

Efficient and accurate inversion of multiple scattering with deep learning

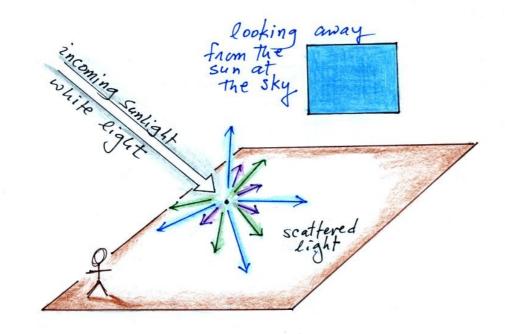
Yu Sun

iTWIST, CIRM, Marseille, France. November, 2018

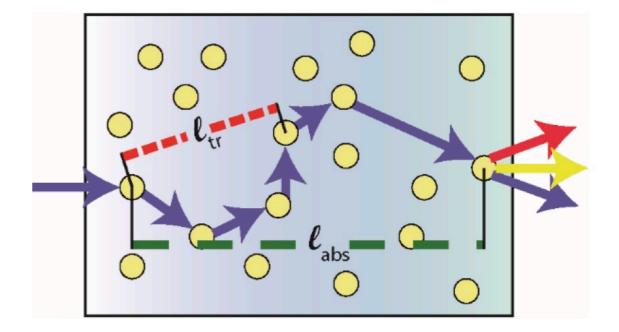
Thanks for the NSF support under rant No. 1813910.

What is multiple scattering?

- Interaction between wave and object
- Related to refractive index



Single/linear scattering



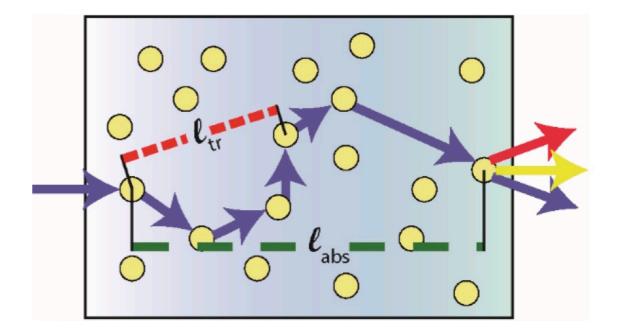
Multiple/nonlinear scattering

What is multiple scattering?

