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A B S T R A C T

TB is a catastrophic infectious disease, affecting roughly one third of the world's population. Mucosal-associated
invariant T (MAIT) cells are innate-like T cells that recognize vitamin B metabolites produced by bacteria,
possess effector memory phenotype, and express tissue-homing markers driving migration to sites of infection.
Previous research in both Mtb and HIV infections has shown that MAIT cells are depleted in the human per-
iphery, possibly migrating to the tissue sites of infection. We investigated this hypothesis using rhesus macaques
(RMs) with active TB, latent TB (LTBI), and SIV-coinfection to explore the effects of different disease states on
the MAIT cell populations in vivo. Early in infection, we observed that MAIT cells increased in the blood and
bronchoalveolar lavage fluid (BAL) of all infected RMs, irrespective of clinical outcome. However, the frequency
of MAIT cells rapidly normalized such that they had returned to baseline levels prior to endpoint. Furthermore,
following infection, the chemokines expressed on MAIT cells reflected a strong shift towards a Th1 phenotype
from a shared Th1/Th17 phenotype. In conclusion, MAIT cells with enhanced Th1 functions migrating to the site
of Mtb-infection. The anti-mycobacterial effector functions of MAIT cells, particularly during the early stages of
Mtb infection, had been of interest in promoting protective long-term TB immunity. Our research shows,
however, that they have relatively short-acting responses in the host.

1. Introduction

Tuberculosis (TB) caused by the gram-positive Mycobacterium tu-
berculosis (Mtb) is a catastrophic infectious diseases of mankind [1]. It
leads to ∼10 million new cases and ∼2 million deaths every year [2].
The number of people infected with Mtb is much higher, as> 90% of
such individuals remain asymptomatic (latent TB infection, LTBI). AIDS
due to HIV infection annually causes ∼3 million deaths, a quarter of
which involve co-infection with Mtb. HIV co-infection potentiates re-
activation of LTBI [3]. Mtb infection can have a spectrum of different
outcomes in exposed humans, ranging from a life-long asymptomatic
infection termed LTBI, a late stage reactivation of LTBI, usually due to
HIV co-infection or other confounding factors like, slowly progressing
chronic pulmonary TB, rapidly fulminating pulmonary TB, as well as
extra-pulmonary TB [3]. In each of these instances, the hallmark of the

disease, i.e. the levels of bacterial burden, the extent of the granulo-
matous pathology as well as the immune responses differ significantly.
This has made the identification of definitive immune correlates of
protection from TB difficult.

It is well-accepted however, that components of the cellular adap-
tive immune response, in particular, CD4+ T cells, are required for
protection from TB [4–6]. Destruction of CD4+ T cells, including Mtb-
specific responder cells is currently considered a primary cause of re-
activation of LTBI in HIV-1-infected humans as well as in simian im-
munodeficiency virus (SIV)-infected macaques. However, data has ac-
cumulated over time indicating that other aspects of immunity may also
play important and sometimes defining roles in protecting against TB
[7,8]. Thus, it has been shown in model systems, including the macaque
model, which mimics several aspects of the human TB syndrome [9,10],
that CD8+ T cells play a critical role in protection [11]. A significant
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advantage of using macaques as models of TB is the ability to co-infect
with simian immunodeficiency virus (SIV), which results in a HIV-like
infection in these macaques, and which routinely results in a significant
reactivation of chronic or asymptomatic infection [12,13]. Our co-in-
fection model has demonstrated that both Mtb [14] and SIV (Bucsan
et al. in review) must be virulent for pathogenic co-infection to pro-
gress. In the co-infection model, animals which failed to progress to
disease despite being infected with Mtb and while carrying productive
peripheral viremia, exhibited signatures of strong CD8+ T-cell func-
tions and higher accumulation of B cells in granuloma-associated
lymphoid follicles [13]. These animals were also characterized by re-
duced peripheral monocyte and tissue macrophage turnover [15].

