Essay

Integrating neuroplasticity and evolution

Caleb J. Axelrod1, Swanne P. Gordon1, and Bruce A. Carlson1,2*

Neuroplasticity and evolutionary biology have been prominent fields of study for well over a century. However, they have advanced largely independently, without consideration of the benefits of integration. We propose a new framework by which researchers can begin to examine the evolutionary causes and consequences of neuroplasticity. Neuroplasticity can be defined as changes to the structure, function or connections of the nervous system in response to individual experience. Evolution can alter levels of neuroplasticity if there is variation in neuroplasticity traits within and between populations. Neuroplasticity may be favored or disfavored by natural selection depending on the variability of the environment and the costs of neuroplasticity. Additionally, neuroplasticity may affect rates of genetic evolution in many ways: for example, decreasing rates of evolution by buffering against selection or increasing them via the Baldwin effect, by increasing genetic variation or by incorporating evolved peripheral changes to the nervous system. These mechanisms can be tested using comparative and experimental approaches and by examining patterns and consequences of variation in neuroplasticity among species, populations and individuals.

Neuroplasticity, also called ‘neural plasticity’ or ‘brain plasticity’, has been of interest to scientists since the late 19th century. The history of the concept in neurobiology is not well documented; however, the first wide use of the concept is attributed to Santiago Ramón y Cajal in a series of lectures and papers in the early 1890s. Despite wide use of the term throughout neurobiology, there is no universally accepted definition of neuroplasticity. Two definitions are common: first, neuroplasticity is sometimes defined very broadly as any “change in the nervous system within an individual’s lifetime” or as “a catch-all term referring to many different ways in which the nervous system can change”13. The second definition narrows neuroplasticity to refer to changes in the nervous system that result specifically from experience, for instance as “the organization of brain circuitry changing as a function of experience”9 or “the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections”15.

One consequence of not having a clear definition of neuroplasticity is a lack of integration of this concept with knowledge and hypotheses from other fields. For example, the integration of evolution with phenotypic plasticity — defined as a change in phenotype due to individual experience1 — has been a focus of theoretical and empirical work by evolutionary biologists for decades, but neuroplasticity has not been included in this integration. There may be ways that neuroplasticity is distinct from other forms of plasticity in terms of its interaction with evolution, particularly because of its links to learning and memory16,17 and the important role of behavior in establishing and maintaining reproductive isolation18,19. Thus, integrating neuroplasticity and evolution may yield novel insights.

Here, we provide a definition of neuroplasticity that allows for integration across the fields of neurobiology and evolutionary biology. We then develop links for hypotheses and questions that would be best served by the integration of these fields. We propose that neuroplasticity be strictly defined according to the narrow description above, as changes to the structure, function, or connections of the nervous system in response to individual experience. This narrower definition closely aligns with the broader term description of phenotypic plasticity used by evolutionary biologists. ‘Individual’ in this definition refers to an individual organism rather than an individual neuron or component of the nervous system. The focus should be on this level of biological organization, because evolution by natural selection occurs at the population level due to variation in individual fitness. ‘Experience’ here refers to environmental features that an organism encounters in its lifetime. Under this definition, changes to the nervous system that arise purely from genetically determined developmental trajectories would not be considered neuroplasticity.

To understand this distinction, consider the development of visual cortical sensory pathways in mammals. Visual information is first processed in the retina. This information is next transmitted though the ocular nerve to the thalamus and then to the visual cortex. The sequence of this visual pathway appears to be universal among mammals, regardless of their experience during development, and so the neural connections formed during development that produce this anatomical pathway would not be considered neuroplasticity. However, the strength and distribution of the connections within this pathway can be strongly influenced by experience. Consider the development of ocular dominance columns. Both sides of the visual cortex receive inputs from both eyes, and neurons that receive input from one particular eye tend to be grouped together in the visual cortex, forming columns of cells that all receive input from the same eye, so-called ocular dominance columns18. Visual experience during ontogeny can alter the development of these columns19,20. For example, blocking visual input from one eye in ferrets during development leads to an underrepresentation of ocular dominance columns for that eye and an overrepresentation of ocular dominance columns for the other eye21. Thus, while the overall connectivity of this visual pathway in the brain is genetically determined, the wiring and synaptic connectivity of cells within this pathway are affected by neuroplasticity.

