined subdivisions in each individual with
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properties largely similar to the default mode and dorsal attention
subdivisions.
Note that although the empirical, functionally defined subdivi-

sions overlapped with the probabilistic, anatomically defined parti-
tions on average, there was substantial across-subject variability (Fig.
1B and SI Appendix, Fig. S8). This across-subject variability appeared
similar to the across-subject variability in cytoarchitectonically de-
fined partitions in the Amunts et al. (54) study (Fig. 1A). A po-
tential consequence of this variability is that applying a common
template to all individuals will mislabel the amygdala subdivisions in
many individuals. As a result, subdivision–cortical network relations
may be obscured, a possibility that is explored in detail below.
We employed the same empirical procedure to define the

three subdivisions in the WU group-average dataset and obtained
three similar subdivisions (Fig. 1C). Note that the spatial layout of
these three subdivisions was similar but not identical to the prob-
abilistic partitions in Amunts et al. (54). Dice coefficients for the
overlap of each WU subdivision are listed in SI Appendix, Table S2.

Group-Average Functional Connectivity of Probabilistic Amygdala
Partitions. We first performed the standard approach of com-
puting cortical connectivity of each of the three probabilistic

amygdala partitions derived from Amunts et al. (54) in the group-
average dataset of 120 individuals, the WU dataset. The standard
template approach yielded connectivity patterns similar to prior
investigations (Fig. 2) (44, 49–52). Connectivity to the cortex was
highly similar across the three probabilistic amygdala partitions, as
the Pearson’s correlations of the whole-cortex connectivity pat-
terns between pairs of partitions ranged from 0.88 to 0.92.

Functional Connectivity of Individualized Amygdala Subdivisions. We
next computed the cortical functional connectivity of each of the
three empirically and individually defined amygdala subdivisions
in each of the MSC individuals (Fig. 3A and SI Appendix, Fig.
S3). Each of the empirically defined subdivisions had unique
patterns of connectivity to cortical networks (Fig. 3B). Subdivi-
sions were named according to the network with which they had
the highest positive connectivity relative to the other two sub-
divisions (Fig. 3C). A default mode subdivision had a higher
magnitude of positive correlation to the DMN relative to the
other two, as determined by paired t tests across the 10 MSC
individuals (P < 0.005). A dorsal attention subdivision had higher
positive connectivity to the DAN (P < 0.001) and fronto-parietal
network (FPN, P = 0.001) relative to the other two subdivisions.

A

C

B

Fig. 1. Amygdala subdivisions defined in individuals on the basis of connectivity patterns to the cortex resemble amygdala partitions defined in individuals on the
basis of cytoarchitecture. (A) Depiction of the probabilistic location of three amygdala partitions as determined postmortem by cytoarchitecture in 10 individuals
from Amunts et al. (54). The spatial extent of the probabilistic partitions in this illustration are trimmed to fit within the boundaries of the amygdala as defined in
the group-averageWU dataset by FreeSurfer; the actual sizes of the probabilistic templates are much larger and extend into nearby white matter and cortical areas.
(B) Depiction of data from the present study in which the locations of three amygdala subdivisions were empirically derived in 10 individuals (see text for details).
Note that a default mode subdivision occupies a location similar to the centromedial partition; the dorsal attention subdivision occupies a location similar to the
superficial partition; and the unspecified subdivision is spatially similar to the laterobasal partition. Note also that the variability across subjects in the location of
these three subdivisions is similar to the variability present in cytoarchitecturally determined amygdala partitions. A different threshold is used to visualize themodal
locations of the probabilistic partitions (50%, Bottom row of A) versus the empirically derived subdivisions (30%, Bottom row of B), because raising the threshold to
50% for the empirically derived dataset results in small areas of overlap that are difficult to visualize. The requirement for a different threshold across datasets may
relate to the larger overall spatial extent of the probabilistic partitions, or could indicate that there is slightly more variability in location in the empirical subdivisions.
(C) Empirically defined amygdala subdivisions in a group dataset of 120 individuals on the basis of cortical connectivity patterns, identical to the procedure used to
define individualized subdivisions in B. Note the similar but not identical spatial arrangement of subdivisions compared to the other two datasets.
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An unspecified subdivision was not uniquely positively correlated
to specific networks relative to the other subdivisions, but rather
only had connectivity properties that were shared across all three
subdivisions. The whole-brain connectivity pattern of the un-
specified subdivision was also the least similar across individuals
(average pairwise correlation = 0.29) relative to the default
mode (average pairwise correlation = 0.45) and dorsal attention
(average pairwise correlation = 0.35) subdivisions.
Empirical clustering of the amygdala using the group-average