- Interaction between wave and object
- Related to refractive index

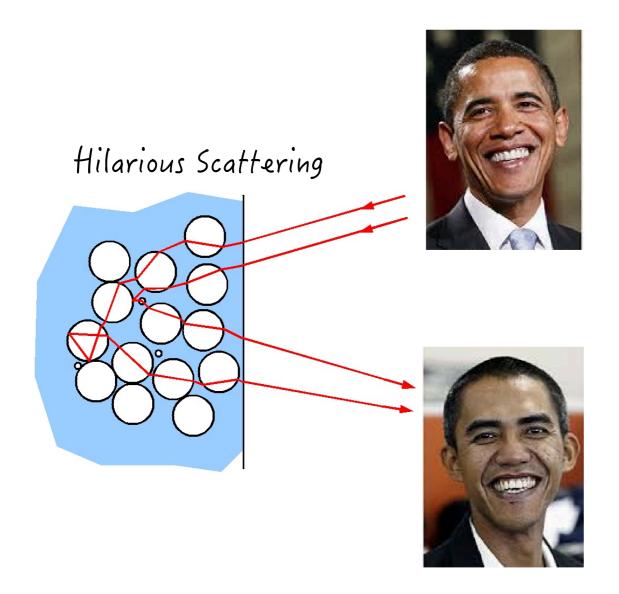


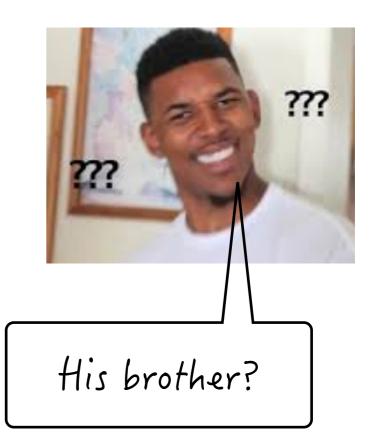
Single/linear scattering



Multiple/nonlinear scattering

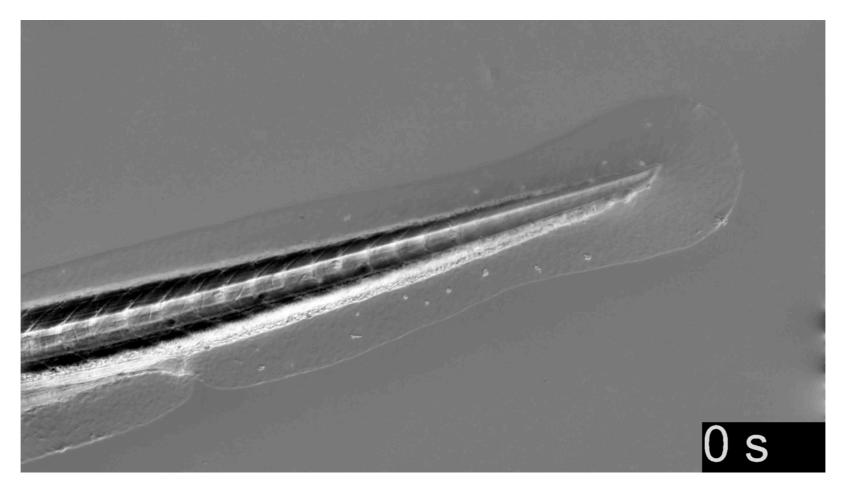
Scattering exists in wave imaging





Reconstruct image by inverting scattering

- Microwave imaging
- Ultrasound refraction tomography
- Optical diffraction tomography [T. Kim et al., 2014]
- •

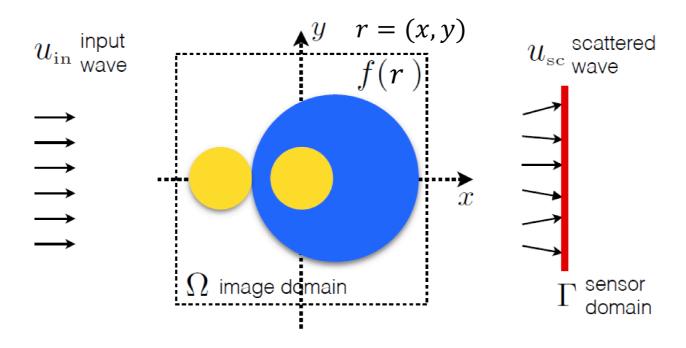


Zebra fish dynamics

Inverting scattering as inverse problem

- Lippmann-Schwinger equation [Lippmann & Schwinger, 1950]
- Optimization formulation
- ISTA/FISTA/ADMM
- Effective in practice

$$u(\mathbf{r}) = u_{\text{in}}(\mathbf{r}) + k^2 \int_{\Omega} g(\mathbf{r} - \mathbf{r}') u(\mathbf{r}') f(\mathbf{r}') d\mathbf{r}', \quad \forall \mathbf{r} \in \mathbb{R}^d.$$



Inverting scattering as inverse problem

- Lippmann-Schwinger equation
- Optimization formulation
- ISTA/FISTA/ADMM
- Effective in practice

$$\widehat{\mathbf{f}} = \arg\min_{\mathbf{f} \in \mathbb{R}^N} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{H}(\mathbf{f})\|_{\ell_2}^2 + \mathcal{R}(\mathbf{f}) \right\},$$

where
$$\mathbf{H}(\mathbf{f}) = \mathbf{S} \operatorname{diag}(\mathbf{u}(\mathbf{f}))\mathbf{f}$$

$${f u}({f f})={f u}_{
m in}\;$$
 linear ~ single scattering ${f u}({f f})
eq {f u}_{
m in}\;$ nonlinear ~ multiple scattering

Inverting scattering as inverse problem

- Lippmann-Schwinger equation
- Optimization formulation
- ISTA/FISTA/ADMM
- Effective in practice

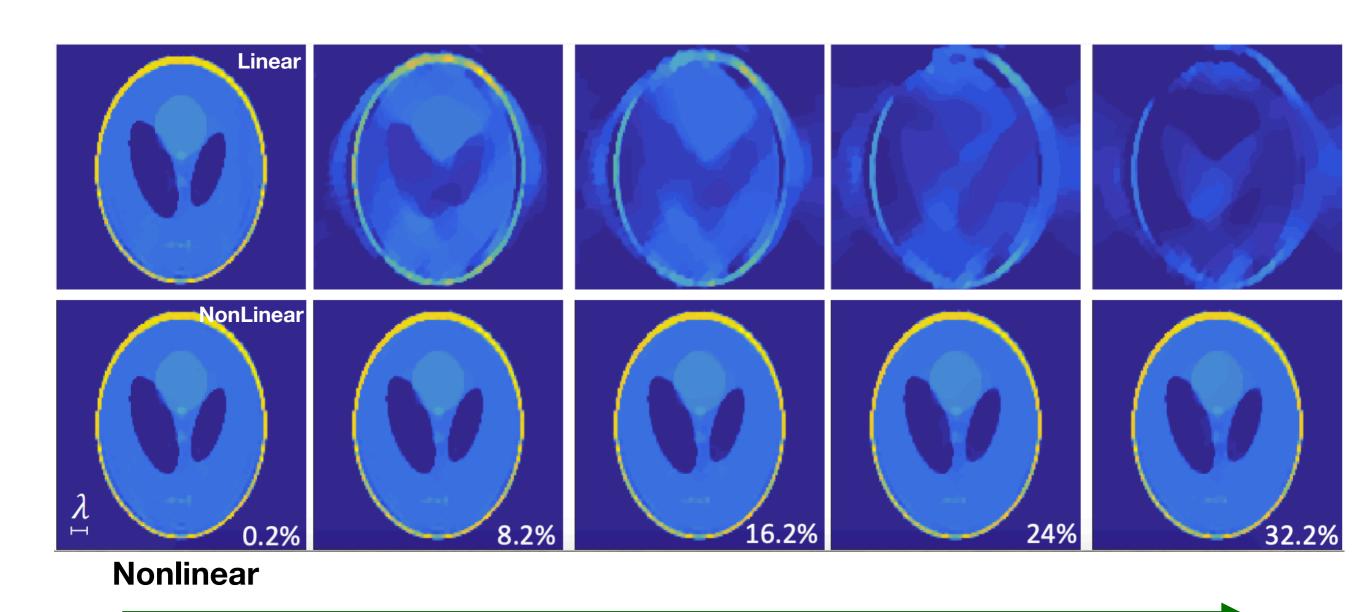
$$\widehat{\mathbf{f}} = \operatorname*{arg\,min}_{\mathbf{f} \in \mathbb{R}^N} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{H}(\mathbf{f}) \|_{\ell_2}^2 + \mathcal{R}(\mathbf{f}) \right\},$$

