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Behavioral and Single-Neuron Sensitivity to Millisecond
Variations in Temporally Patterned Communication Signals

X Christa A. Baker, Lisa Ma, X Chelsea R. Casareale, and X Bruce A. Carlson
Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899

In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a
population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here
we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric
organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive
temporal pattern of �8 –12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and
in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting
time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish’s electric signaling
behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function
analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of
scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed,
randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from
temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop
sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these
results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond
precision.
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Introduction
Timing patterns carry information in the communication signals
of a wide range of animals. For instance, the time intervals be-

tween successive sound or light pulses are species-specific in cer-
tain frogs and insects (Lloyd, 1966; Ewing and Bennet-Clark,
1968; Loftus-Hills and Littlejohn, 1971; Pollack, 2000). Previous
studies have shown that circuits process these types of temporal
patterns with central neurons that are selective for particular tim-
ing intervals (Rose and Capranica, 1983; Grothe, 1994; Fortune
and Rose, 1997a; Edwards et al., 2002; Sakai et al., 2009; Pluta and
Kawasaki, 2010; Goel and Buonomano, 2014). These response
properties arise from synaptic mechanisms such as temporal
summation and short-term synaptic plasticity (Fortune and
Rose, 2000; George et al., 2011; Rose et al., 2011; Baker and Carl-
son, 2014), as well as from intrinsic postsynaptic membrane
properties (Fortune and Rose, 1997b; Trussell, 1999; Fortune and
Rose, 2003; Carlson and Kawasaki, 2006; Kohashi and Carlson,
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Significance Statement

The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system.
However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electro-
sensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering
properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish
are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the re-
sponses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons
contains enough information to discriminate stereotyped communication signals produced by different individuals.
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2014). Although we have a good understanding of how circuits
can establish single-neuron temporal selectivity, how a popula-
tion of neurons with a diverse range of temporal filtering prop-
erties contributes to the detection and discrimination of natural
timing patterns is unknown.

Here we investigate how a population of interval-selective
midbrain neurons mediates the detection of temporally pat-
terned communication signals. We use mormyrid weakly electric
fish because the timing patterns in their communication signals
have clear behavioral relevance, and because interval-selective
neurons are easily accessible for in vivo electrophysiological re-
cordings (Carlson, 2009; Baker and Carlson, 2014). Further, elec-
tric communication signals are easy to record, manipulate, and
play back, such that we can provide identical stimuli during in
vivo recordings and during experiments in freely behaving fish.

Mormyrids vary the time intervals between successive electric
organ discharges (EODs) to communicate (for review, see Carl-
son, 2002). At least three quantitatively distinct temporal pat-
terns of pulses have been linked to different social contexts in our
study species, Brienomyrus brachyistius (Carlson and Hopkins,
2004). All three of these signals consist of a rapid decrease fol-
lowed by a gradual increase in interpulse intervals (IPIs). One
signal in particular, called a scallop, consists of individually dis-
tinctive IPI sequences (Serrier and Moller, 1989; Carlson and
Hopkins, 2004). Scallops therefore present a valuable opportu-
nity to test the specificity of temporal pattern processing by a
sensory pathway.

Electric communication signals are processed by a dedicated
sensory pathway (Xu-Friedman and Hopkins, 1999; Baker et al.,
2013). Sensory receptors called knollenorgans fire a single, time-
locked spike in response to each EOD (Bennett, 1965). Afferents
relay these spikes to the hindbrain nucleus of the electrosensory
lateral line lobe (nELL), where corollary discharge inhibition
blocks responses to the fish’s own EODs (Bell and Grant, 1989).
Axons from nELL project to the anterior exterolateral nucleus
(ELa) of the midbrain torus semicircularis. ELa sends its only
output to the posterior exterolateral nucleus (ELp), where sensi-
tivity to interpulse intervals arises (Carlson, 2009). ELp neurons
transform the temporal code for IPI into a population code, with
neurons exhibiting a wide diversity of interval selectivity (Carl-
son, 2009; George et al., 2011; Baker et al., 2013; Ma et al., 2013;
Baker and Carlson, 2014; Kohashi and Carlson, 2014).

In the present study, we measure behavioral and single-
neuron responses to natural scallops and manipulated versions of
scallops to understand the temporal precision of signal detection.
We demonstrate that fish are behaviorally sensitive to millisec-
ond variations in natural timing patterns, and we show that the
responses of interval-selective midbrain neurons contain enough
information to resolve natural patterns from these variations.
Further, the responses of single neurons can be used to distin-
guish scallop patterns produced by different individuals, suggest-
ing that scallops could be used to determine sender identity.

Materials and Methods
Animals. Eighty-one B. brachyistius fish ranging from 5.0 to 9.2 cm in stan-
dard length of both sexes contributed data to this study. Fish were housed in
single-species tanks with a 12 h light/dark cycle, water conductivity of 200–
400 �S/cm, and water temperature of 25–29°C. We fed the fish live black
worms four times per week. Fish were obtained through the aquarium trade.
All procedures were carried out in accordance with National Institutes of
Health guidelines and were approved by the Institutional Animal Use and
Care Committee at Washington University in St. Louis.

Scallop stimulus generation. We chose six scallops as standard stimuli:
one scallop from each of three males, and one scallop from each of three

females (Fig. 1A). These stimuli were taken from scallops recorded in a
previous study (Carlson and Hopkins, 2004). Four of these scallops con-
sisted of 11 IPIs (F1, F2, M2, M3), one consisted of 14 IPIs (F3), and one
consisted of 10 IPIs (M1). To test the sensitivity of scallop detection to
precise temporal patterning, we generated the following five temporal
manipulations of natural scallops: time-reversed sequences, in which the
IPI order of the natural scallop was reversed; randomized sequences, in
which the IPI order was randomly shuffled on each stimulus presenta-
tion; and three sequences with jitter added to the timing of each pulse.
For randomized stimuli, we randomized the IPI order on each stimulus
presentation to allow the recording of responses to stimuli that preserved
the overall IPI distribution but not the temporal order of IPIs. This
allowed us to test responses to randomization in general, instead of test-
ing responses to one particular randomized sequence. We generated se-
quences with 1, 3, or 5 ms of jitter by adding a value drawn randomly
from a Gaussian distribution with a mean of 0 and an SD of 1, 3, or 5 ms,
respectively. We added an independently drawn jitter value to each pulse
in the sequence on each stimulus presentation, such that jitter values
were independent across pulses within a stimulus, and across stimulus
presentations. We jittered each stimulus presentation independently to
test responses to jitter in general, instead of testing responses to one
particular jittered sequence. We also generated start-shifted versions of
scallops, in which we systematically varied the starting IPI and looped
from the end of the natural sequence to the beginning to maintain the
same number of pulses with the same overall IPI distribution. For in-
stance, in a scallop with 11 IPIs, one start-shifted stimulus consisted of
the 2nd through the 11th IPIs followed by the 1st IPI. Another stimulus
consisted of the 3rd through the 11th IPIs followed by the 1st and 2nd
IPIs, and so on for all possible versions.

To relate natural variation in scallop patterns to our jittered, time-
reversed, and randomized manipulations, we computed jitter values be-
tween the four natural scallops with the same number of IPIs. Following
the procedure used to create jittered stimuli, we defined jitter as the SD of
the difference in corresponding EOD times for each pair of scallops. We
defined the time of the first EOD in each scallop as 0 ms. We repeated this
procedure for all six natural scallops, and their respective time-reversed
and randomized sequences. Since the natural scallops in our dataset
contained 10 –14 IPIs, there were 3.6 � 10 6 to 8.7 � 10 10 possible ran-
domized sequences for each scallop. Due to computational resource
limitations, we calculated the jitter between 100,000 randomly selected
randomized sequences and each natural scallop.