The role of innate-like lymphoid cells in immunity to pathogens is
now being increasingly recognized [16]. While innate-like in many of
their properties, these mirror the role of T cells. Thus, while natural
killer (NK) cells are the innate counterparts of CD8+ T cells, ILC1s,
ILC2s, and ILC3s represent the innate counterparts of CD4+ T helper 1

(TH1), TH2, and TH17 cells, respectively [16]. Another cell type to
garner recent interest is the mucosal-associated invariant T (MAIT) cell,
which is a type of innate-like T cell family that recognizes vitamin B
metabolites produced by bacteria, possesses effector memory pheno-
type, and expresses tissue-homing markers driving their migration to
sites of infection [17]. MAIT cells are the most abundant T cell subset
reacting against bacteria in humans [18]. In patients with TB disease,
MAIT frequencies decrease in the peripheral blood following Mtb in-
fection [19–22]. These data have led to the assumption that following
infection MAIT cells traffic from circulation to the infected lung mucosa
to potentially control infection [22]. MAIT cells were also reported to
proliferate in BCG-vaccinated as well as Mtb-infected RMs [23]. We
have previously employed the Indian RM model of inhalation TB to
study various aspects of the host immune function [13,24–35]. Here,
we used the same model to investigate if MAIT cells are activated upon
infection of RM lungs with the low-virulence Mtb strain CDC1551.
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Fig. 1. Clinical information on Mtb/SIV co-infection. (A) Serum C-reactive protein (CRP) levels at necropsy (in μg/mL); (B) Quantitative analysis of overall TB
lung pathology as a percentage of lung involvement; (C) Survival curves reported as weeks of Mtb/SIV co-infection; (D) Percentage change in weight (in kg); (E)
Percentage change in temperature (in °C). Each group is classified as latent (blue, n = 6), active (orange, n = 3), non-reactivator (teal, n = 3), and reactivator (pink,
n = 3). (A–B) *P< 0.0332, **P<0.0021, ***P<0.0002, ****P<0.0001, one-way ANOVA with Tukey’s multiple testing correction.
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2. Materials and methods

2.1. Animals

Tulane National Primate Research Center Institutional Animal Care
and Use Committee (IACUC) and Tulane University Institutional
Biosafety Committee (IBC) approved all activities on this study. Naïve
mycobacteria-free Indian rhesus macaques (RMs) [9,12,29,34–37] were
exposed to physiologically relevant doses of (5–10 CFU) Mtb CDC1551
via aerosol. Clinical procedures have been previously described
[9,12,30,34–37]. TST was performed before (week −2) and after (week
3, 7) infection. Blood was drawn weekly for CBC and chemistry while
BAL and CXR were obtained at week 3 and every four weeks thereafter
[34,38]. Radiological principles have been described in detail earlier
[9,12,26,30,32,34–37,39]. At 9 weeks post-infection, based on their
clinical outcomes, a subset of these RMs (n=7) were co-infected with
300 TCID50 SIVmac239 intravenously, as described [12,13]. Animals
were euthanized due to signs of TB or as time-matched controls. At
necropsy, lung, spleen, liver, bronchial lymph nodes, and kidney were
collected and processed, as previously described, using two sections of
pulmonary tissue that represented every lung lobe in at least one
sample. CFU were determined per gram of tissue. Lung pathology at
necropsy was determined as described previously [9,12,30,34–37].

2.2. Experimental procedures

Clinical and bacterial measures of TB and LTBI; and the extent of
lung pathology were determined over time as described earlier (9, 12,
26, 30, 32, 34–37, 39). SIV loads were determined as described earlier
(12, 13). Flow-cytometry was performed using 2–3x106 fresh PBMCs,
BAL, lung, spleen, bronchial lymph node, colon, and liver cells
[13,24–26,30,31,34,35,39]. Stimulations were performed overnight on
1× 106 PBMCs, BAL, lung, spleen, bronchial lymph node, colon, and
liver cells using 50 ng/mL of PMA (Sigma-Aldrich) and 1 μg/mL of io-
nomycin (Sigma-Aldrich) with brefeldin A (Biolegend). Stimulated

samples were stained with MR1-5-OP-RU tetramer for 45min, then
stained with extracellular antibodies, and finally intracellular anti-
bodies according to manufacturer's instructions. Statistical tests were
performed using JMP v10 (SAS Institute, Cary, NC USA). All other
statistical comparisons used ANOVA with Tukey post-hoc tests.