where
$$\mathbf{H}(\mathbf{f}) = \mathbf{S} \operatorname{diag}(\mathbf{u}(\mathbf{f}))\mathbf{f}$$

$$u(\mathbf{f}) = u_{\mathrm{in}}$$
 linear ~ single scattering $u(\mathbf{f})
eq u_{\mathrm{in}}$ nonlinear ~ multiple scattering

Results obtained by linear/nonlinear FISTA-TV

Effective in practice



Scattering Levels

But, optimization-based methods have drawbacks

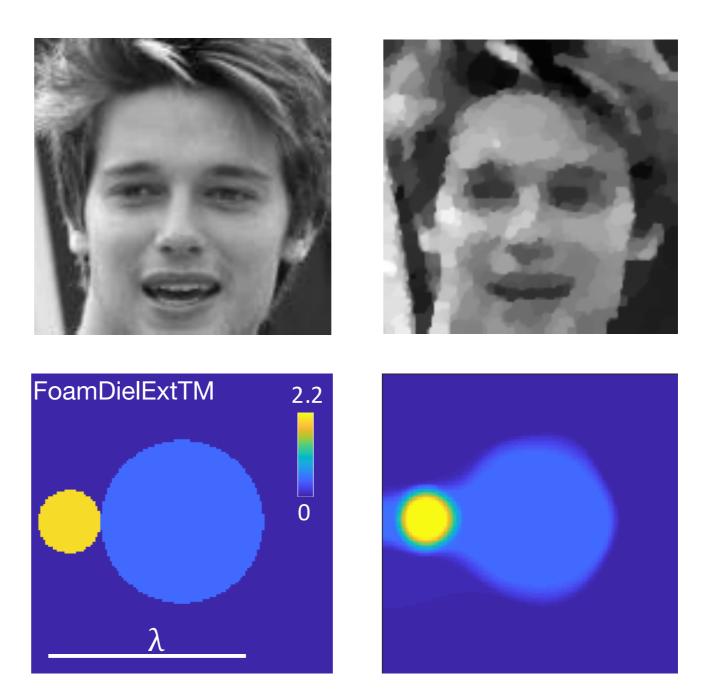
- Slow reconstruction
 - ~ hours for 1 example
- Artifacts / inaccurate
 - strong noise

$$u(\mathbf{r}) = u_{\text{in}}(\mathbf{r}) + k^2 \int_{\Omega} g(\mathbf{r} - \mathbf{r}') u(\mathbf{r}') f(\mathbf{r}') d\mathbf{r}', \quad \forall \mathbf{r} \in \mathbb{R}^d.$$

$$egin{aligned} \mathbf{u}^* &= rgmin_{\mathbf{u}} \|\mathbf{A}\mathbf{u} - \mathbf{u}_{\mathrm{in}}\|_2^2 \ & \mathrm{where} \quad \mathbf{A}\!:=\!\mathbf{I}\!-\!\mathbf{G}\mathrm{diag}(\mathbf{f}) \end{aligned}$$

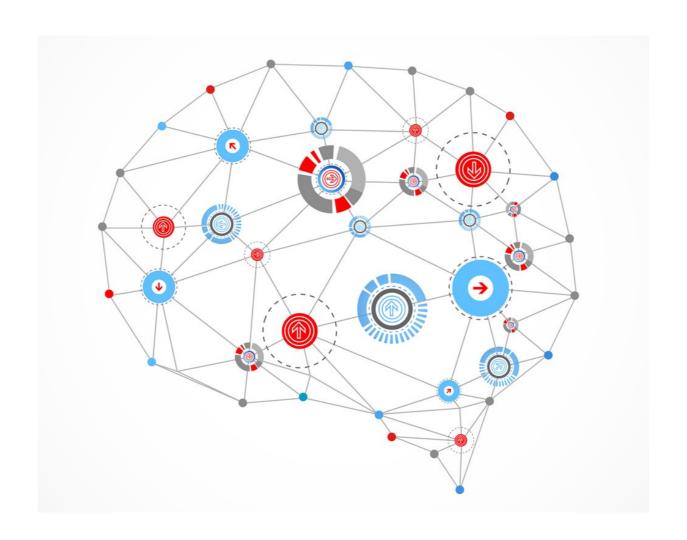
But, optimization-based methods have drawbacks