Behavioral playback experiments. To test behavioral responses to scal-
lops, we recorded the EOD output of a fish during the presentation of
natural and manipulated scallop sequences using previously described
methods (Carlson et al., 2011; Lyons-Warren et al., 2012). Briefly, we
placed a rectangular plastic chamber (4.1 � 4.1 � 20.3 cm) in the middle
of the home tank of a singly housed fish (20.3 � 25.4 � 40.6 cm). Most
fish entered the chamber voluntarily within �5 min. If fish were not
within the chamber after 5 min, we guided fish into the chamber with a
net. Netted caps were placed over each end of the chamber to keep the
fish inside during the experiment. Fish were then allowed an additional
10 min to acclimate to the chamber. A pair of Ag/AgCl electrodes ori-
ented horizontally on both sides of the chamber delivered the stimulus,
and a pair of Ag/AgCl electrodes oriented vertically on both ends of the
chamber recorded the EOD output of the fish. We delivered 20 repeti-
tions of a single scallop stimulus consisting of bipolar square electric
pulses of 2 ms duration, with 30 s between stimulus presentations to
reduce habituation. We randomized stimulus order within and across
fish. All stimuli were generated in Matlab 7 (MathWorks), digital-to-
analog converted at a rate of 97.7 kHz (RX8, Tucker-Davis Technolo-
gies), and attenuated (PA5, Tucker-Davis Technologies) before delivery
to an analog stimulus isolator (Model 2200, A-M Systems) connected to
the stimulus electrodes.

To record the EOD output of a fish, we amplified electrical activity 100
times with bandpass filtering (0.1 Hz–20 kHz; Model 1700, A-M Sys-
tems), recorded EOD times as events that crossed a manually set thresh-
old, and then saved these times using custom software in Matlab. We
computed the spike density function (SDF) by convolving each EOD
time of occurrence with a Gaussian of 200 ms width (Carlson and Hop-
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kins, 2004), and then averaging over stimulus presentations. We mea-
sured the baseline EOD rate of the fish by averaging the SDF over a
window starting 0.2 s after the start of a 5 s prestimulus period and ending
0.2 s before stimulus onset.

To investigate how fish responded to natural and start-shifted scallop
stimuli, we measured the maximum EOD rate that occurred in a window
starting 0.1 s before stimulus onset up to 2.1 s after stimulus offset. The
response window started before stimulus onset since the Gaussian used
in the convolution was symmetric in time, such that a response immedi-
ately following stimulus onset could affect the SDF for up to 100 ms (i.e.,

half-width of the Gaussian) before the stimulus. We measured response
latency relative to stimulus onset. In practice, the response latency was
never negative. To measure behavioral response thresholds, we defined a
behavioral response from the fish as a maximum EOD rate exceeding the
prestimulus mean � 3 SDs that occurred between 0.1 s before stimulus
onset up to 2.1 s after stimulus offset. For each stimulus, we varied the
intensity until we found the weakest intensity (to the nearest decibel) to
which the fish responded. We defined this intensity as the behavioral
response threshold. The actual threshold stimulus intensity (in millivolts
per centimeter) was determined using a calibration curve obtained by

A
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Figure 1. The timing of behavioral responses is sensitive to scallop temporal structure. A, Our library of natural scallop patterns consisted of one sequence recorded from each of three females
(F1–F3) and from each of three males (M1–M3). Each point represents the IPI vs time of each electric pulse in the scallop. B, EOD rate recorded from one fish in response to a scallop (F1) presented
at time � 0 s. Tick marks below the EOD rate curve represent the time of each pulse in the stimulus. The red vertical line represents the time of the minimum IPI in the stimulus. C, Latency to the
maximum EOD rate of the fish vs latency to the minimum IPI of the stimulus for natural and time-reversed scallops. Each point represents the average across seven fish in response to each natural
scallop in A. Error bars represent SEM. Lines are the results of a linear regression (natural scallops: r 2 �0.72, p�0.033; time-reversed scallops: r 2 �0.81, p�0.014). D, Same as B for a start-shifted
version of the F1 scallop. This stimulus consisted of the 9th through 11th IPIs of the F1 scallop followed by the 1st through 8th IPIs. E, The latency to the maximum EOD rate of the fish vs the latency
to the minimum IPI for start-shifted sequences of all six natural scallops. Each point represents the average across seven fish, and error bars represent the SEM. Solid line represents x � 0.1, and
dotted line represents y � x � 0.1.
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recording in the center of the playback chamber. We normalized thresh-
old intensities in response to manipulations of a natural scallop to the
threshold intensity for the natural scallop, and then averaged across the
six scallop stimuli to get a single data point for each manipulation for
each fish.

Whole-cell recordings. We prepared fish for in vivo recordings from
ELp as described previously (Carlson, 2009; Lyons-Warren et al., 2013;
Baker and Carlson, 2014). Briefly, fish were anesthetized in 300 mg/L
tricaine methanesulfonate (MS-222) and paralyzed with an intramuscu-
lar injection of 100 �l of 0.1 mg/ml gallamine triethiodide (Flaxedil). We
positioned the fish on a platform with lateral supports and respirated the
fish with 100 mg/L MS-222 during surgery. We placed a drop of 0.4%
lidocaine on the skin overlying the incision site, and then made an inci-
sion to uncover the skull overlying ELp. Next we glued a head post to the
skull before using a dental drill and forceps to remove a rectangular piece
of skull covering ELp. We placed the ground electrode on the nearby
cerebellum. Following surgery, we switched respiration to fresh water
and allowed the fish to recover from anesthesia. We monitored the anes-
thetized state of the fish with a pair of electrodes oriented parallel to its
electric organ to record the fictive EOD produced by the electromotor
neurons (Carlson, 2009; Lyons-Warren et al., 2013). Anesthesia silences
the fictive EOD, such that the return of fictive discharges indicates that
the fish has recovered from anesthesia. At the end of the recording ses-
sion, the respiration of the fish was switched back to 100 mg/L MS-222
until no fictive EOD could be recorded, and then the fish was killed by
freezing.

We obtained intracellular, whole-cell patch recordings in current-
clamp using previously published methods (Rose and Fortune, 1996;
Carlson, 2009; Baker and Carlson, 2014). Briefly, we used a Flaming/
Brown micropipette puller (Model P-97, Sutter Instruments Co.) to fab-
ricate glass patch micropipettes with resistances of 20 – 40 M�. We
backfilled the pipette tip with a solution containing the following (in
mM): 100 CH3CO2K, 2 KCl, 1 MgCl, 5 EGTA, 10 HEPES, 20 KOH, and 43
biocytin. We filled the pipette shank with the same solution, except that
we replaced biocytin with D-mannitol (Carlson, 2009; Baker and Carlson,
2014). Initial seals were �1 G�. Recordings were amplified 10 times and
low-pass filtered (cutoff frequency, 10 kHz) using an Axopatch 200B
amplifier (Molecular Devices), digitized at a rate of 97.7 kHz (Model RX8
Digitizer, Tucker Davis Technologies), and saved using custom software
written in Matlab 7.

We delivered electrosensory stimulation using electrodes positioned
around the perimeter of the recording chamber. Three vertically oriented
electrodes on both sides of the chamber delivered stimulation transverse
to the fish. Two vertically oriented electrodes at the front and back of the
chamber delivered stimulation longitudinal to the fish (Lyons-Warren
et al., 2013). We used stimuli consisting of monopolar square electric
pulses.

After obtaining a recording, we first varied the duration (0.2–2 ms),
intensity (3–71 mV/cm), polarity (normal or reversed), and stimulus
orientation (transverse or longitudinal to the fish) of a single pulse to
elicit maximal postsynaptic potential (PSP) amplitudes from each neu-
ron. All subsequent stimuli delivered during a recording then used these
parameters while varying only the IPIs (Carlson, 2009; Baker and Carl-
son, 2014). We discarded responses to stimulus repetitions in which
stimulus pulses occurred within 2–5 ms after a fictive EOD, since corol-
lary discharge inhibition in the hindbrain blocks sensory responses
within this window (Bell and Grant, 1989).