3. Results

3.1. Disparate outcomes following Mtb infection and SIV co-infection

Between the 2015–2017, 13 pathogen-free, mycobacteria-naïve
Indian RMs were exposed to 5–10 CFUs of aerosolized Mtb CDC1551
[12–14,24,26,29–31,34–36,39–41]. Three animals developed signs of
disease within four weeks of infection, resulting in their classification as
animals with active TB (ATB). 10 animals did not exhibit signs of TB
disease despite skin-test positivity, leading to their classification as
animals with latent TB infection (LTBI). Of these, six were co-infected
nine weeks later with SIVmac239 (intravenous 300TCID50), as de-
scribed earlier [12–14]. Of these, three animals each were classified as
reactivators and nonreactivators based on reactivation of LTBI due to
coinfection [13]. Four LTBI animals did not develop clinical signs of TB
over the period of observation, a minimum of 20 weeks post-infection.
Serum CRP levels were used to predict clinical development. Our prior
data clearly shows that the levels of serum C-reactive protein (CRP)
correlate significantly with pulmonary TB in RMs [26]. The use of CRP
to detect active TB has been extensively proposed in humans as well
[42]. As is our experience with previous cohorts, the expression of
serum CRP correlated with the extent of TB and lung Mtb burdens
(Fig. 1A). Terminal serum CRP levels in animals with ATB were sig-
nificantly higher than those with LTBI, whether with (P < 0.05) or
without (P < 0.01) lentiviral co-infection (Fig. 1A). This was also true
for animals that exhibited reactivation, where the absolute terminal
serum CRP values were highest, although not significantly different
from animals with ATB (Fig. 1A). As we have described earlier, the
magnitude of serum CRP levels also correlated strongly with the extent
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Fig. 2. Bacterial burdens in Mtb/SIV co-infected lungs and extra-pulmonary tissues. TB colony-forming units (CFUs) in total BAL samples (A) and per gram of
plated tissue in the lungs (B), bronchial lymph node (C), kidney (D), spleen (E), and liver (F). Each group is classified as latent (blue, n = 6), active (orange, n = 3),
non-reactivator (teal, n = 3), and reactivator (pink, n = 3). (A-E) *P< 0.0332, **P< 0.0021, ***P<0.0002, ****P< 0.0001, one-way ANOVA with Tukey’s
multiple testing correction.

A.N. Bucsan, et al. Tuberculosis 116 (2019) S11–S18

S13



of lung pathology (Fig. 1B). Again, the levels of lung pathology were
statistically indistinguishable between reactivators and animals with
ATB, but the values in either instant were significantly higher than
animals with LTBI or nonreactivators (Fig. 1B). We also measured the
time to humane euthanasia in these groups of animals (Fig. 1C). As
anticipated, animals in the ATB and the reactivation groups needed to
be humanely euthanized due to TB, while those with LTBI and lack of
reactivation were not euthanized until the 22nd week of the protocol.
We also measured the body weight of the animals in the different
groups and expressed it as percentage of their body weight at the time
ofMtb infection (Fig. 1D). Again, only animals with ATB and those with
reactivation (after SIV co-infection) showed loss of weight and asso-
ciated wasting symptoms. Animals with LTBI (with or without SIV co-
infection) gained weight during the 22-week time-period (Fig. 1D). A
mirror image of this data was observed when we measured body tem-
perature in these animals, with ATB and reactivation groups exhibiting
pronounced pyrexia (Fig. 1E).