WU dataset also yielded default mode, dorsal attention, and un-
specified subdivisions, replicating the results from the MSC data-
set. To compare results from the MSC versus WU datasets, we
defined “selectivity” as the difference between a cluster’s connec-
tivity to a cortical network and the average of the other two clus-
ters’ connectivity to the same network. The selectivity of the
default mode and dorsal attention subdivisions for their respective
networks was on average 2.2 times larger in the MSC dataset
compared to the WU dataset. Similarly, within the MSC dataset,
network selectivity was 2.3 times larger when using the individu-
alized amygdala subdivisions compared to using the standard
group-based template subdivisions, indicating that the individually
defined subdivisions better capture network-specific functional
connectivity properties of amygdala partitions in individuals. See
SI Appendix for further details regarding these selectivity analyses.
In addition to each subdivision having unique features of

connectivity with the cortex, many features of connectivity with
the cortex were shared across all three subdivisions (Fig. 3B). For
example, activity in all three subdivisions was positively corre-
lated with activity in the ventral attention (VAN) and somato-
motor (SMN) networks, and negatively correlated with activity in
the cingulo-opercular (CON) and salience (SN) networks. These
patterns were evident in both the individual MSC participants

(Fig. 3B and SI Appendix, Fig. S8) and the group-average WU
dataset (SI Appendix, Fig. S5).

Amygdala Functional Connectivity Respects Functional Brain Network
Boundaries. We next tested whether network specificity of amyg-
dala subdivision functional connectivity is better captured by
group-averaged functional boundaries or individual-specific func-
tional boundaries. For this analysis, we chose to evaluate func-
tional connectivity between the amygdala default mode subdivision
and a region-of-interest (ROI) defined within the medial prefrontal
cortex (mPFC), because of extensive prior work highlighting the
role of amygdala–mPFC connectivity in psychiatric illnesses (64–72).
Fig. 4A depicts functional connectivity each individual’s amygdala
default mode subdivision to a common, group-defined ROI cen-
tered in the mPFC at [0 33 0] in Talairach space. This ROI is de-
rived from a metaanalysis of studies relating amygdala–mPFC
connectivity to internalizing symptoms (73). Across individ-
uals, even when using the individualized amygdala default mode
subdivisions, connectivity with this group-derived mPFC region
was not significantly different from zero [mean = −0.007, t(9) =
−0.3, P = 0.77].
We next measured individual-specific amygdala default mode

subdivision functional connectivity with individual-specific func-
tionally defined locations within the mPFC (Fig. 4B). In all 10
individuals, amygdala default mode subdivision connectivity was
positive to the individually defined DMN portion of the mPFC
[mean = 0.11, t(9) = 4.7, P = 0.001] and negative to the in-
dividually defined SN portion of the mPFC [mean = −0.06,
t(8) = −4.0, P = 0.004]. While the location of the DMN within
the mPFC had moderate overlap across individuals (average
Dice coefficient: 0.61), the location of the SN was highly variable
across individuals (average Dice coefficient 0.07). As depicted in

A

B

Fig. 2. The connectivity patterns of three probabilistic amygdala partitions to the cortex are highly similar to each other. (A) Depiction of a commonly used
probabilistic template of amygdala partitions that is applied to all individuals in a group analysis. (B) The connectivity patterns to cortex of each of the three
probabilistic partitions in a group analysis of 120 subjects. The right side of B computes the average connectivity of each amygdala partition to a subset of
seven cortical networks (14). Connectivity to additional networks are illustrated in SI Appendix, Fig. S8. Face, face somatomotor network; FP, frontoparietal
network.
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Fig. 4B, most individuals had an island of negative connectivity
(mostly corresponding to the individual-specific location of the
SN) within a large swath of positive connectivity (mostly corre-
sponding to the individual-specific location of the DMN). Because
the location of the SN varies across individuals, the connec-
tivity of the amygdala default mode subdivision to any partic-
ular stereotactic location is highly variable, and depends on the
individual-specific network layout of the mPFC. These analyses
suggest that, within the mPFC, connectivity with particular
stereotactic locations is variable across participants because
different individuals have different networks at those locations.
This phenomenon is examined more broadly across the brain in
the SI Appendix, Fig. S9.