Data analysis. We removed spikes from recording traces and measured
PSP amplitudes as described previously (Baker and Carlson, 2014).
Briefly, to remove spikes, we first defined the spike start as the point
where the smoothed (moving average filter with width of 0.5 ms) deriv-
ative of the recorded potential first exceeded the prestimulus mean � 4
SDs, and spike end as the point where the smoothed derivative decreased
below the prestimulus mean � 1 SD. If the smoothed derivative did not
meet our spike end criterion, we instead defined the spike end as the first
minimum in the smoothed derivative up to 8 ms after the spike start. We
measured the resting potential (RP) of the neuron by first averaging the
spike-removed traces over 10 presentations of the same stimulus, and
then averaging the potential over a 50 ms window immediately preceding

the stimulus. We measured PSP amplitudes by subtracting the RP from
the maximum potential (after spike removal) that occurred between 3 ms
after each stimulus pulse up to the time of the next pulse. For presenta-
tion purposes, we removed the stimulus artifact from recordings by lin-
early extrapolating the potential between the time of pulse onset to 0.5 ms
after pulse offset.

We measured the membrane time constant (�m) and input resistance
(Rm) by fitting the response of each neuron to a 100 ms, �0.10 nA current
pulse with a double exponential function, as previously described (Git-
telman et al., 2009; Baker and Carlson, 2014). We then estimated mem-
brane capacitance (Cm) according to the following:

Cm �
�m

Rm
.

Next we determined IPI tuning by collecting responses to scanning IPI
stimuli consisting of IPIs ranging from 10 to 200 ms, and generating IPI
tuning curves as previously described (Baker and Carlson, 2014). Briefly,
we normalized PSP amplitudes in response to each IPI by the maximum
PSP amplitude. If the normalized amplitudes to all IPIs were �0.85, we
classified the neuron as all-pass (i.e., no IPI tuning). Otherwise, we used
sigmoidal and Gaussian fits to the tuning curves to classify IPI tuning as
high-pass, low-pass, bandpass, or bandstop (for details, see Baker and
Carlson, 2014). If the tuning of a neuron did not fit any of these classes,
we classified it as complex.

We next collected responses to natural and manipulated scallop stim-
uli. For each neuron, we randomly selected a natural scallop from our
library. We then presented 10 repetitions each of the natural sequence; a
time-reversed sequence; randomized sequences; and sequences with 1, 3,
and 5 ms of added jitter. We randomized stimulus presentation order.
Next, we presented 10 additional repetitions of the natural scallop se-
quence. We repeated this procedure with another randomly selected
scallop until we had presented all manipulations of all six scallops, or
until we lost the recording. We measured the PSPs evoked by each stim-
ulus pulse on each repetition.

Inclusion criteria included the following: (1) the RP remained below
�40 mV throughout the recording; and (2) the RP varied �5 mV
throughout the recording. Fifty-six of 60 neurons fit these criteria. Two
of the excluded neurons were high-pass and two were low-pass. The RP,
membrane capacitance, and membrane time constant of the four ex-
cluded neurons were within the range of those of the included neurons.
For the 56 included neurons, there were no differences in RP (one-way
ANOVA, F(3) � 0.68, p � 0.57; mean � �57.3 	 0.4 mV), membrane
capacitance (one-way ANOVA, F(3) � 1.1, p � 0.36; mean � 86.7 	 10.2
pF), or membrane time constant (one-way ANOVA, F(3) � 0.46 m p �
0.71; mean � 12.0 	 1.2 ms) across IPI tuning groups.

Discriminant function analysis. To assess the degree to which the re-
sponses of single ELp neurons could be used to distinguish among nat-
ural and manipulated scallop sequences, we used discriminant function
analysis (DFA). DFA defines a set of functions to group multivariate data
by maximizing intergroup variance while minimizing intragroup vari-
ance (Cooley and Lohnes, 1971). These functions can then be used to
assign independent data to one of the predefined groups. We used the
PSPs evoked by the second through the last pulse in each stimulus as
variables, and we used the PSPs measured on each stimulus presentation
as a single observation. Occasionally, our method of adding jitter resulted
in a negative IPI (i.e., the jitter value to add was more negative than �1
times the natural IPI). This happened almost exclusively for 5 ms jitter
sequences. In these cases, we threw out the responses of the neuron to
that particular stimulus repetition. Thus, we had 10 observations each for
natural, time-reversed, randomized, 1 ms jitter-added, and 3 ms jitter-
added sequences, and 5–10 observations for 5 ms jitter-added sequences
in all neurons. We used the manipulation type as the grouping variable.
We then repeated 10 presentations of the natural sequence to determine
the probability that natural sequences were classified as such. To mini-
mize the possibility of long-term changes in responses affecting classifi-
cation, we used five randomly selected repetitions from the first set of
responses to natural scallops and five randomly selected repetitions from
the repeated natural scallop to define the DFA. We then used these dis-
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criminant functions to classify responses to each of the 10 remaining
repetitions of the natural scallop. To determine the discriminability of
spiking responses, we performed DFA using the number of spikes in
response to each stimulus pulse instead of PSP amplitude.

To determine whether ELp responses are sensitive to individual vari-
ation in scallops, we performed DFA on the responses of a neuron to the
four natural scallops in our library that had the same total number of
IPIs. We used scallop ID as the grouping variable. For this analysis, we
used the responses of only those neurons from which we recorded re-
sponses to all four natural scallops as well as responses to repeated pre-
sentations of all four scallops. For each scallop, we randomly selected five
responses from each of the two repeated blocks of natural stimuli to
define the discriminant functions. We used the remaining 10 responses
to the natural scallop to test classification accuracy.

To implement DFA, we used a built-in discriminant function classifier
(ClassificationDiscriminant.m) in Matlab that assumes a Gaussian mix-
ture distribution. We also used a built-in function (mahal.m) to calculate
Mahalanobis distances between each of 10 responses to the repeated
natural sequence and the centroid of each manipulation group. This
method assumes that the responses have similar distributions and vari-
ance. To assess the discriminability of responses to natural versus time-
reversed, randomized, or jittered sequences, we assigned each of 10 test
responses to the group (e.g., natural or time reversed) with the smallest
Mahalanobis distance. To study the discriminability of responses to nat-
ural sequences from different individuals, we assigned each of 10 test
responses to the group with the smallest Mahalanobis distance. We di-
vided the number of repetitions assigned to each group by the total
number of repetitions to get the probability of classification for each
manipulation.

Next, we investigated how classification performance may be affected
by pooling the responses of multiple neurons together. From the single-
neuron classification probabilities, we calculated group probabilities ac-
cording to the following:

�
i
�

k
p
i � k�,

where p(i�k) is the probability that the responses of neuron i are classified
as stimulus k. If we recorded responses from the same neuron to multiple
natural scallops and manipulations, we averaged the classification prob-
abilities across the natural scallops. We calculated group classification
probabilities for combinations of two to 10 neurons in the following
instances: (1) natural versus time-reversed sequences; (2) natural versus
randomized sequences; (3) natural versus 1 ms jitter-added sequences;
(4) natural versus 3 ms jitter-added sequences; and (5) natural versus 5
ms jitter-added sequences. For pairs of neurons, we calculated the group
probabilities for all possible combinations. Because calculating the joint
probabilities for all possible combinations of more than five neurons was
computationally time-intensive, we instead calculated the probabilities
for 10,000 randomly selected combinations of 3 to 10 neurons. The SEs of
these measurements were �0.3% of the means, indicating that our ran-
dom samples were representative of all possible combinations. We cal-
culated group classification probabilities for all possible combinations of
2 to 10 neurons in the following instances: (1) two different natural
scallops; (2) three different natural scallops; and (3) four different natu-
ral scallops. For classification accuracies that did not reach 1 at the max-
imum group size, we fit the classification accuracy versus group size with
a logarithmic function according to the following:

y � a ln
x� � b,

where y is the classification probability, x is the group size, and a and b are
constants.

Statistics. All statistical tests were performed using Statistica (StatSoft).
Parametric tests included single-sample t tests, paired t tests, one-way
ANOVA, and repeated-measures ANOVA. Nonparametric tests included
Spearman’s rank test. The significance level for all tests was p � 0.05.