- Slow reconstruction
 - ~ hours for 1 example
- Artifacts / inaccurate
 - strong noise



FISTA-TV, Input SNR = 20 dB, Strong scattering

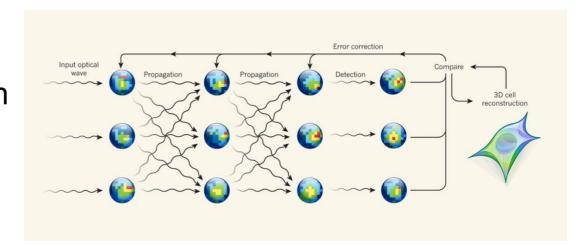
Can we do faster and more accurate simultaneously?



Deep Learning!

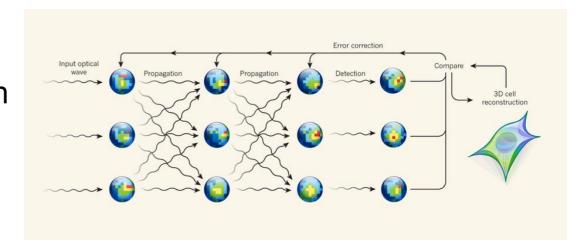
Why we consider deep learning?

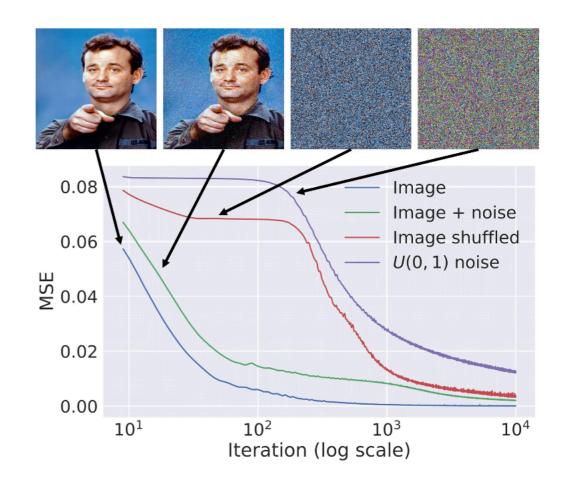
- Multiple scattering = repeated convolutions
 - Inverting scattering = repeated deconvolution



Why we consider deep learning?

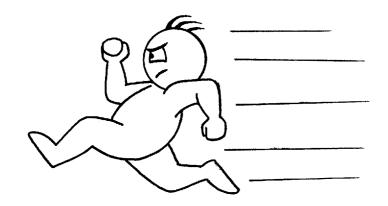
- Multiple scattering = repeated convolutions
 - Inverting scattering = repeated deconvolution
- Naturally fit to image
 - Denoising / impainting / deblurring

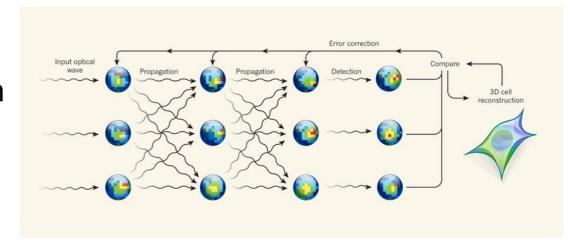


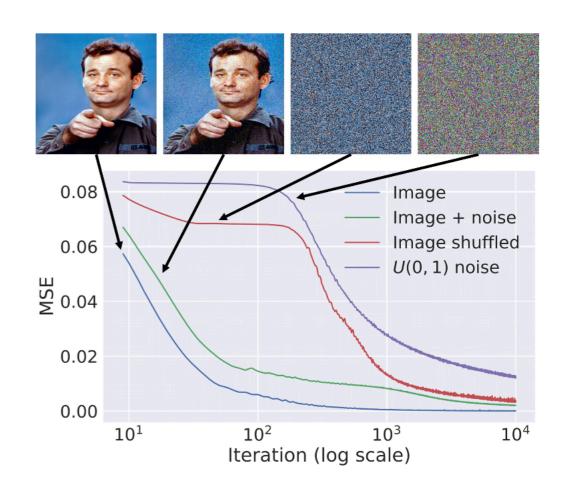


Why we consider deep learning?