Temporal Relationships of Amygdala Functional Connectivity to the
Cortex. Lag analysis was used to explore the temporal ordering of
ISA within the most robust (absolute magnitude > 0.1) cortico-
amygdalar functional connections (Fig. 5A; see SI Appendix for
statistical criteria). A complete list of all detected lag relations is

provided in SI Appendix, Tables S3 and S4; here, we summarize
results by subdivisions and functional brain networks. Amygdala
subdivisions occupied consistent temporal positions within the
larger network organization of the human brain across the MSC
and WU datasets. Specifically, fMRI activity in the amygdala
default mode subdivision preceded activity in the VAN and the
mPFC portion of the DMN. In contrast, the amygdala default
mode subdivision lagged behind other parts of the DMN such as
the lateral parietal cortex (LPC). The amygdala default mode
subdivision also preceded fMRI activity in the FPN but lagged
behind activity in the SN, CON, and parietal memory (PMN)
networks; but fMRI activity between the default mode subdivision
and each of these networks was negatively correlated. The amyg-
dala dorsal attention subdivision lagged behind the DAN, as well
as the anticorrelated SN and PMN. Finally, the amygdala un-
specified subdivision lagged behind the CON, SN, and PMN, all of
which were anticorrelated with this subdivision. Connectivity and
lag relations between each amygdala subdivision and cortical
networks are depicted in Fig. 5 and SI Appendix, Fig. S10.

A

B

C

Fig. 3. Individually generated amygdala subdivisions reveal that the amygdala has one subdivision that is selectively functionally connected to the DMN and
another that is selectively functionally connected to the DAN. (A) Depiction of the division of the amygdala into three subdivisions in four MSC individuals
using k-means clustering (additional subjects in SI Appendix, Fig. S8). Voxels within the same subdivision tend to have homogenous patterns of connectivity to
the cerebral cortex. The left side of B depicts connectivity of each amygdala subdivision to cortex in individual MSC01. Additional individuals are presented in
SI Appendix, Fig. S3. The right side of B provides bar graphs that indicate the average functional connectivity of each subdivision to a subset of seven
functional brain networks (additional networks in SI Appendix, Fig. S8). Bar height indicates the median across the 10 MSC individuals, with each individual
computed separately on the basis of his or her own network map. (C) Provides bar graphs that depict network connectivity of each subdivision minus network
connectivity of the average of the other two subdivisions. This metric is referred to as “selectivity” in the main text. Bars thus depict a measure of each
subdivision’s network connectivity relative to the rest of the amygdala. Individual dots represent datapoints for each individual.
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Discussion
This study used an individualized approach to functional con-
nectivity estimation to characterize the human amygdala and its
subdivisions as part of the brain’s global functional network or-
ganization. We found that three amygdala subdivisions each
occupy roughly consistent locations across subjects and exhibit
consistent functional connectivity with specific cortical functional
networks. Specifically, we describe one amygdala subdivision that
is located superior in most individuals and has preferential
functional connectivity to the DMN; a second amygdala sub-
division that is located medial in most individuals and has pref-
erential functional connectivity to the DAN; and a third
amygdala subdivision that is located ventral in most individuals
and does not have any networks to which it is preferentially
positively correlated. fMRI activity in all three subdivisions is
positively correlated with activity in the VAN and SMN as well as

negatively correlated with activity the in CON and SN. Consis-
tent temporal relations were detected between each amygdala
subdivision and cortical functional networks in two independent
datasets (WU and MSC). Notably, the stereotactic positions of
both the amygdala subdivisions and the cortical functional net-
works varied across subjects. As a result, standard template-
based approaches to measuring amygdala connectivity often
capture different functional connections in different individuals.
In addition to informing the basic biology of the amygdala, this
work provides a framework for developing mechanistic, bi-
ologically plausible models of amygdala function and dysfunction
in individual patients.