Results
Fish are behaviorally sensitive to the temporal structure
of scallops
To determine whether the temporal structure of the stereotyped
scallop signal was behaviorally significant, we performed play-
back experiments in which we recorded the electric signaling
activity of a fish in response to natural scallops and various tem-
poral manipulations of natural scallops. Our natural stimulus set
consisted of one scallop recorded from each of three females, and
one scallop recorded from each of three males (Fig. 1A). We
measured fish’s maximum EOD rates in response to 20 repeti-
tions of each scallop presented at the same intensity (291 mV/cm;
Fig. 1B). Response strengths depended on the scallop (repeated-
measures ANOVA, F(5) � 2.7, p � 0.039), with fish responding
most strongly (mean � 20.6 	 1.4 Hz) to the scallop consisting of
the largest number of IPIs (F3, 14 IPIs) and least strongly
(mean � 16.9 	 1.4 Hz) to the scallop consisting of the smallest
number of IPIs (M1, 10 IPIs). There was no difference in the
maximum EOD rates elicited by the four scallops with the same
number of IPIs (repeated-measures ANOVA, F(3) � 0.26, p �
0.85), suggesting that the difference in response strengths was due
to different numbers of IPIs in the natural scallops instead of
slight differences in the temporal structure of each scallop.

The latency of the maximum EOD rate of a fish depended on
the scallop (repeated-measures ANOVA, F(5) � 5.5, p � 0.011)
and was positively correlated with the latency of the minimum
IPI in each scallop (linear regression, r 2 � 0.72, p � 0.033; Fig.
1C, black points). A similar relationship held for responses to
time-reversed sequences of natural scallops (linear regression,
r 2 � 0.81, p � 0.014; Fig. 1C, blue points). These results suggest
that fish are able track the fine temporal structure of the scallop.

We further tested the relationship between the scallop timing
pattern and fish’s responses by presenting start-shifted versions
of natural scallops. Start-shifted versions contained the same IPIs
as the natural scallop but varied the starting point. For instance,
for a scallop consisting of 11 IPIs, one start-shifted version con-
sisted of the 2nd through the 11th IPIs followed by the 1st IPI. If
the responses of a fish indeed depend on when the minimum IPI
occurs in the signal, we should observe a relationship between the
latency of the minimum IPI and the latency of the maximum
EOD rate of the fish. We recorded the time of the maximal dis-
charge rate of a fish in response to all possible start shifts of all six
natural scallops (Fig. 1D). Response latencies were positively corre-
lated with the latencies of the minimum IPI in the stimulus for min-
imum IPI latencies �0.1 s (linear regression, r2 � 0.92–0.98, p �
0.000001–0.00068 across all six natural scallops; Fig. 1E). This means
that as long the minimum IPI occurred �100 ms or later after the
start of the sequence, the timing of the responses of the fish tracked
the time of the minimum IPI. The response latencies were well fit by
the equation y � x � 0.1 (linear regression, r2 � 0.48–0.96 across all
six natural scallops), suggesting that the minimum response latency
of the fish is �100 ms.

Next we sought to probe the importance of precise temporal
pattern in determining behavioral responses by measuring
changes in EOD rate in response to manipulations of natural
scallops. To test how changes in the order of scallop IPIs affected
behavioral responses, we generated time-reversed and random-
ized sequences (Fig. 2A). Randomized sequences were generated
independently for each stimulus presentation such that the IPI
order could be different on each presentation. We recorded fish’s
responses to natural, time-reversed, and randomized sequences
of all six scallops presented at the same intensity (291 mV/cm),
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and found no differences in the maximum EOD rate in response to
the three types of sequences (mean across all sequences � 18.6 	 0.2
Hz; repeated-measures ANOVA, F(2) � 0.72, p � 0.51).

To obtain a more sensitive measure of responsiveness, we de-
termined behavioral response thresholds for natural, time-
reversed, and randomized scallops in 17 fish. We varied stimulus
intensity in 1 dB increments until the fish no longer responded
with an increase in EOD rate that exceeded the prestimulus mean
EOD rate � 3 SDs. The lowest intensity that elicited a response
from the fish was defined as the behavioral response threshold.

Behavioral response thresholds for natural scallops ranged
from 0.6 to 22.7 mV/cm (N � 17 fish) and were not significantly
different across scallops (repeated-measures ANOVA, F(5) � 1.3,
p � 0.30). Because response thresholds were variable within and
across fish, we normalized thresholds for time-reversed and ran-
domized sequences to those for natural scallops. Responses to a
particular natural scallop and all its manipulations were recorded
on the same day. We found that behavioral response thresholds
were on average approximately three times higher for time-
reversed and randomized sequences than for natural sequences
(single-sample t test against 1; time-reversed: t(16) � 3.0, p �
0.0088; randomized: t(16) � 3.1, p � 0.0063; Fig. 2B). This means
that time-reversed and randomized signals had to be approxi-
mately three times more intense than natural signals to elicit a
behavioral response. These results reveal that the IPI order, and
not just the overall IPI composition, of natural scallops is relevant
for fish’s responses.

To determine the extent to which the system is tuned to the
precise temporal structure of scallops, we recorded behavioral
responses to natural scallop sequences with jitter added to each
pulse. To do so, we randomly drew a value from a Gaussian
distribution with a mean of 0 and SDs of 1, 3, or 5 ms, and added
this value to the time of each pulse in the natural scallop (Fig. 2C).
Jitter values were added independently to each pulse in a stimulus
during each presentation such that the jittered stimulus was

slightly different on each presentation. The overall effect resulted
in IPIs that were sometimes shorter and sometimes longer than
those in the natural scallop.

We first recorded behavioral responses to natural and jittered
sequences of all six scallops presented at the same intensity (291
mV/cm). There were no differences in the maximum EOD rate in
response to natural, 1 ms jitter-added, 3 ms jitter-added, and 5 ms
jitter-added sequences (mean across all sequences � 18.7 	 0.2
Hz; repeated-measures ANOVA, F(3) � 0.98, p � 0.42). Next, we
measured behavioral response thresholds to natural and jitter-
added sequences. Thresholds to natural scallops ranged from 0.6
to 6.2 mV/cm (N � 10 fish). We found that behavioral response
thresholds were elevated twofold to threefold for jittered se-
quences compared with natural sequences (single-sample t test
against 1; 1 ms jitter: t(9) � 2.9, p � 0.018; 3 ms jitter: t(9) � 2.9,
p � 0.017; 5 ms jitter: t(9) � 3.6, p � 0.0060; Fig. 2D). These
results reveal that fish are behaviorally sensitive to the precise
timing of pulses within scallops.

Single-neuron responses to scallops depend on interval
selectivity
The IPIs in electric communication signals are precisely encoded
at the periphery and preserved by the ascending electrosensory
system until activity reaches the midbrain ELp, where single neu-
rons are sensitive to IPIs (for review, see Baker et al., 2013). To
determine whether this population of IPI-selective neurons is
sensitive to scallop temporal structure, we obtained in vivo intra-
cellular whole-cell recordings from 56 ELp neurons during elec-
trosensory stimulation with scallop stimuli (Fig. 3). IPI tuning
was classified as high-pass (n � 20; Fig. 3A), bandstop (n � 8; Fig.
3B), bandpass (n � 7; Fig. 3C), low-pass (n � 16; Fig. 3D), com-
plex (n � 3), or all-pass (n � 2), as described previously (Baker
and Carlson, 2014).

Neurons responded differently to the same scallop sequences,
depending on their IPI tuning (Fig. 3; Carlson, 2009). High-pass

A B

C D

Figure 2. Temporal manipulations of natural scallops increase behavioral response thresholds. A, Natural (Ai), time-reversed (Aii), and randomized (Aiii) versions of the M2 scallop. Each point
represents the IPI vs time of each electric pulse in the sequence. B, Behavioral response thresholds for time-reversed and randomized sequences normalized to the thresholds for natural scallops. Each
point represents the average of the normalized thresholds of one fish for manipulations of all six natural scallops. Horizontal bars represent the average across all fish, and error bars represent the
SEM. *p � 0.01, single-sample t test against 1. C, Examples of a natural scallop (M2; black) and one sequence (red) with each of three different amounts of jitter added. D, Same as B for jitter-added
sequences. *p � 0.02, single-sample t test against 1.
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neurons produced the largest PSP amplitudes during the shortest
IPIs in the scallop (Fig. 3A). Bandstop neurons produced the
largest PSP amplitudes during the shortest and longest IPIs in the
scallop (Fig. 3B). Bandpass neurons produced the greatest PSP
amplitudes in response to intermediate IPIs in the scallop (Fig.
3C). Low-pass neurons produced the largest PSP amplitudes in
response to the longest IPIs of the scallop (Fig. 3D). In agreement
with previous findings, the PSP amplitudes of some neurons de-
pended on the direction of IPI change, such that response ampli-
tudes to the same IPIs were slightly different for natural and
time-reversed sequences of the same scallop (Fig. 3; Carlson,
2009). Thus, ELp neurons act as temporal filters for electric com-
munication signals.