One limitation to the integration of neuroplasticity with evolution is how these two fields conceptualize plasticity. In evolutionary biology, plasticity is typically represented as a reaction norm (Figure 1), which visualizes the potential phenotypic manifestations of traits caused by exposure to different environments. For example, water fleas (Daphnia pulex) develop a predator-resistant morphology only if they are reared...
in water with predator cues16. By contrast, in neurobiology, plasticity is typically viewed as change over time in response to environmental exposures. For example, rats put in enriched environments show increased neuronal activity over time, indicative of long-term potentiation in the dentate gyrus17. These approaches differ in their uses, as the former approach examines the outcomes of phenotypic change, and the latter studies the processes of that change. The latter approach is useful for understanding the mechanisms that generate plastic variation, while we propose the former is more useful for evaluating the evolutionary causes and consequences of that plasticity. The reaction norm approach is useful for the integration of neuroplasticity and evolution because it allows for comparison of the direction and level of plasticity between genotypes. This will facilitate comparisons to prior work on phenotypic plasticity, easing the integration between phenotypic plasticity and neuroplasticity.

There are two major questions in integrating neuroplasticity and evolution (Figure 2). First, how does evolution affect neuroplasticity? More specifically, is neuroplasticity itself an evolvable characteristic on which natural selection can act and that can affect fitness? Second, is there a reciprocal causal relationship, namely can neuroplasticity in return affect genetic evolution?

How can evolution change neuroplasticity?

An important first question in the study of the evolution of neuroplasticity is: which specific characteristics of the nervous system do we consider to be the trait that is evolving? Nervous systems are hugely complex, including up to billions of neurons and orders of magnitude more synaptic connections between them. Which specific aspect of neuroplasticity could be under selection ranges from the nature of the whole integrated neural system to the strength of an individual synapse. Examples of commonly studied neuroplasticity traits include short-term changes such as facilitation or depression at synapses that are repetitively active, intermediate-term changes such as spike-timing-dependent plasticity and long-term potentiation or depression, as well as broader longer-term developmental changes, such as improved auditory processing in blind humans18. For a trait to evolve under selection, it needs to have variation, that variation needs to covary with fitness and the trait needs to be heritable. The key to understanding what aspects of neuroplasticity are important targets of selection requires testing traits for these criteria.

Figure 1. Theoretic reaction norms and how selection could influence population level neuroplasticity. The Y-axis represents any aspect of nervous systems that could undergo plasticity. The X-axis demonstrates two different environments that could lead to different phenotypes. Lines represent different genotypes within a population. Each line shows what trait value would be manifested by a particular genotype when exposed to each individual environment. Flat lines indicate rigid genotypes that do not express neuroplasticity. Steeper lines indicate greater amounts of neuroplasticity. The figure on top represents a population before any selection. The bottom figures represent populations after selection, when only favored genotypes survive. Arrows represent alternative patterns of natural selection. The left arrow represents selection in a variable environment where more plastic individuals are favored because low trait values are favored in environment 1 and high trait values are favored in environment 2, selecting for more plastic genotypes. The right arrow represents selection in a stable environment when the same trait values are favored in both environments. In this case, less plastic genotypes are favored, particularly if plasticity is costly.

Atlantic Salmon differ in their levels of BDNF (brain derived neurotrophic factor), suggesting different levels of neuroplasticity19. Similarly, there are genetic polymorphisms for BDNF, dopamine and apolipoprotein in humans, all of which can impact levels of neuroplasticity20, and levels of neural adaptation vary between individuals after performing an inhibitory control task21. These examples demonstrate that levels of neuroplasticity are not always homogenous across individuals, indicating the possibility for natural selection.