A Network-Based Framework for the Amygdala and Its Subdivisions.
We propose a network-based framework for conceptualizing
amygdala functional connectivity with the cortex in humans

A

B

C

Fig. 4. Topography of amygdala functional connectivity to the cortex respects individual-specific functional network boundaries. (A) Placement of a common
anatomical ROI over the connectivity map of the amygdala default mode subdivision in each MSC individual. This anatomical region is derived from a
metaanalysis of mPFC regions in which connectivity with the amygdala is related to internalizing symptoms (73). Note the high degree of heterogeneity in the
sign and magnitude of connectivity to this stereotactically defined region. The bar graph on the left depicts median connectivity across the 10 individuals, and
dots indicate connectivity values for each individual. (B) Overlay of individual-specific network boundaries on individual amygdala functional connectivity
maps for the default mode subdivision. The bar graph on the left depicts connectivity to specific networks within the mPFC; note that connectivity to these
functionally defined, individual-specific regions is much more consistent than connectivity to the anatomical region in A. (C) Illustration that the positive
connectivity to DMN portions of the mPFC are specific to the default mode subdivision and are not features of either the dorsal attention or somatomotor
subdivisions. The bar graphs display the average amygdala functional connectivity to the mPFC (69). The gray bars display average connectivity across the
entire mPFC while the red and black bars indicate average connectivity to the subset of the mPFC region that is within the DMN and SN, respectively. Separate
bar graphs are presented for each subdivision within the amygdala.

Sylvester et al. PNAS | February 18, 2020 | vol. 117 | no. 7 | 3813

N
EU

RO
SC

IE
N
CE

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

16
, 2

02
0 



based on the observations of the magnitude and direction of
connectivity between amygdala subdivisions and cortical net-
works outlined here. We note that fMRI time delays likely reflect
ISA (<0.1 Hz) neurophysiology. Prior work suggests that ISA
generally propagates in a direction opposite to higher frequency
(e.g., delta) activity. According to a “sender–receiver”model, the
ISA propagates from a “receiver” to a “sender” of higher fre-
quency activity that is more likely to carry feed-forward in-
formation (18, 74). We frame the following discussion assuming
this model.
Key elements of the proposed network-based framework of

amygdala connectivity with the cortex are: 1) a default mode
amygdala subdivision that integrates salient environmental in-
formation and past history regarding the emotional significance
of these salient stimuli; 2) a dorsal attention amygdala sub-
division that modulates top–down attention networks; and 3) a
fundamental push–pull relation between activity in all three
subdivisions of the amygdala and brain networks implicated in
cognitive control. This network-based framework only becomes
evident after studying individuals, because variation in the ste-
reotactic location of amygdala subdivisions and cortical networks
obscures these properties in group-average datasets.
The functional connectivity of the default mode subdivision

suggests that it may integrate salient environmental information
and its learned emotional significance to influence memory and

cognitive brain networks. When viewed from the vantage of the
sender–receiver model, the amygdala default mode subdivision is
a receiver in relation to the VAN and the mPFC portion of the
DMN. The VAN is implicated in the bottom–up, involuntary
orientation of spatial attention to salient stimuli, while the mPFC
is implicated in extinction recall, the implicit signaling that a
formerly threatening stimulus is no longer dangerous (64, 65,
75). The amygdala default mode subdivision is a sender in re-
lation the LPC portion of the DMN, which has been linked to
recall of episodic memory (76, 77). Taken together, these results
are consistent with a role of the amygdala default mode sub-
division in integrating information regarding the presence of
salient stimuli and the past emotional significance of these
stimuli in order to influence downstream memory systems.
The amygdala default mode subdivision is also a receiver in

relation to the FPN and a sender in relation to the CON, SN, and
PMN; however, ISA in the default mode subdivision is negatively
correlated with ISA in each of these networks. These results are
consistent with a relative push–pull relation between the func-
tioning of cognitive control networks such as the FPN and CON
and the functioning of emotionally based circuitry that includes
the amygdala. These results further suggest that this push–pull
dynamic has a specific directionality in the sender–receiver model,
namely FPN → amygdala default mode subdivision → CON
and SN. A speculative possibility is that these amygdala-network