Subthreshold responses of interval-selective neurons are
sensitive to changes in the sequence of intervals in scallops
To determine whether ELp neurons are sensitive to the fine tem-
poral structure of scallops, we recorded the intracellular re-
sponses of ELp neurons to natural, time-reversed, randomized,
and jittered sequences of the same six scallops that we used in the
behavior experiments. We used DFA to test whether responses to
scallop manipulations were different enough to be quantitatively
separated. For each neuron, we measured the PSP amplitudes
evoked by each pulse on every stimulus presentation, and then
used the PSP amplitudes in response to the second through the
last pulse in DFA. We used responses to all six stimulus sequences
(natural, time-reversed, randomized, and jitter of 1, 3, and 5 ms)

A

B

C

D

Figure 3. Single-neuron responses to scallops depend on interval selectivity. Ai, Intracellular membrane potential (Vm) recording from a high-pass neuron in response to a natural scallop (M3).
The trace represents the membrane potential averaged over 10 stimulus presentations. Tick marks below the recording trace denote the time of each electric pulse in the stimulus. Aii, Close-up of
the recording in Ai during the shortest IPIs in the scallop (dashed box in Ai). Aiii, PSP amplitudes in response to IPI tuning curve, natural scallop, and time-reversed scallop stimuli. The black curve
reflects the responses shown in Ai and Aii, and the blue curve represents the responses of the neuron to the time-reversed version of the same scallop. Open symbols indicate the response to the first
IPI in the natural and time-reversed scallop stimuli. The gray curve represents the interval tuning curve of the neuron (see Materials and Methods). B–D, Same as A for a bandstop (B), bandpass (C),
and low-pass (D) neuron during presentation of the same stimuli.
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to define discriminant functions that minimize intragroup vari-
ance while maximizing intergroup variance. We then used these
functions to classify the responses of the neuron to 10 indepen-
dent presentations of the natural scallop. If the responses to tem-
poral manipulations were no different from those to natural
scallops, the discriminant functions should correctly classify re-
sponses to natural scallops with chance performance.

To test whether subthreshold responses of individual neurons
could be used to distinguish natural from time-reversed scallops,
we used the discriminant functions to classify responses to each
of 10 independent presentations of the natural scallop as either
the natural or time-reversed sequence (Fig. 4A). Across all neu-
rons, responses to natural scallops were correctly classified with a
probability of 0.79 	 0.02, which was significantly more frequent
than that predicted by chance (single-sample t test against 0.50,
t(55) � 18, p � 0.000001; Fig. 4B). Correct classification proba-
bility for natural versus time-reversed scallops did not depend on
IPI tuning (one-way ANOVA, F(3) � 0.64, p � 0.59; Fig. 4C).

Next, we compared single-neuron responses to natural and
randomized sequences. Responses to natural scallops were cor-
rectly classified with a mean probability of 0.79 	 0.02, which was
significantly more frequent than that predicted by chance (single-
sample t test against 0.50, t(55) � 13, p � 0.000001; Fig. 4B).

Classification performance for natural versus randomized se-
quences was independent of IPI tuning (one-way ANOVA, F(3) �
2.2, p � 0.097; Fig. 4D). Collectively, these results demonstrate
that the IPI selectivity of ELp neurons results in responses that are
sensitive to the IPI sequence of natural temporal patterns.

Subthreshold responses of interval-selective neurons are
sensitive to changes in the precise timing of pulses in scallops
Next, we used the previously defined discriminant functions to
classify responses to each of 10 independent presentations of nat-
ural scallops as natural or jittered sequences (Fig. 5A). In general,
the responses of single ELp neurons could be used to correctly
identify natural sequences significantly more frequently than
predicted by chance (single-sample t test against 0.50, 1 ms jitter:
t(55) � 3.0, p � 0.0044; 3 ms jitter: t(55) � 4.2, p � 0.00017; 5 ms
jitter: t(55) � 6.0, p � 0.000001; Fig. 5B).

Classification accuracy depended on the amount of added
jitter (repeated-measures ANOVA, effect of jitter, F(2) � 3.7,
p � 0.027) but was independent of IPI tuning (repeated-
measures ANOVA, effect of tuning, F(3) � 0.13, p � 0.95; Fig.
5C–E). There was no interaction effect between tuning and the
amount of jitter (F(6,96) � 0.28, p � 0.94). These results demon-
strate that the responses of single interval-selective neurons are

A B

C D

Figure 4. The responses of single neurons are sensitive to changes in the order of intervals in scallops. A, DFA results for responses to natural, time-reversed, and randomized scallop (F2)
sequences in a high-pass neuron. PSP amplitudes evoked by the second through last pulse in each of 10 stimulus presentations of natural, time-reversed, randomized, and jittered sequences were
used to define the discriminant functions. We then used these functions to classify responses to 10 independent presentations of the natural scallop (gray circles) as natural or time-reversed
sequences, and as natural or randomized sequences, based on Mahalanobis distances from group centroids. Each point reflects the responses of the neuron to one stimulus presentation. All 10 of the
test responses of this neuron to the natural scallop were correctly classified as belonging to the natural sequence when compared with responses to the time-reversed sequence and with responses
to the randomized sequence. B, Probabilities of correct classification of natural scallop responses when compared with responses to time-reversed and randomized sequences for all neurons.
*Single-sample t test against chance (0.50), p � 0.000001. C, Probability of correct classification of natural scallops compared with time-reversed scallops by IPI tuning. Complex (n � 3 neurons)
and all-pass (n�2 neurons) were excluded from this analysis. D, Same as C for natural vs randomized scallop sequences. Each point in B–D represents the correct classification probability for a single
neuron. If the neuron was presented with more than one natural scallop and corresponding manipulations, we used the classification probability averaged across natural scallops. Horizontal bars in
B–D represent the average across neurons, and error bars represent SEM.
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sensitive to slight changes in the precise intervals occurring in
natural temporal patterns.

Spiking responses reflect the sensitivity of subthreshold
responses to scallop temporal structure
We have shown that subthreshold PSP amplitudes in single neu-
rons are sensitive to slight changes in natural scallop patterns.
However, these subthreshold changes in membrane potential are
not transmitted to downstream neurons; only spiking activity is.
To investigate how spiking may affect the discriminability of
single-neuron responses, we counted the number of spikes elic-
ited by each pulse during every presentation of natural, time-
reversed, randomized, and jittered scallop sequences (Fig. 6A).
Thirteen neurons produced spikes often enough to provide suf-
ficient variation for classification by DFA. For each neuron, we
used the spike counts in response to the second through the last
pulse of natural, time-reversed, randomized, and jittered se-
quences to define the discriminant functions that maximized the
separability of the responses to each manipulation. We then used
these functions to classify responses to 10 independent presenta-
tions of the natural scallop.

On average, the responses of spiking neurons correctly
classified natural compared with time-reversed and random-
ized scallops with a mean probability of 0.84 	 0.05 and
0.77 	 0.05, respectively, which were significantly more fre-
quent than predicted by chance (single-sample t test against
0.50, time-reversed: t(12) � 6.9, p � 0.000016; randomized:
t(12) � 5.0, p � 0.00033). There was no difference in classifi-
cation accuracy between spiking activity and subthreshold

PSPs for natural versus time-reversed scallops (paired t test,
t(12) � 0.23, p � 0.82) or natural versus randomized scallops
(t(12) � 0.24, p � 0.81; Fig. 6B).