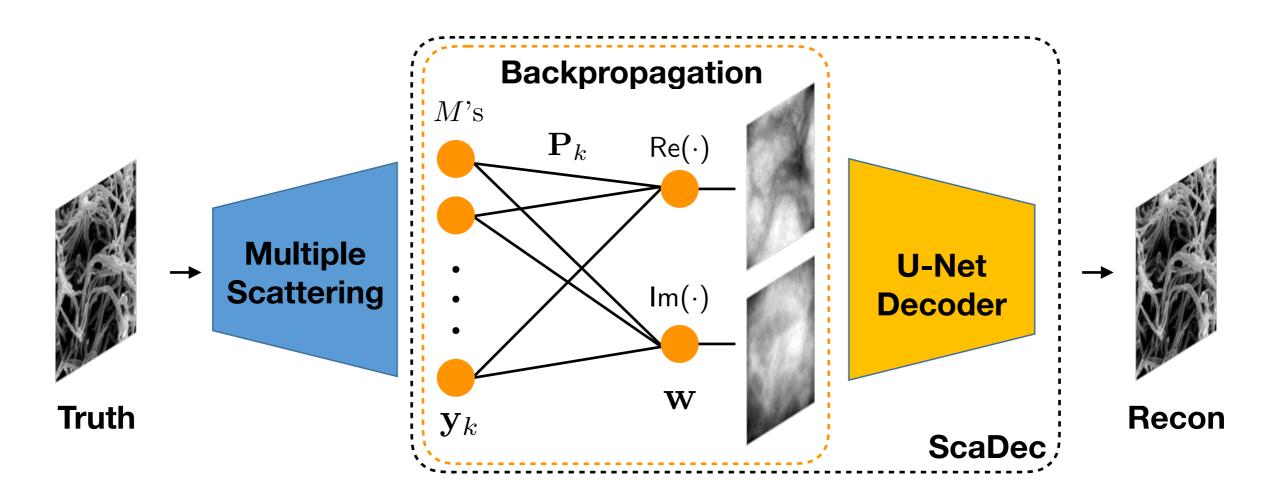
- Multiple scattering = repeated convolutions
 - Inverting scattering = repeated deconvolution
- Naturally fit to image
 - Denoising / impainting / deblurring
- Fast prediction
 - Single forward propagation







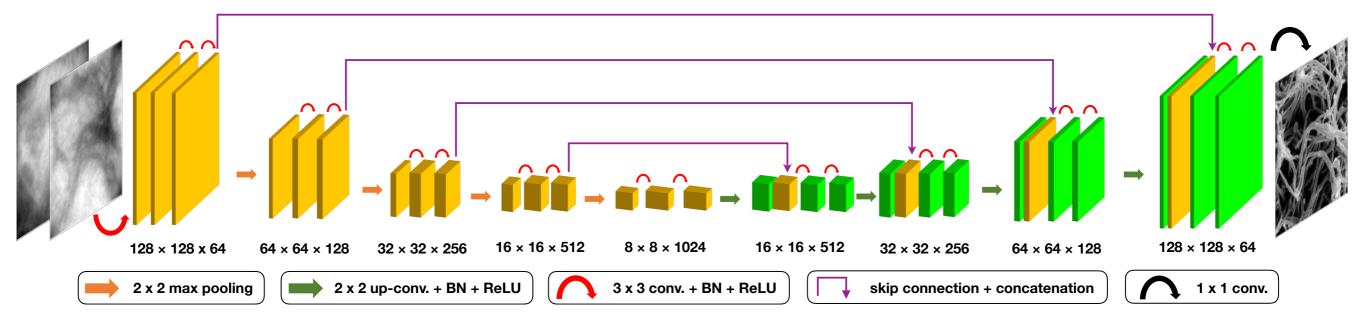
The framework of Scattering decoder (ScaDec)



$$\mathbf{z}_k = \mathbf{P}_k \mathbf{y}_k$$
 with $\mathbf{P}_k \triangleq \operatorname{diag}(\mathbf{u}_{in}^*) \mathbf{H}^{\mathsf{H}}$

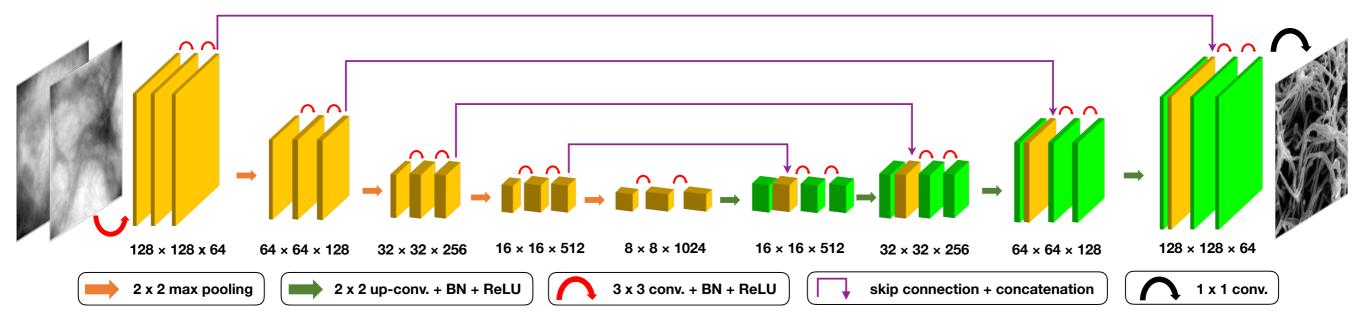
$$\mathbf{w} = \sum_{k=1}^K \mathbf{z}_k = \sum_{k=1}^K \mathbf{P}_k \mathbf{y}_k$$