A B

C

Fig. 5. Lag analysis reveals the temporal ordering of ISA in each amygdala subdivision relative to cortical networks. (A) Depiction of lag relations between
amygdala and cortical BOLD signals in the MSC and WU group-averaged datasets. Lag relations are shown only for amygdala–cortical connections in which
the magnitude of the underlying correlation is jrj > 0.1, because lag relations for lower correlations are less reliable. The lag relations for the default mode
subdivision are depicted here; the other subdivisions are provided in SI Appendix, Fig. S10. Note the high degree of similarity across the two datasets. (B)
Illustrates a conjunction map between the sign of functional connectivity (positive versus negative) and the lag direction (amygdala leads versus lags) of
default mode subdivision functional connectivity to the cortex. Maps for the other two subdivisions are illustrated in SI Appendix, Fig. S10. (C) Summarizes the
position of the amygdala subdivisions within the larger network organization of the human brain. This schematic displays both the sign and timing of
connections between the amygdala subdivisions and cortical networks. dmPFC, dorsomedial prefrontal cortex; LP, lateral parietal cortex.
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relations underlie the relative switch between emotional and
cognitive processing.
The dorsal attention subdivision may influence the top–down

control of spatial attention. This subdivision is a sender in relation
to the DAN, which has been implicated in using goals in order to
direct attention (78). Many psychiatric disorders are associated
with a bias in attention toward emotional stimuli, such as a bias to
attend to sad stimuli in major depression (79) and threatening
stimuli in anxiety disorders (80). A speculative possibility is that
the amygdala dorsal attention subdivision mediates this top–down
bias in attention.
Both the dorsal attention and unspecified subdivisions are

senders in relation to the SN and PMN; the unspecified subdivision
is also a sender in relation to the CON. All of these subdivision–
cortical interactions involve negative correlations in ISA, suggesting
that they may relate to the push–pull shifts between controlled and
emotionally based processing.

Relation to Animal Work. This network-based framework described
above is broadly consistent with prior animal and human work.
Prior anatomical tracing studies in macaques, for example, have
demonstrated that only specific amygdala subnuclei are ana-
tomically connected to regions in the mPFC and orbital frontal
cortex (81), consistent with the present observation that the
default mode amygdala subdivision was the only subdivision to
have consistent positively correlated activity with the portion of
mPFC occupied by the DMN. Prior animal studies have also
reported widespread anatomical connectivity of many amygdala
subnuclei with the insula, dorsal anterior cingulate, and anterior
temporal lobes (27–30, 81–83). This prior animal work is con-
sistent with functional connectivity studies of the amygdala in
humans (44–46, 51, 84) and the result from the present study that
the default mode, dorsal attention, and unspecified subdivisions
all had significant connectivity to the SN (which includes the
anterior cingulate and insular cortex) as well as to the anterior
temporal lobe. A result of the present study was the detection of
a dorsal attention amygdala subdivision that is functionally
connected with the cortical DAN, including portions of the lat-
eral PFC. This observation contrasts with the known anatomical
connectivity to this location in nonhuman primates, which is
relatively sparse or absent (29, 81). One possible explanation for
this discrepancy is that correlated activity in the DAN and the
amygdala dorsal attention subdivision in the human involves a
multisynaptic pathway that is captured by rs-fc but not classic
monosynaptic tract tracing studies. Alternatively, the dorsal at-
tention subdivision may be a human-specific feature; additional
studies are warranted to adjudicate these possibilities.

Relation to Prior Work Clustering the Human Amygdala. The spatial
extent and variability of the three amygdala subdivisions defined
here on the basis of functional connectivity patterns with the cortex
in 10 individuals were similar to the spatial extent and variability of
amygdala partitions defined on the basis of cytoarchitecture in 10
individuals by Amunts et al. (54). Specifically, the default mode
subdivision paralleled the centromedial partition, the dorsal at-
tention subdivision paralleled the superficial partition, and the
unspecified subdivision is similar to the laterobasal partition. Kedo
et al. (53) recently updated the work of Amunts et al. (54) by
examining cytoarchitectonic borders of an expanded set of amyg-
dala subnuclei in 15 postmortem human brains, 10 of which had
been in the original Amunts et al. study. Kedo et al. (53) used
novel mapping techniques to create updated probabilistic maps for
use in human neuroimaging, and related these novel amygdala
partitions to neurotransmitter receptor distributions of the 15
postmortem brains. The newly proposed definitions of the cen-
tromedial, superficial, and basolateral partitions of amygdala nu-
clei vary somewhat from the original study. Interestingly, the newly
defined partitions each had a unique profile of neurotransmitter

receptor types and distribution; future work is needed to test
whether the empirically defined subdivisions from the present
study similarly respect receptor distributions in individuals.
Similarities between the currently defined empirical subdivi-