Neuroplasticity is widespread and may be ubiquitous across animals with complex nervous systems, suggesting that either it is critical for evolution in the nervous system or it is a byproduct of brain growth and development.
for survival or that it is an inherent part of nervous systems (or both). Neuroplasticity could affect fitness by allowing individuals to respond to changing external conditions. Greater levels of morphological plasticity have been hypothesized to increase fitness when environmental conditions vary within the lifetime of an individual or between generations. This variation selects for individuals who are flexible in their phenotype, allowing them to perform well regardless of shifts in environmental conditions. For example, fruit flies (Drosophila melanogaster) from areas with more variable climates showed higher levels of physiological plasticity in response to temperature variation. Neuroplasticity can similarly be hypothesized to influence fitness under changing environmental conditions, when the ability to adjust the nervous system in response to such change increases individual survival or reproductive success (Figure 1). The timeframe of environmental change that selects for neuroplasticity might be shorter than for morphological plasticity because of how rapidly neuroplasticity can change phenotypes. Evidence for this effect of neuroplasticity is lacking; however, one form of environmental influence on fitness that may be affected by neuroplasticity is disease. Increased neuroplasticity has been shown to reduce the likelihood of developing cardiovascular disease in humans and mice, suggesting a possible selective benefit of neuroplasticity when disease is common. Neuroplasticity can also be linked to fitness through behavioral plasticity and learning because these processes are likely to result from some form of neuroplasticity. This link was most famously established in Aplysia californica (a species of sea slug), where learning and memory are reflected in changes in the molecular and cellular machinery of the brain.

Perhaps the best evidence for a causal link between neuroplasticity and memory formation is the finding that false memories can be artificially created in mice by stimulating plasticity in the brain. Memories can even be inactivated and reactivated by artificially manipulating synaptic plasticity. A more recent simulation study using virtual organisms suggests that neuroplasticity underlies aspects of the evolution of learning and behavior. Adaptation to highly variable environments has also been linked to greater levels of learning and behavioral plasticity in several animals, including mammals, amphibians and insects.

In each of these cases selection for increased levels of neuroplasticity may occur as it affords greater potential for behavioral plasticity and learning. High levels of neuroplasticity may reduce fitness under certain circumstances. This could be due to the metabolic costs of maintaining the neural machinery needed for plasticity or if plasticity is functionally maladaptive. If plasticity is costly, and provides little functional benefit, then selection is expected to reduce plasticity. Empirical support for this potential pattern was found in wood frogs (Rana sylvatica) where increased plasticity was shown to reduce fitness in response to predation. However, other examples and theory have shown that the costs of plasticity can be minimal or absent, and so may not be strong drivers of the evolution of plasticity. Neuroplasticity may be selected against if it is maladaptive, such as when environmental conditions are very stable, resulting in phenotypic changes that reduce performance and fitness (Figure 1). For example, neuroplasticity has been observed to sometimes be harmful in the context of neurological responses to injury. More research and empirical examples are needed regarding the metabolic costs of neuroplasticity and the importance of maladaptive neuroplasticity.

Figure 2. An integrative framework for studying the evolutionary causes and consequences of neuroplasticity.

The top arrow indicates mechanisms by which evolution can change levels of neuroplasticity. The bottom arrow indicates mechanisms for how neuroplasticity can affect rates of genetic evolution. Plus and minus signs indicate the direction each mechanism is expected to influence either levels of neuroplasticity (top) or rates of genetic evolution (bottom).
evolution between those populations, as this suggests that the ecological factors in the populations have selected for different optimum levels of neuroplasticity. Variation in neuroplasticity can also be more directly linked to fitness by comparing neuroplasticity levels to measures of fitness such as survival or reproduction. This could be done with common garden or transplant experiments between populations with different levels of neuroplasticity. Individuals from high neuroplasticity populations would be expected to show better survival and reproduction in their habitat than individuals from low neuroplasticity populations. Finally, comparing levels of neuroplasticity between parents and offspring, particularly in a controlled breeding, common-garden design, can be used to estimate heritability of neuroplasticity, a requirement for evolution by natural selection. Thus far, explicit tests of the heritability of neuroplasticity are lacking.