Using spikes for DFA resulted in the correct classification
of natural sequences with mean probabilities of 0.57 	 0.05,
0.61 	 0.05, and 0.55 	 0.06 when compared with sequences
with 1, 3, and 5 ms of added jitter, respectively, which were not
significantly different from those predicted by chance (single-
sample t test against 0.50, t(12) � 0.056 –1.3, p � 0.21– 0.96
across all jitter values). Classification accuracy using spikes
was not significantly different from that using PSPs for natural
versus jittered sequences (repeated-measures ANOVA, effect
of spikes vs PSPs, F(1) � 1.0, p � 0.33; Fig. 6C). These results
demonstrate that classification accuracy based on PSPs cap-
tures the classification accuracy of spiking activity that would
be transmitted to downstream neurons.

A few neurons had correct classification probabilities
that were well below chance (Fig. 6C). This result occurred
when the responses to the natural and jittered stimuli were
similar enough to be poorly separated by the discriminant
functions. In these cases, the responses of the neuron were not
reliable enough across stimulus presentations to be correctly
classified.

Pooling classification probabilities of multiple neurons
improves discrimination performance
We have shown that the responses of individual ELp neurons can
be used to correctly classify natural versus time-reversed, ran-
domized, and jittered scallop sequences. However, the electro-

A B

C D E

Figure 5. The responses of single neurons are sensitive to slight changes in the precise intervals in scallops. A, DFA results for responses to natural and jittered scallop (F2) sequences
in a high-pass neuron (same neuron as in Fig. 4A). PSP amplitudes evoked by the second through the last pulse in each of 10 stimulus presentations of natural, time-reversed, randomized,
and jittered sequences were used to define the discriminant functions. We then used these functions to classify responses to 10 additional presentations of the natural scallop (gray
circles) as natural or jittered sequences based on Mahalanobis distances from group centroids. Seven, 4, and 7 of 10 test responses of this neuron to the natural scallop were correctly
classified when compared with sequences with 1, 3, and 5 ms of added jitter, respectively. Each point reflects the responses of the neuron to one stimulus presentation. B, Correct
classification probabilities for natural scallop responses compared with sequences with 1, 3, and 5 ms of added jitter for all neurons. *Single-sample t test against chance (0.50), p � 0.01.
C–E, Probability of correct classification of natural vs 1 ms jittered sequences (C), natural vs 3 ms jittered sequences (D), and natural vs 5 ms jittered sequences (E) by IPI tuning. Complex
(n � 3 neurons) and all-pass (n � 2 neurons) were excluded from this analysis. Each point in B–E represents the correct classification probability for a single neuron. If the neuron was
presented with more than one natural scallop and corresponding manipulations, we used the classification probability averaged across natural scallops. Horizontal bars represent the
average across neurons, and error bars represent the SEM.
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sensory system does not have to rely solely on the output of any
one ELp neuron to detect scallops. Rather, downstream neurons
could integrate the output of multiple ELp neurons to identify
temporally patterned communication signals. Therefore, we
wanted to determine how classification performance would be
affected if we pooled the responses of multiple ELp neurons
together. We used Bayesian updating with single-neuron classi-
fication probabilities to estimate the probability of correct classi-
fication of natural versus time-reversed and randomized se-
quences for all possible combinations of two neurons and for
10,000 randomly selected combinations of 3–10 neurons. For
neurons from which we recorded responses to multiple natural

scallops and their manipulations, we used the single-neuron clas-
sification probabilities averaged over all scallops.

The probability of correct classification of natural versus
time-reversed and randomized scallop sequences increased as
the responses of more neurons were combined (Fig. 7A). Average
correct classification probability reached 1 with groups of five
neurons for both natural versus time-reversed and natural versus
randomized scallops.

To determine how the IPI tuning of constituent neurons may
affect classification, we compared the probability of correct clas-
sification of natural versus time-reversed and natural versus ran-
domized scallops for groups consisting of all possible tuning
compositions. In general, pairs of neurons from the same tuning
class had classification probabilities for natural versus time-
reversed sequences that were significantly lower than pairs of
neurons from different tuning classes (similar tuning, 0.91 	
0.01; dissimilar tuning, 0.93 	 0.003; independent t test: t(1274) �
�3.0, p � 0.0026). A similar pattern was observed for natural
versus randomized scallops (similar tuning, 0.89 	 0.01; dissim-
ilar tuning, 0.93 	 0.002; independent t test: t(1274) � �6.5, p �
0.000001). Bandstop neurons formed pairs that tended to have
the highest probability of correct classification (Fig. 7B). This
finding is consistent with bandstop neurons tending to have
greater correct classification probabilities than neurons of other
tuning types (Fig. 4C,D). Bandstop neurons also tended to form
groups of three and four neurons with higher classification prob-
abilities than other combinations (Fig. 7C,D).

We also estimated the effect of pooling probabilities from
groups of neurons on classification accuracy for natural versus
jittered scallops (Fig. 8A). Combining classification probabilities
of multiple neurons improved accuracy for natural sequences
versus all tested amounts of added jitter (Fig. 8A). The relation-
ships between correct classification probabilities and the number
of neurons in a group were well fit with the functions, y � 0.12 �
ln(x) � 0.53 (r 2 � 0.97) for natural versus 1 ms jittered sequences
(Fig. 8A, orange); y � 0.15 � ln(x) � 0.55 (r 2 � 0.98) for natural
versus 3 ms jittered sequences (Fig. 8A, green); and y � 0.16 �
ln(x) � 0.61 (r 2 � 1.0) for natural versus 5 ms jittered sequences
(Fig. 8A, magenta). These equations predict that groups of 34, 15,
and 9 neurons would be needed to achieve correct classification
with probability of 0.95 for natural versus 1, 3, and 5 ms of jitter-
added sequences, respectively.

To understand how the IPI tuning of constituent neurons may
impact classification accuracy, we compared the probability of
correct classification of all possible combinations of two to four
neurons (Fig. 8B–D). IPI tuning affected classification perfor-
mance differently for each amount of added jitter. For instance,
pairs of neurons from dissimilar IPI tuning classes had signifi-
cantly higher classification accuracies than pairs from the same
tuning classes for natural versus 1 ms jittered sequences (dissim-
ilar tuning, 0.59 	 0.01; similar tuning, 0.55 	 0.02; independent
t test: t(1274) � �2.8, p � 0.016). In contrast, for natural versus 3
ms jittered sequences, pairs with dissimilar IPI tuning had signif-
icantly lower classification accuracies than pairs from the same
tuning classes (dissimilar tuning, 0.62 	 0.01; similar tuning,
0.66 	 0.01; independent t test: t(1274) � 3.2, p � 0.0014). There
were no significant differences in the probability of correct clas-
sification for neuron pairs from the same versus different IPI
tuning classes for natural versus 5 ms jittered sequences (dissim-
ilar tuning, 0.71 	 0.01; similar tuning, 0.69 	 0.01; independent
t test: t(1274) � �1.5, p � 0.13). High-pass neurons tended to
form groups with the highest correct classification probability for
natural versus 1 ms jitter-added sequences, while low-pass neu-

A

B

C

Figure 6. The discriminability of spiking responses reflects the discriminability of subthresh-
old PSPs. A, Intracellular recording of the membrane potential (Vm) from a high-pass neuron in
response to a natural scallop (F2). The recorded potential is shown in orange, and the potential
after spike removal is shown in black. B, Correct classification probabilities using PSP ampli-
tudes (black) and spike counts (orange) for natural scallop responses compared with time-
reversed and randomized sequences. Each point reflects the correct classification probability for
a single neuron. Horizontal bars represent the average across neurons, and error bars represent
the SEM. C, Same as B for natural scallop responses compared with sequences with 1, 3, and 5
ms of added jitter.
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rons tended to form groups with the lowest classification accu-
racy (Fig. 8B). Bandpass neurons tended to form the best-
performing groups for natural versus 3 ms jittered sequences,
while bandstop neurons tended to form the worst-performing
groups (Fig. 8C). For natural versus 5 ms jittered sequences,
bandstop neurons tended to form groups with the highest classi-

fication accuracy, while bandpass neurons
tended to form groups with the lowest
classification accuracy (Fig. 8D). Collec-
tively, these results indicate that the IPI
tuning of the pooled neurons can impact
classification accuracy, and that the best
combination of neurons for scallop pat-
tern detection may be context-dependent.