3.2. Bacterial burdens following Mtb infection and SIV co-infection

Having established that the clinical correlates of Mtb infection and
Mtb/SIV co-infection were comparable to the previous cohorts that we
have published, we then measured the extent of Mtb burden. As an-
ticipated, viable Mtb bacilli could only be detected in the BAL of ani-
mals with ATB and reactivation following co-infection (Fig. 2A). Of the
eight animals with LTBI without or with SIV co-infection, only one had
detectable CFUs in BAL. In lungs, reactivators had higher CFUs relative
to animals with ATB (Fig. 2B). While this is different from our pre-
viously published results, these differences are likely a function of
smaller group sizes. Like our previously published results however,
animals with higherMtb burdens in the bronchial lymph nodes (Fig. 2C)
and other extrathoracic organs belonged to the ATB and the reactiva-
tion group (Fig. 2D–F).

Fig. 3. TCRVα7.2+CD161+ quantification in latent and active TB infection. Quantification of TCRVα7.2+CD161+ cells as a proportion of CD3+ T cells in the
BAL (A) and in PBMCs (B). Quantification of TCRVα7.2+CD161+ cells as a proportion of CD8+ T cells in the BAL (C) and in PBMCs (D). Distribution of MAIT cells in
the PBMCs and BAL at pre-infection as a proportion of CD3+ T cells (E) and CD8+ T cells (F). Quantification of TCRVα7.2+CD161+ cells in different tissues at
necropsy as a proportion of CD3+ T cells in latent (blue, n = 6), active (orange, n = 3), and naïve (teal, n = 3) rhesus macaques. (A-F) *P< 0.0332, **P< 0.0021,
***P< 0.0002, ****P<0.0001, two-way ANOVA with Tukey’s multiple testing correction.
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3.3. Investigation into the dynamics of MAIT cells in Mtb-infected rhesus
macaques

We next measured the presence of MAIT cells in the different
compartments of Mtb-infected Indian RMs. The percentage of MAIT
cells (defined here by CD161 and TCR Vα7.2 double positivity as a
fraction of CD3+ cells), increased somewhat following infection of
Indian RMs with Mtb CDC1551, a low-virulence strain, both in PBMCs
(Fig. 3A) and BAL (Fig. 3B), over the course if time. The magnitude of
the increase in MAIT cell levels both in blood and BAL was greater in
the case of animals with ATB, relative to those with LTBI. The differ-
ences were however not statistically significantly different relative to
baseline, or within the two outcome groups. Furthermore, the levels of
MAIT cells returned to baseline 15 weeks post-Mtb infection in both
compartments. Similar results were obtained when the percentage of
MAIT cells was analyzed as a fraction of CD3+CD8+ cells (Fig. 3C and
D). Individual dot plots for data derived from samples from every an-
imal as a fraction of CD3+ and CD3+CD8+ cells respectively are also
shown (Fig. 3E and F). We also analyzed the presence of MAIT cells in
various other compartments of Mtb-infected Indian RMs at the end-
point. The maximal presence of these cells was detected in colon where
the levels of MAIT cells were significantly greater in animals with ATB
relative to LTBI, as well as ATB relative to uninfected, naïve controls.
The second highest frequency of MAIT cells was detected in liver. It is
relevant to note here that these are not the major target organs affected
during tuberculosis, but are the tissues normally enriched with MAIT
cells [43].