sions and prior cytoarchitecture-based partitions warrant caution,
however. Relating postmortem cytoarchitecture of the amygdala
to MRI scans is technically challenging, and the agreement of
cytoarchitecture-defined templates with subnuclei delineated on
high-resolution MRI has been poor to moderate (85). Com-
pounding this problem, there are large differences in average
subject age, MRI scanner, and MRI preprocessing, including
spatial registration across studies. Finally, it is well-known that
functional connectivity can be present between regions without
monosynaptic anatomical connectivity (86), has been shown to
change in strength over the course of weeks as a result of experience
(87), and is thought to reflect a prior history of simultaneous activity
(15). Thus, there is no guarantee that cytoarchitecture and func-
tional connectivity will match.
The present study is consistent with prior work that has used

cortical connectivity patterns (48, 88) or coactivation patterns
(89) to empirically divide the amygdala into subdivisions in group-
average datasets. These prior studies have similarly detected three
amygdala subdivisions in approximate spatial correspondence to
the present study and Amunts et al. (54). The present study is also
broadly consistent with work by Kerestes et al. (90), who examined
connectivity patterns of the standard probabilistic amygdala
partitions to the average locations of cortical networks in group-
averaged data. The general patterns of amygdala–cortical net-
work connectivity are similar across the two studies in terms of
average magnitude of connectivity to cortical networks. In the
prior group-average study, however, none of the three amygdala
partitions had statistically different connectivity to a cortical
network relative to the other two amygdala partitions. We suggest
that these prior statistical negative results may be related to the use
of group-averaged datasets that preclude precise definition of
amygdala subdivisions and cortical networks in individuals.
Although the average location of the amygdala subdivisions in

the present study is consistent with this prior work, there was
moderate variation across the 10 subjects in the stereotactic lo-
cations of subdivisions. As a consequence, measured variation in
connectivity across individuals using a group-average approach is
confounded by variation in the localization of subdivisions or
networks being measured. Thus, the average template is inaccu-
rate when applied to individuals, and many subdivision-network
relations will be obscured in group-average data. For example,
variation in connectivity to particular stereotactic locations in the
mPFC may be in part related to variation in placement of the
DMN versus SN across individuals (Fig. 4).

Considerations for Defining Amygdala Subdivisions. It is important
to keep in mind that results from the main analysis of the present
study were obtained by forcing each subject to have exactly three
amygdala subdivisions. This decision was based on substantial
prior work that has divided the amygdala into three subdivisions,
and our own post hoc attempts to empirically determine an
“optimal” number of amygdala subdivisions were inconclusive.
The overlap of the three-cluster solution in the present study
with prior anatomical work by Amunts et al. (54) supports the
decision to use three subdivisions. Kedo et al. (53) and other
studies, however, have also described two subdivision parcellations
of the amygdala, and we provide a full analysis of a two-cluster
solution in SI Appendix. The two-cluster solution yielded subdivi-
sions with connectivity properties similar to the default mode and
dorsal attention subdivisions from the three-cluster solution. We
expect that the optimal number of subdivisions within the amyg-
dala, defined by unique patterns of connectivity to cortex, is likely
to evolve as a function of data quality and scanner resolution.
Furthermore, it is likely that different subdivision schemes will
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provide complementary sources of information about the un-
derlying biology of the amygdala.

Relevance of the Network-Based Framework to Neuropsychiatric
Illnesses. The rich network-based framework revealed by the
individual-functional approach lays the foundation for creating
models of amygdala function and dysfunction in individual pa-
tients. Disrupted connectivity between the mPFC and amygdala
is frequently implicated in psychiatric disorders (47, 70), as the
mPFC is theorized to regulate amygdala activity implicitly via
extinction memory (91). The current results are consistent with a
model in which the default mode amygdala subdivision is posi-
tively correlated with, and is a receiver in relation to, portions of
the mPFC that are part of the DMN, while all three amygdala
subdivisions are negatively correlated with, and senders in re-
lation to, the portion of the mPFC that is SN. The most im-
portant next step is to determine whether psychiatric disorders
are associated with dysfunction (either in timing or connectivity
strength) in one or all of these connections. We hypothesize that
the disordered individually defined functionally based connec-
tion is likely to serve as a better biomarker than current group-
derived stereotactic-based connections. The model proposed
herein also suggests that intervention in these different func-
tionally based connections would have different downstream
effects on the amygdala and other cortical networks. Interven-
tions such as deep brain stimulation or transcranial magnetic
stimulation that stimulate the DMN within the mPFC might be
expected to increase activity in the default mode subdivision, and
perhaps cause downstream activity changes in the LPC. Stimula-
tion of the SN within the mPFC, on the other hand, is likely to
have different effects. A corollary is that stimulation of the same
stereotactic location in different people is likely to affect different
functional circuits and have different downstream effects; such
variability may explain heterogeneity observed in stimulation-
based treatments (92).
The work in the present study uses high sampling of individuals