We design the decoder based on U-Net

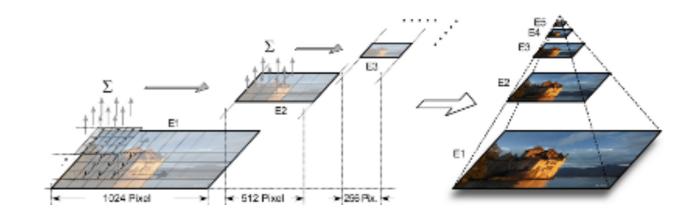


- U-Net [Ronneberger et al., 2015]
 - Cited by 3314

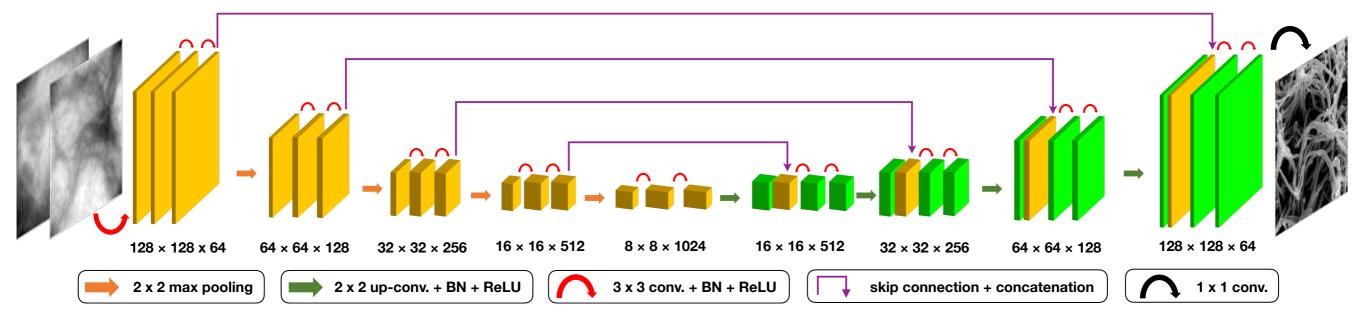
We design the decoder based on U-Net



- U-Net [Ronneberger et al., 2015]
 - Cited by 3314
- Multi-resolution decomposition
 - Increasing effective receptive field



We design the decoder based on U-Net

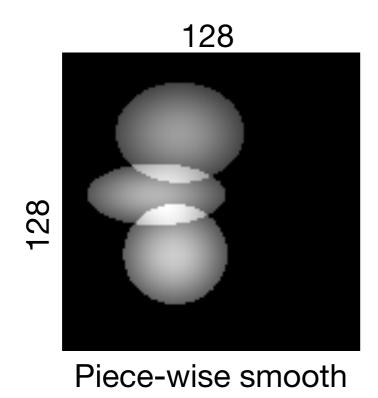


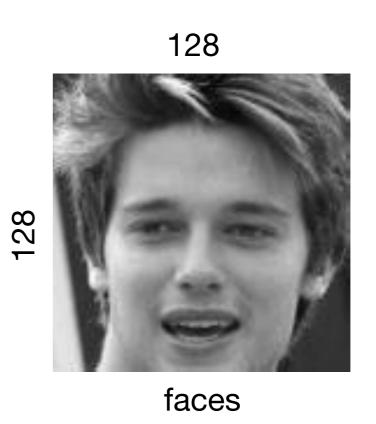
- U-Net [Ronneberger et al., 2015]
 - Cited by 3314
- Multi-resolution decomposition
 - Increasing effective receptive field
- Local-global composition
 - Local details + global features