3.4. Longitudinal analysis of the dynamics of MAIT cells in Mtb-infected
versus Mtb/SIV co-infected RMs

We first quantified MAIT (TCRVα7.2+CD161+) cells as a

proportion of CD3+ T cells in the BAL (Fig. 4A) and in PBMCs (Fig. 4B)
of Mtb/SIV co-infected animals which showed reactivation, and the
ones that didn't. These results were compared to those from Mtb-in-
fected animals with no SIV coinfection (shown in Fig. 3). SIV co-in-
fection did not result in any significant increase in MAIT cell levels in
the BAL, while some increase was observed in the blood of animals that
reactivated, following SIV co-infection. The kinetics of MAIT cells in
either compartment were similar to those of Mtb(only)-infected ani-
mals, with MAIT cell numbers in blood and BAL reducing to back-
ground levels by week 15. Next, we quantified absolute numbers of
TCRVα7.2+CD161+ cells in the BAL (Fig. 4C) and in PBMCs (Fig. 4D)
of the four groups of RMs. This allowed us to measure the total presence
of MAIT cells in these samples rather than as a percentage of either the
total T cell compartment or the CD8+ T cell compartment. These results
were very telling. In all RMs, very few (virtually none) MAIT cells were
present at baseline, but their numbers increased in all samples in the
lung compartment following Mtb infection (Fig. 4C), declining to neg-
ligible levels by week 15. In the PBMCs however, we found that the
absolute numbers of MAIT cells were highly variable at the baseline and
no strong conclusions could be drawn about their kinetics, except that
the absolute number of these cells was the highest in animals with ATB
and that the numbers declined precipitously in all groups by week 15.

We next studied the expression of various functional markers on
these TCRVα7.2+CD161+ cells. The expression of CCR5 is shown in the
BAL (Fig. 4E) and in PBMCs (Fig. 4F). We found that virtually all
(> 70%) MAIT cells in the BAL of all Mtb-infected animals, irrespective
of co-infection or disease status, expressed CCR5 (including baseline)
(Fig. 4E). On the other hand, CCR5 was expressed in about 50% of
MAIT cells in the PBMCs derived from all animals (Fig. 4F). When MAIT
cells were similarly quantified for CCR6, we found far fewer positives.
Thus, at baseline in BAL, about 60% of all TCRVα7.2+CD161+ cells
were also positive for CCR6, but these numbers declined post-Mtb

Fig. 4. TCRVα7.2+CD161+ quantification and characterization inMtb/SIV co-infection. Quantification of TCRVα7.2+CD161+ cells as a proportion of CD3+ T
cells in the BAL (A) and in PBMCs (B). Quantification of total TCRVα7.2+CD161+ cells in the BAL (C) and in PBMCs (D). Quantification of CCR5+

TCRVα7.2+CD161+ cells as a proportion of MAIT cells in the BAL (E) and in PBMCs (F). Quantification of CCR6+ TCRVα7.2+CD161+ cells as a proportion of MAIT
cells in the BAL (G) and in PBMCs (H). Quantification of granzyme B+ TCRVα7.2+CD161+ cells as a proportion of MAIT cells in the BAL (I) and in PBMCs (J). Each
group is classified as latent (blue, n = 6), active (orange, n = 3), non-reactivator (teal, n = 3), and reactivator (pink, n = 3). *P<0.0332, **P<0.0021,
***P< 0.0002, ****P<0.0001, two-way ANOVA with Tukey’s multiple testing correction.
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infection in most instances (Fig. 4G). The extent of CCR6 expression
however appeared to increase in Mtb/SIV co-infected animals that ex-
hibited reactivation disease due to co-infection, again emphasizing that
MAIT cells are recruited to the lung in response to increased Mtb re-
plication. At baseline in PBMCs, about 40% of all TCRVα7.2+CD161+

cells were also positive for CCR6, and these numbers initially declined,
but eventually increased to an average of 60% in all groups (Fig. 4H).
Finally, we quantified the expression of granzyme B+ on
TCRVα7.2+CD161+ cells in the BAL (Fig. 4I) and in PBMCs (Fig. 4J).
On an average about 30% of these cells were positive for granzyme B at
baseline in BAL. In groups with disease and higher bacterial burdens
(ATB and reactivation), we observed significant increase in granzyme B
positivity in MAIT cells post-infection (Fig. 4I). Interestingly, in animals
that did not reactivate, granzyme B expression was not enhanced. Once
again, a high degree of heterogeneity was observed in PBMCs (Fig. 4J),
making it impossible to draw meaningful conclusions.