Responses of single interval-selective
neurons are sensitive to individual
variation in scallops
Next we wanted to understand how
single-neuron sensitivity to manipulated
scallops related to sensitivity to natural
variation in scallops. From 15 neurons, we
collected responses to 10 repetitions of
four natural scallops, each from a differ-
ent individual. We used the PSP ampli-
tudes evoked by the second through the
last pulse in each scallop to define dis-
criminant functions that maximally sepa-
rated responses to the four scallops. We
then used these functions to classify re-
sponses to 10 independent presentations
of each of the same four natural scallops
(Fig. 9A). On average, the probability of
correct classification across neurons was
0.69 	 0.04, which was significantly
higher than that predicted by chance
(single-sample t test against 0.25, t(14) �
10.5, p � 0.000001). There were no sig-
nificant differences in correct classifica-
tion probability across the four scallops
(repeated-measures ANOVA: F(3) � 2.0,
p � 0.12; Fig. 9B).

Single-neuron correct classification
probabilities for scallops of different indi-
viduals were positively correlated with
those for natural versus randomized scal-
lops (Spearman’s r � 0.52, t(13) � 2.2,
p � 0.045). In contrast, there was no rela-
tionship between single-neuron correct
classification probability for scallops of
different individuals and those for natural
versus time-reversed (Spearman’s r �
0.22, t(13) � 0.78, p � 0.44) or those for
natural versus jittered scallops (Spear-
man’s r � �0.13 to 0.22, t(13) � �0.49 to
0.81, p � 0.43– 0.65 across all jitter val-
ues). Therefore, responses that were good
at discriminating natural from random-
ized scallops were also good at discrimi-
nating among scallops from different
individuals.

To understand how the number of
scallops the responses were used to dis-

criminate among might affect classification accuracy, we
computed single-neuron classification accuracies for all combi-
nations of two scallops and three scallops (Fig. 9C). Classification
accuracy decreased when responses were used to discriminate
among a larger number of scallops, but accuracy remained above
chance performance (Fig. 9C).

A

B

C

D

Figure 7. Pooling classification probabilities of multiple neurons improves discriminability of natural vs time-reversed and
randomized sequences. A, Probability of correct classification vs the number of neurons in a group for natural vs time-reversed
(blue) and natural vs randomized (red) scallop sequences. We used Bayesian updating to estimate classification probabilities for all
possible pairs of neurons and for 10,000 randomly selected combinations of 3 to 10 neurons from a total of 56 neurons. For neurons
from which we recorded responses to more than one scallop, we used the single-neuron probabilities averaged across scallops. B,
Color map of classification accuracy of natural vs time-reversed (left) and natural vs randomized (right) scallop sequences for all
possible pairs of neurons grouped by IPI tuning. We excluded three complex neurons and two all-pass neurons from these data. H,
high-pass; S, bandstop; P, bandpass; L, low-pass. C, D, Same as B for all possible groups of three (C) and four (D) neurons.
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Pooling the responses of multiple neurons enhanced the dis-
criminability of natural scallops (Fig. 9D). Groups of two, three,
and four neurons reached a correct classification probability of
0.95 for discriminating among two, three, and four scallops, re-
spectively (Fig. 9D). These data suggest a 1:1 relationship between
the number of scallops to discriminate among and the number of
neurons required for 95% classification accuracy. Thus, the out-
put of ELp neurons contains enough information to resolve nat-
ural scallop variation.

To understand how natural variation in scallop patterns may
compare to the manipulations we studied, we computed jitter
values between the four natural scallops with the same number of
IPIs. For a pair of scallops, we measured the SD of the difference
in times of corresponding EODs in each sequence, with the
time of the first EOD defined as 0 ms. We also computed the
jitter between all six natural scallops and their respective time-
reversed sequences, as well as 100,000 randomly chosen ran-
domized sequences. In all cases, jitter between sequences was

A

B C D

Figure 8. Pooling classification probabilities of multiple neurons improves discriminability of natural sequences versus sequences with added jitter. A, Probability of correct classification vs the
number of neurons in a group for natural vs 1 ms jitter-added (orange), natural vs 3 ms jitter-added (green), and natural vs 5 ms jitter-added (magenta) scallop sequences. We used Bayesian
updating to estimate classification probabilities for all possible pairs and for 10,000 randomly selected combinations of 3–10 neurons from a total of 56 neurons. For neurons from which we recorded
responses to more than one scallop, we used the single-neuron probabilities averaged across scallops. The orange line represents the function y � 0.12 � ln(x) � 0.53 (r 2 � 0.97); the green line
represents the function y � 0.15 � ln(x) � 0.55 (r 2 � 0.98); and the magenta line represents the function y � 0.16 � ln(x) � 0.61 (r 2 � 0.99). B, Color map of classification accuracy of natural
vs 1 ms jitter-added scallop sequences for all possible combinations of two (top), three (middle), and four (bottom) neurons. We excluded three complex neurons and two all-pass neurons from these
data. H, high-pass; S, bandstop; P, bandpass; L, low-pass. C, D, Same as B for natural vs 3 ms jitter-added sequences (D) and for natural vs 5 ms jitter-added sequences (E).

8996 • J. Neurosci., August 24, 2016 • 36(34):8985–9000 Baker et al. • Millisecond Sensitivity to Temporal Patterns



larger than the 1, 3, and 5 ms jittered stimuli that we tested
(Fig. 9E). That the responses of single neurons are sensitive to
timing changes well below comparable measurements of nat-
ural variation underscores the degree to which ELp neurons
preserve the temporal information in electric communication
displays.

Discussion
Our results demonstrate that behavioral sensitivity to millisec-
ond timing variations in natural scallops is due at least in part to
a population of midbrain neurons that serve as temporal filters
for electric communication signals. Both behavioral and single-
neuron responses were sensitive to changes in the order of IPIs, as
well as to the addition of as little as 1 ms of jitter to natural
scallops. Remarkably, there was enough information present in
single-neuron responses to distinguish among scallops produced
by different individuals. Collectively, these results illustrate how a
population of interval-selective neurons can contribute to the
detection of variation in behaviorally relevant temporal patterns
of presynaptic input.

Temporal patterns of spikes encode information in a wide
range of sensory and motor circuits (Mauk and Buonomano,
2004). However, the decoding of precise temporal sequences is
not well understood. In most model systems, it is difficult to
precisely control the temporal pattern of inputs onto temporally

selective neurons in vivo. Here we overcame this limitation using
mormyrid electric fish, in which the temporal patterns of presyn-
aptic inputs onto interval-selective central neurons match the
temporal patterns in electrosensory stimuli (for review, see Baker
et al., 2013). Furthermore, electric communication signals can
easily be manipulated in behaviorally relevant ways. This means
that not only do we have direct control over the temporal patterns
of presynaptic input onto interval-selective neurons, but we can
also record the responses of these neurons to input patterns that
would occur during natural communication behavior. This system
allowed us to quantify the ability of single neurons and populations
of neurons to detect variation in precise temporal sequences of sen-
sory input. Other studies have investigated neural coding of natural
versus time-reversed auditory communication signals in a variety of
animals (Margoliash, 1983; van Stokkum, 1987; Doupe and Konishi,
1991; Esser et al., 1997; Gehr et al., 2000; Lu et al., 2001; Suta et al.,
2008), but the spectrotemporal structure of these signals is much
more complex than the series of electric pulses used by mormyrids.
Since the electrosensory stimulus itself is essentially a spike train
whose temporal patterns are preserved centrally, our results provide
insight into neural coding and decoding in addition to communica-
tion signal feature detection.