We firstly validate ScaDec on simulated datasets

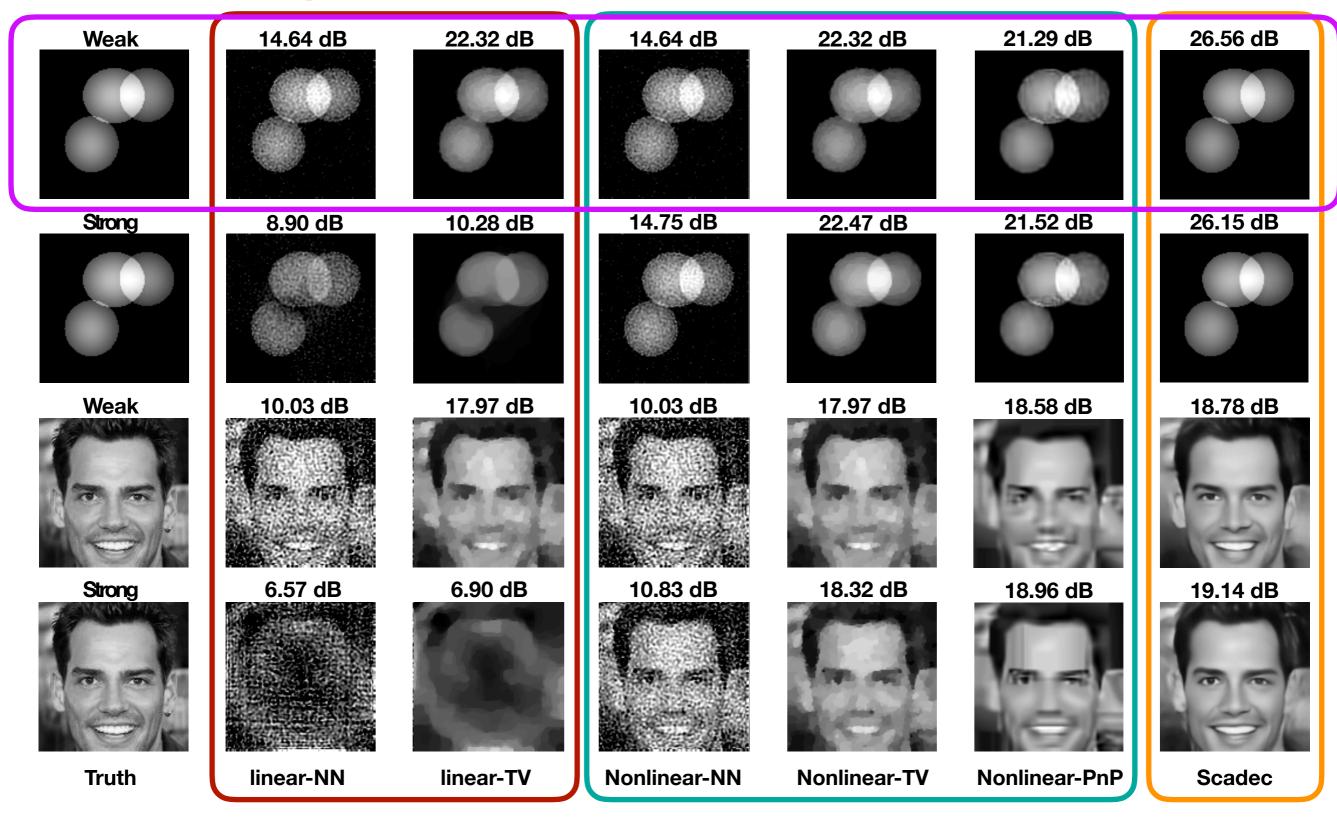
Simulated data

- Piece-wise smooth & Human faces (CelebA)
- Use high fidelity model to simulate measurements
- Add noise with Input SNR = 20 dB
- Training: 1500 / Test: 24 (randomly selected)





Visual comparison on Piece-wise smooth and Faces



35 min

1 sec

ScaDec is also competitive in terms of average SNR

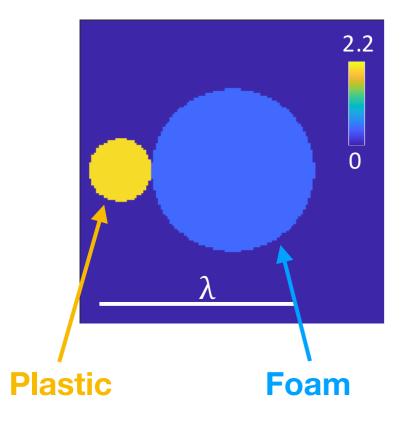
Table 1. SNR (dB) comparison of six methods on two datasets

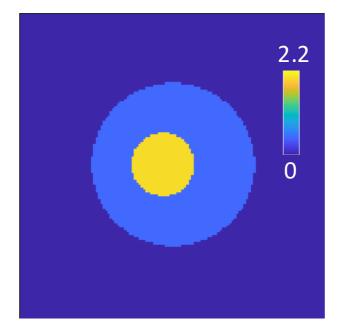
Method	Average SNR over the dataset			
	Piecewise-smooth		Human faces	
	Weak	Strong	Weak	Strong
FB-NN	16.49	12.79	10.39	6.61
LS-NN	16.49	16.74	10.39	10.85
FB-TV	23.04	15.53	19.79	7.08
LS-TV	23.04	22.57	19.79	20.12
LS-BM3D	21.54	21.72	20.48	20.99
ScaDec	26.14	26.19	20.26	20.21

Validation on experimental microwave dataset

Experimental data

- Plastic & foam (J.M. Geffrin, et al. 2005)
- Microwave / Very Noisy
- Use 6500 synthesized data to train
- Strong prior