to place the amygdala and its subdivisions within the larger net-
work organization of the human brain. We suggest that this model
can serve as a framework for developing biologically plausible
biomarkers and targets for intervention in individual patients with
psychiatric disorders.

Methods
An overview of the methods is provided below, with details of all sections
provided in SI Appendix.

Subjects. Two independent datasets were used for this study. The MSC
subjects were 10 healthy, right-handed, young adult participants (5 females;
age 24 to 34 y) recruited from theWashingtonUniversity in St. Louis community
and included one of the authors (N.U.F.D.) (17, 56, 57). Subject demographics
are detailed in SI Appendix, Table S1. The replication WU dataset was an in-
dependent group-average dataset of 120 adults (60 males; average age 25 y,
range 19 to 32 y). Methods for processing of this replication dataset are pro-
vided in SI Appendix and have been previously extensively described (93, 94).
The Washington University School of Medicine Human Studies Committee and
Institutional Review Board approved the study and informed consent was
obtained from all participants.

MRI Image Acquisition. Imaging for the MSC individuals was performed on a
Siemens TRIO 3T MRI scanner over the course of 12 separate sessions (per

subject) and included four T1-weighted images and four T2-weighted images
(17). Each subject underwent 10 30-min resting-state fMRI (rs-fMRI) scans over
the course of 10 separate days, for a total of 300 min of data per subject.

Resting-State Functional Connectivity Analyses. rs-fMRI preprocessing, func-
tional connectivity processing, creation of cortical surfaces, mapping of blood
oxygen-level dependent (BOLD) data to subject-specific surfaces, combina-
tion of surface and volumetric data, and generation of subject-specific
functional brain network topographies have been previously described
(17, 55–57) and are detailed in SI Appendix. Amygdala ROIs were generated
by FreeSurfer 5.3 (95), hand-edited by an individual with substantial prior
experience (D.A.) (95, 96), and reviewed for accuracy by a neuroradiologist
(J.S.S.). Amygdala ROIs were resampled to 2 × 2 × 2-mm isotropic space and
ranged from 205 to 273 voxels (summed across the two hemispheres).

We computed the rs-fc of each voxel in the amygdala, for each subject. The
timeseries of each amygdala voxel was correlated with each cortical vertex,
regressing out cortical signal within 20 mm of the amygdala for additional
artifact removal (97). We next used k-means clustering to empirically divide
the individual amygdala voxels in each subject into three partitions on the
basis of each voxel’s connectivity pattern to cortex. We chose to use three
clusters in an attempt to define individualized versions of the three amygdala
partitions commonly explored in the prior literature on amygdala functional
connectivity (44, 51, 62, 63). A similarity algorithm was used to empirically
match clusters across subjects.

After deriving three clusters within the amygdala for each subject, sub-
sequent analyses examined cluster-wise connectivity patterns. rs-fc processed
BOLD timeseries were averaged across clusters for each subject and the rs-fc
to cortex was recomputed, as above, for these cluster-averaged timeseries.
For network-level analyses, we averaged the correlation values across cortical
vertices within particular networks that were determined at the individual-
subject level in a prior study (17). For the analysis of the mPFC, we used an
ROI derived from a prior metaanalysis relating amygdala–mPFC connectivity
to internalizing symptoms (73). The temporal ordering of signals in amyg-
dala clusters versus cortex was determined using lag analysis as detailed in SI
Appendix (18–20). Split-half reliability was computed for most measures to
assess group- and individual-level reliability.

Data Availability. The MSC data used in this study are publicly available
at OpenNeuro (https://openneuro.org/datasets/ds000224/versions/1.0.1) and
NeuroVault (https://neurovault.org/collections/2447). Protocols and code are
available at GitHub (https://github.com/MidnightScanClub).
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