How can neuroplasticity affect rates of genetic evolution?
The ability of individuals to shift their neural circuitry in response to experience — and thus aspects of their perception, behavior or cognition — may increase or decrease rates of genetic evolution, depending on the specific nature of the neuroplasticity and the patterns of selection in the system in question. Phenotypic plasticity has been hypothesized to reduce rates of genetic evolution when plasticity increases performance of individuals and thus buffers populations against selection. Much theoretical work has supported this hypothesis. For example, in digital organisms higher levels of plasticity reduce rates of evolution, because plasticity buffers populations against selective sweeps from variable environments. However, empirical work demonstrating this phenomenon is lacking. Neuroplasticity may also reduce rates of genetic evolution because it allows nervous systems to remain fully functional in response to a shifting selective landscape without the need for evolved changes.

Theoretically, there are at least three ways that high rates of neuroplasticity could increase rates of genetic evolution. First, the Baldwin effect, which proposes that phenotypic plasticity can lead to genetic evolution by allowing individuals to survive in new or changing environments. Under this theory, more plastic individuals in a population are more likely to survive when environments, and therefore conditions of natural selection, change. Only the individuals that survive can subsequently undergo selection to the new conditions. An empirical example of this mechanism comes from Dark-eyed Juncos (Junco hyemalis), where individuals with more flexible breeding season length had higher fitness in a novel coastal environment compared to their ancestral mountain territory. Survival in the novel coastal environment then allowed for selection on other traits. This theory could apply to neuroplasticity as well, particularly given the behavioral context of this example. If individuals with greater neuroplasticity are more likely to thrive under new conditions, they will then be able to evolve, both in their nervous system and other traits.

A second way neuroplasticity may increase the rate of genetic evolution is by increasing available trait variation or strength of selection. The greater the available trait variation, the greater potential there is for natural selection and evolution to shift trait values. Plasticity can increase this available variation and generate adaptive variation in new or changing environments that was not present in previous generations. This can then result in plasticity leading to rapid evolution of the new trait variation. Increased variation also occurs if the population includes individuals that express non-adaptive plasticity. When plasticity operates in the opposite direction to optimum trait values, rates of evolution are expected to increase due to increased selection and increased trait variation. This process could operate with neuroplasticity as well. Although neuroplasticity is generally expected to be adaptive, shifting the nervous system towards the optimum state, this may not always be the case, particularly under novel conditions. An example of this form of plasticity affecting evolution can be seen in Trinidadian guppies (Poecilia reticulata) transplanted from high to low predator environments. Adaptive plasticity was inferred when gene expression changes occurred in the same direction as evolutionary change in gene sequences, while maladaptive plasticity was inferred when gene expression changed in the opposite direction. Genes that showed maladaptive plasticity also tended to evolve rapidly after transplanting. Demonstrations of maladaptive neuroplasticity are rare in the literature.

Figure 3. An integrative framework for studying the evolutionary causes and consequences of neuroplasticity. Example of theoretical reaction norms for two populations (left: low neuroplasticity, right: high neuroplasticity) demonstrating how higher levels of neuroplasticity can increase trait variation in novel environments. The Y-axis represents any aspect of the nervous system that could undergo plasticity. The X-axis represents two environments: 1) a prior environment where selection has shaped trait variation; and 2) a novel environment where selection has not yet shaped trait variation. Lines represent different genotypes within each population. The population with higher neuroplasticity generates greater trait variation in the novel environment, resulting in increased strength of selection.
One area it has been noted is in response to spinal cord injuries, where neuroplasticity can lead to organ and muscle dysfunction. Future research examining the fitness consequences of variation in neuroplasticity is needed to understand the prevalence and evolutionary consequences of maladaptive neuroplasticity.