We found that adding as little as 1 ms of jitter to natural scallop
patterns increased behavioral response thresholds, despite the fact

A B

C D E

Figure 9. The responses of single neurons are sensitive to individual variation in scallops. A, DFA results for responses to natural scallop sequences from four different individuals (F1, F2, M2, M3)
in a high-pass neuron. PSP amplitudes evoked by the second through the last pulse in each of 10 stimulus presentations of the four scallops were used to define the discriminant functions. We then
used these functions to classify responses to 10 additional presentations of each natural scallop (open symbols) as one of the four natural scallops based on Mahalanobis distances from group
centroids. All 10 repetitions of the F1 and M3 scallops were correctly classified. Eight of 10 and 4 of 10 repetitions of the F2 and M2 scallops, respectively, were correctly classified. Each point reflects
the responses of the neuron to one stimulus presentation. B, Probabilities of correct classification by scallop. Each point represents the probability for one neuron. Horizontal bars represent the
average across neurons, and error bars represent the SEM. C, Probability of correct classification vs the number of scallops available to discriminate among. Each point represents the probability for
one neuron averaged across all combinations of two scallops (n � 6 possible combinations), three scallops (n � 4 possible combinations), and four scallops (n � 1 possible combination). Horizontal
bars represent the average across neurons, and error bars represent the SEM. D, Probability of correct classification vs the number of neurons in a group for all possible combinations of two (red), three
(blue), and four (black) natural scallops. We used Bayesian updating to estimate classification probabilities for all possible combinations of single-neuron probabilities from the responses of 15
neurons to the same four scallops. Each point represents the correct classification probability averaged across all possible combinations of neurons and scallops. E, Mean jitter values between the four
natural scallops with the same number of IPIs, and between all six natural scallops and their respective time-reversed and 100,000 randomly selected randomized sequences. To estimate jitter, we
calculated the SD of the difference in the time of corresponding EODs in each pair of stimuli. Each point represents the jitter between a pair of sequences. Horizontal bars represent the average across
pairs of stimuli, and error bars represent the SEM.
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that scallops from different individuals vary by much �1 ms of jitter.
It is important to note that behavioral response thresholds are not
simple readouts of signal detection. Instead, fish must detect the
signal, analyze the temporal pattern, and “decide” whether and how
to respond. This processing will be affected by stimulus salience and
motivation. Thus, even though natural scallops vary across individ-
uals, response thresholds are more sensitive to natural patterns than
artificial patterns. We have shown here that the first stage of tempo-
ral filtering in the electrosensory system preserves enough informa-
tion to inform the recognition of a scallop from a non-scallop. It
would be interesting to test the limit of behavioral sensitivity by
determining the smallest change to the scallop that would affect re-
sponse thresholds.

The ability of single neurons to provide enough informa-
tion to discriminate among scallops from different individuals
is in line with previous findings in auditory and electrosensory
pathways. The spiking responses of songbird field L neurons,
grasshopper auditory receptors and higher-order neurons,
and wave-type electric gymnotiform fish (which evolved their
electric sense independently of mormyrids) hindbrain neu-
rons can be used to discriminate among conspecific signals
produced by different individuals (Machens et al., 2003; Wang
et al., 2007; Ronacher et al., 2008; Marsat and Maler, 2010).
However, here we go beyond describing single-neuron vari-
ability in response to natural signal variation to quantify the
ability of single neurons to distinguish among precise tempo-
ral manipulations.

ELp neurons exhibit a great deal of diversity in responses to
IPIs. We classify these responses into six categories (i.e., high-
pass, low-pass, bandpass, bandstop, complex, and all-pass)
based on quantitative measures of PSP amplitudes evoked by
IPIs (Carlson, 2009; George et al., 2011; Baker and Carlson,
2014). However, even within these classes, responses are vari-
able regarding parameters such as bandwidth, best IPI, and
sensitivity to the direction of IPI change (Carlson, 2009;
George et al., 2011; Ma et al., 2013; Baker and Carlson, 2014;
Kohashi and Carlson, 2014). This wide variety of response
properties arises from a combination of synaptic mechanisms,
including temporal summation and short-term depression, as
well as intrinsic membrane properties (George et al., 2011;
Baker and Carlson, 2014; Kohashi and Carlson, 2014). Pooling
the classification probabilities of multiple neurons improved
discrimination performance, with the amount of improve-
ment depending on IPI tuning. Several studies have reported
that a population of neurons with heterogeneous response
properties can result in better discrimination performance
than a population of neurons with homogeneous response
properties (Shamir and Sompolinsky, 2006; Chelaru and Dra-
goi, 2008; Osborne et al., 2008; Holmstrom et al., 2010; Marsat
and Maler, 2010; but see Schneider and Woolley, 2010).
However, a combination of heterogeneity and homogeneity in
olfactory mitral bulb cells provided the most benefits to stim-
ulus encoding, and the optimal combination of heterogeneous
versus homogeneous neural responses depended on the stim-
ulus (Tripathy et al., 2013). The tuning combinations result-
ing in the greatest discrimination performance varied across
the tested scallop manipulations, indicating that the best com-
bination of ELp response properties may also be stimulus-
dependent.

The improvement in classification probability by pooling re-
sponses over many neurons suggests that downstream neurons
could integrate the output of multiple ELp neurons to achieve
high discriminability between natural temporal patterns. Our

method of pooling probabilities considered the responses of each
neuron with equal weights. However, downstream neurons
could achieve even better performance than that predicted here
by adjusting synaptic weights accordingly (Shamir and Sompo-
linsky, 2006; Barbour et al., 2007). For instance, a neuron receiv-
ing one input with high classification accuracy and another input
with low classification accuracy could assign a stronger weight to
the better performing input. One such mechanism that could
facilitate changes in synaptic weights is spike timing-dependent
plasticity (Feldman, 2012). Indeed, the timing of ELp responses,
which we did not analyze here, might provide additional infor-
mation for downstream neurons to discriminate natural from
jittered scallops. ELp neurons project to the isthmic granule nu-
cleus, inferior olive, subpreminential nucleus, and medioventral
nucleus (Baker et al., 2013). However, how these regions respond
to communication signals and the possible convergence patterns
of ELp inputs are unknown.

Although ELp output contains enough information to resolve
interindividual scallop variation, whether fish use this informa-
tion remains to be determined. The individually stereotyped
EOD waveform contains identifying information such as species,
sex, and dominance status, and can even be used to identify in-
dividuals in some species (Graff and Kramer, 1992; Friedman and
Hopkins, 1996; Carlson et al., 2000; Carlson, 2002; Hanika and
Kramer, 2005). Combining the stereotyped EOD waveform with
individually characteristic scallop patterns could facilitate indi-
vidual recognition. Another potential function of stereotyped
scallop patterns could be to signal information related to fitness,
such as size, health, fecundity, and/or fighting ability. Since scal-
lops have been hypothesized to play a role as an aggressive adver-
tisement or territorial display signal (Carlson and Hopkins,
2004), these individually distinctive temporal patterns could be
used to “size up” potential competitors.

Here we explored how a population of neurons encodes one
particular electric communication signal. However, mormyrids
produce at least three additional types of temporal patterns during
social encounters, called accelerations, rasps, and creaks, which all
consist of a larger number of IPIs than scallops (Carlson and Hop-
kins, 2004; Wong and Hopkins, 2007). The ability of single ELp
neurons to distinguish between individual scallops consisting of only
10 IPIs suggests that these neurons would likely also be able to dis-
tinguish between different classes of communication signals, as well
as variation within these classes (Carlson and Hopkins, 2004). Fur-
thermore, neurons with different IPI tuning properties respond dif-
ferently to scallops, accelerations, and rasps (Carlson, 2009). Since
ELp neurons are involved in detecting more than just scallop se-
quences, it is possible that neurons whose responses poorly discrim-
inated scallop variation may instead be better suited to discriminate
among other communication signals. Since we measured responses
to scallops in isolation, it remains to be determined how scallop
encoding and recognition may be affected by preceding temporal
patterns during ongoing signaling. It will be necessary to investigate
population coding of additional communication displays, as well as
to assess the coding and discrimination performance of downstream
neurons, to gain a fuller understanding of how interval-selective
neurons in ELp mediate the detection of the full range of behavior-
ally relevant temporal patterns in communication signals.
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