3.5. Investigation into the dynamics of MAIT cells in Mtb-infected RMs
using the tetramer detection approach

We validated our results taking advantage of the recent availability
of the RM MR-1 tetramer by the NIH tetramer core. Towards this end,
we tested the overlap between the classification of the
TCRVα7.2+CD161+ cells and MR-1 tetramer positivity. In both BAL
(Fig. 5A) and PBMCs (Fig. 5B), there was significant overlap in MAIT

cells detected by the TCRVα7.2+CD161+ dual staining approach and
the MR-1 tetramer. We also analyzed the polyfunctionality of the MR1-
5-OP-RU+CD161+ MAIT cells, comparing different outcomes following
Mtb infection (ATB versus LTBI) (Fig. 5C and D). We specifically fo-
cused on the critical 3-week post Mtb-infection time point and tested
the polyfunctionality of MR1-5-OP-RU+CD161+ MAIT expressing IFN-
γ, TNF-α, IL-17 and granzyme B in BAL (Fig. 5C) or PBMCs (Fig. 5D).
We observed that quadruple-positive (GrB+IFN-γ+IL-17+TNF-α+)
polyfunctional tetramer-positive (MR1-5-OP-RU+CD161+) MAIT were
recruited to significantly higher levels in the BAL of animals that
eventually controlled Mtb infection in a latent form, relative to animals
that developed disease (Fig. 5C). Single positive GrB+ and double po-
sitive GrB+TNF-α+ cells were recruited to significantly higher levels in
the BAL of animals that developed ATB. This effect was also observed in
PBMCs (Fig. 5D).

4. Discussion

The discovery that HIV-infected individuals are highly susceptible
to TB led to the conclusion that CD4+ T cells of the adaptive arm of
immunity are critical for the control of TB. Of late however, it has
become clear that additional immune events regulate protection from
TB. It has been postulated that innate-like lymphoid cells, particularly
MAIT cells, may be important for optimal immune responses to TB.
Using a well-characterized RM model of Mtb-infection via the aerosol
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route, we tested this hypothesis. We also studied the role of SIV (as a
surrogate for HIV) co-infection with Mtb in the recruitment of MAIT
cells to RM tissues and to explore the effects of different disease states
on the MAIT cell populations in vivo. Towards this end we employed
both a flow cytometric approach to detect TCRVα7.2+CD161+ MAIT
cells and a tetramer-based approach to detect MR1+ MAIT cells.

We find that either approach detects an overwhelmingly over-
lapping class of cells in RMs. Our results show that MAIT cells reside in
the liver and the gut compartment in naïve primates, but followingMtb-
infection, the number of MAIT cells increase in the blood and BAL. This
happens in all infected RMs, irrespective of clinical outcome. However,
the frequency of MAIT cells rapidly normalized such that they had re-
turned to baseline levels prior to endpoint.

Furthermore, following infection, the chemokines expressed on
MAIT cells reflected a strong shift towards a Th1/Tc1 (helper and cy-
totoxic) phenotype from a shared Th1/Th17 phenotype. In other words,
these MAIT cells appeared to upregulate their effector function, shed-
ding a more quiescent effector phenotype. Thus, infected animals with
greater disease (ATB) had more granzyme B production, as well as
higher CCR5 but progressively lower CCR6 expression. MAIT cells are
specifically empowered by induction of granzyme B expression to
contain bacterial infections [17]. CCR5 is a classical marker of Th1 type
function on lymphocytes [44]. CCR6 is strongly believed to be mediator
of immunity in the lung and gut [45] that affects migration of
Th17 cells and regulation of effector T cells [46]. Furthermore, in ani-
mals with SIV co-infection, the levels of granzyme B expression in-
creased, indicating that in the absence of CD4+ T cells, MAIT cells may
attempt to control co-infection via this cytotoxic pathway. In conclu-
sion, MAIT cells with enhanced Th1/Tc1 functions migrated to the site
of Mtb-infection. The anti-mycobacterial effector functions of MAIT
cells, particularly during the early stages of Mtb infection, had been of
interest in promoting protective long-term TB immunity. Our research
shows, however, that they have relatively mild and short-acting re-
sponses in the host, at least in the model system we employed.
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