A third way neuroplasticity may increase the potential for genetic evolution, and one that may be particular to neuroplasticity in comparison to other forms of plasticity, is by accommodating evolved changes to nervous system traits. This mechanism, like the Baldwin effect, involves the evolution of traits other than the focal neuroplasticity trait. This theory has been described primarily with respect to peripheral sensory or behavioral control aspects of nervous systems. Nervous systems are highly complex and integrated. For aspects of sensory perception to evolve, not only do the sensory organ and peripheral nervous systems need to change, but the circuit of neurons within the central nervous system that processes the incoming sensory signals needs to change as well. Neuroplasticity in those central pathways may allow for evolutionary change in sensory systems solely due to changes in the sensory periphery, without the need for additional evolution of the central components of an integrated system. Evidence for this hypothesized effect of neuroplasticity has been shown in color vision of transgenic mice that were modified to express extra photopigments in the retina, with no genetic modifications to central visual pathways in the brain. Despite these photopigments being completely novel to mice, they showed segregation of opsin genes into the retina of squirrel monkeys when introducing a novel photopigment into the retina.

If a mutation leading to an extra color sensory input occurred in both these populations, it would be likely to have no effect or be strongly selected against in the low plasticity population because no added sensory information could be processed, and thus no evolution of that population would occur. The high plasticity population on the other hand could gain additional sensory information because neuroplasticity in the visual system would allow for processing of the added sensory input. This added input could be selected for, leading to evolution. Much remains to be studied about the potential, or even necessity, for neuroplasticity to facilitate evolutionary change.

Throughout the history of science, the integration of separate fields has often served as a catalyst for major advancement. Perhaps the most famous of these was when Charles Darwin combined information from the fields of geology and economics to develop his theory of evolution by natural selection. Recently, integrative studies in the field of neuroscience have highlighted the enormous potential and benefit in considering ecology and evolution. These have provided insight into the mechanisms that lead to the massive diversity of nervous systems among animals, as well as the role of nervous systems in mediating adaptive evolutionary change. Thus far, this approach has not been extended to include the integration of the centuries-old fields of evolution and neuroplasticity. We argue that this integration is necessary to advance our understanding of the causes and consequences of neuroplasticity in nature. Theodosius Dobzhansky famously wrote that “nothing in biology makes sense except in the light of evolution”, and it is time we bring neuroplasticity into that light.

ACKNOWLEDGMENTS

B.A.C. acknowledges support from the National Science Foundation (IOS-1755071 and IOS-2263122), S.P.G. and C.J.A. acknowledge internal support from Cornell University.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Yazhong Wang
and Charles J. Underwood*

What is apomixis? Apomixis, meaning literally ‘away from mixing’, is asexual reproduction through seeds that gives rise to clonal offspring that are genetically identical to the mother plant. In nature, apomixis allows plants to rapidly multiply hybrid, usually polyploid, genotypes through seeds over countless generations. Clonal reproduction by apomixis requires the abandonment of two hallmarks of sexual reproduction — meiosis and fertilization of the egg by the sperm (Figure 1). By skipping meiosis, genetic recombination and cell ploidy reduction do not take place. Embryogenesis in the absence of fertilization ensures that the embryo does not contain any paternal genetic information and therefore is a clone of the mother plant.

How common is apomixis and are there different kinds of apomixis? In absolute terms, apomixis is rare, as less than 0.1% of plant species can reproduce in this way. However, apomixis has been reported in more than 300 genera with a wide taxonomic distribution that encompasses more than 40 families of the plant kingdom. Apomixis is especially common in the sunflower, rose and grass families, yet does not occur naturally in major crop species. Apomixis can be broadly split into two types — sporophytic and gametophytic apomixis. Sporophytic apomixis is when the embryo directly develops from a sporophytic cell (a somatic cell) — this type occurs naturally in Citrus and mangosteen. During sporophytic apomixis, clonal embryos generally co-habit a single seed with sexually derived embryos leading to a mixture of clonal and sexual offspring. In contrast, gametophytic apomixis begins with an ‘apomeiosis’ cell division that generates a non-recombined, unreduced cell which enters gametogenesis to produce a female gametophyte — a multicellular structure containing an egg cell (Figure 1). Subsequently,