
Developing Looking Glass Minigames to Reinforce Programming Subskills
Azeeza Eagal3, Sophia Lanier1, Akilah Murphy2, Jeremy Yu1,4, Wint Hnin4, Dr. Caitlin Kelleher4

1 SEAS REU Program, Washington University in St. Louis, St. Louis, MO, USA
2 Summer Engineering Fellowship, Washington University in St. Louis, St. Louis, MO, USA

3 NSF Missouri Louis Stokes Alliance for Minority Participation in STEM, Truman State University, Kirksville, MO, USA
4 Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA

 Looking Glass is a block-based programming environment
 that helps introduce programming concepts such as parallel
 actions, iteration, and object-oriented programming using 3D
 animations and code puzzles.

Introduction

 Acknowledgements

References

Future WorkMinigame Prototype: Snake Statements

Girls Inc. Study

● Each undergraduate began to develop a minigame targeted to enhance the
user's ability in a specified subskill.

● I chose to focus on the subskill matching textual statements to visual
representations.

● For this subskill, I prototyped a version of the famous computer game Snake.
In this game, the snake “eats” all of the code blocks that do not correspond to
the animation that they had been given. Once the snake has eaten all of the
code block but two, the user will have to pick the right statement. If the user
picks the right code block, they win!

● We worked on developing the minigame using the Looking Glass IDE. We
worked with Java and JavaFX to create these minigames.

● This summer I did not get to integrate the Snake Statements computer
prototype into Looking Glass. I would have liked to have three stages of the
snake game based on code puzzles in Looking Glass where users have trouble
matching textual statement to their visual representations.

● We conducted an observational study using this
system in an effort to explore ways of augmenting the
puzzle pathways and to gain insight into subskills.

● Subskills are specific skills which are beneficial to users
in solving code puzzles.

● We constructed a list of subskills and sought to
reinforce select subskills by developing minigames
using notes from our study and from working through
the pathways ourselves.

● The Snake Statement minigame was designed to help users break down
the animations and to think about each part of the given animation
critically.

We assisted our lab members in conducting a study
consisting of twenty-five high school-aged girls from the
Girls Inc. summer camp. Twice a week for five weeks, the
students spent an hour playing the pathways version of
Looking Glass while we observed and took notes. These
notes consisted of a student’s codename, the pathway they
were working on, the specific puzzle, any problem they
might be having, and observations about their behaviors in
response to the problem. The goal of this study was to use
our observations of the study participants, along with our
own observations as we played through Looking Glass, to
identify subskills for the code puzzles.

 Some examples of subskills are:

 Remembering the order of events in an animation
 Matching textual statements to their visual representations
 Understanding nested code structures
 Identifying the difference between similar code

Going forward with the project, I would like to test our
hypothesis -- that our targeted minigames would
reinforce the subskills that the users are learning.

To test this hypothesis, I would have two groups: one
that used Looking Glass without the minigame and one
that did.

I would first have the users do four code puzzles to gauge
their initial ability with the code puzzles and the specified
subskill.

Then, I would gather data on both groups.

Once the study was over, I would compare the two
groups as a whole based on how they approached a code
puzzle: how many moves did it take them to complete
the code puzzle, which code blocks did they move, and
how did the code constructs affect their understanding of
the animation.

If the group that had Snake Statements implemented into
Looking Glass did better with the subskill and puzzles,
then the game was successful.

If they did worse or the same, then the game was not
successful in developing the user’s ability in the specified
subskill.

It would also be interesting to pair users in the two
groups based on their initial ability and explore how
individually the minigame group altered their approach to
the code puzzles.

Caitlin Kelleher and Wint Hnin. 2018. Predicting Cognitive Load Based on
Learner’s History in Solving Code Puzzles. In Proceedings of the Fourteenth
Annual International Conference on International Computing Education Research
(ICER ‘18).

David J. Gilmore, “Models of Debugging,” Acta Psychologica, ISSN: 0001-6918,
Vol: 78, Issue: 1, Page: 151-172

“Looking Glass Community.” [Online]. Available: https://lookingglass.wust
l.edu/. [24-July-2018].

M. Ichinco, A. Zemach and C. Kelleher, "Towards generalizing expert
programmers' suggestions for novice programmers," 2013 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC)(VLHCC), San Jose,
CA, USA, 2013, pp. 143-150.

We would like to thank Dr. Kelleher for her guidance this summer, as well
as Dr. Carter and Wint Hnin. We would also like to thank the NSF,
Washington University, and Missouri Louis Stokes Alliance for Minority
Participation Award 1619639 for their support.

https://lookingglass.w