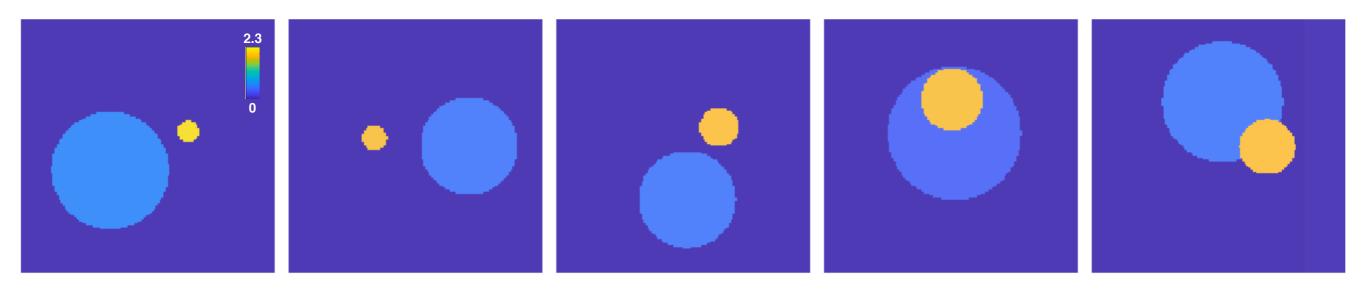


(a) Experimental setup

Examples of synthesized data for training ScaDec

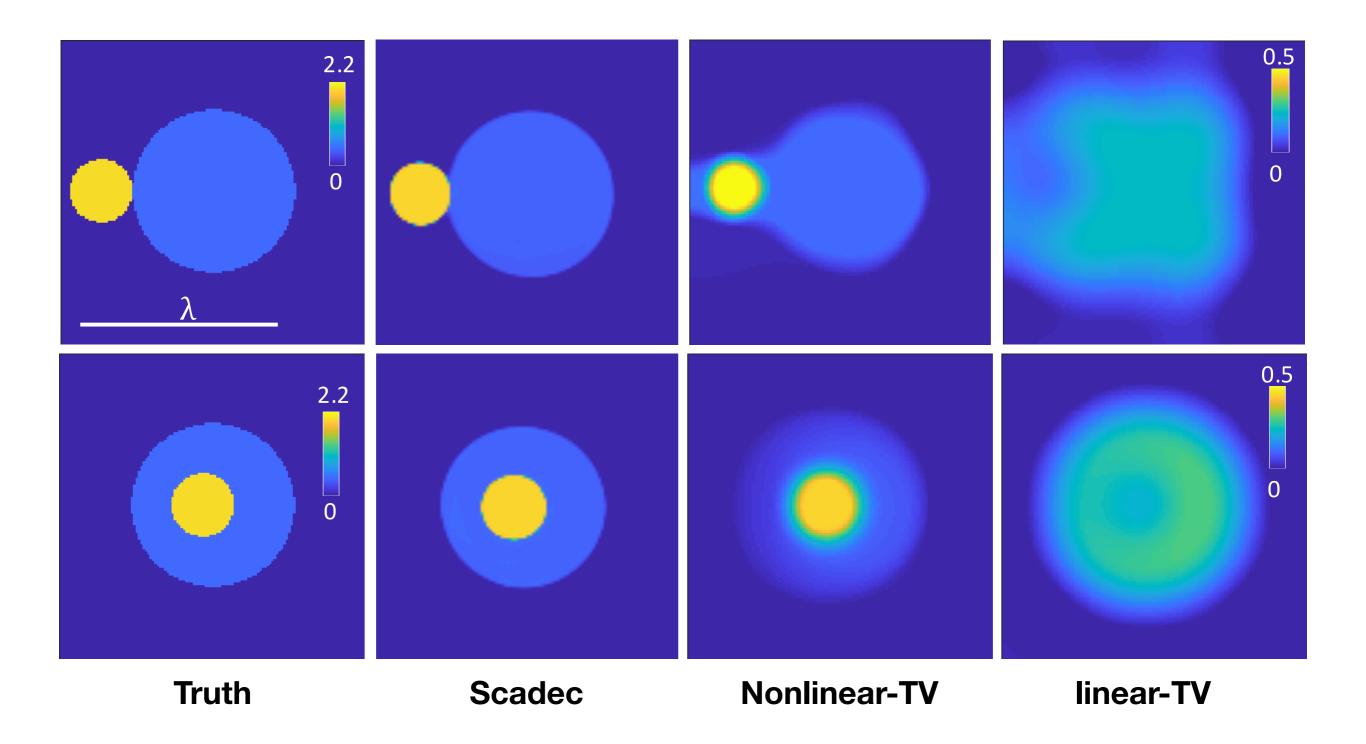
Experimental data

- Microwave data (J.M. Geffrin, et al. 2005)
- Very Noise
- Use 6500 synthesized data to train
- Strong prior



Synthesized examples

ScaDec successfully reconstructs the image from real data

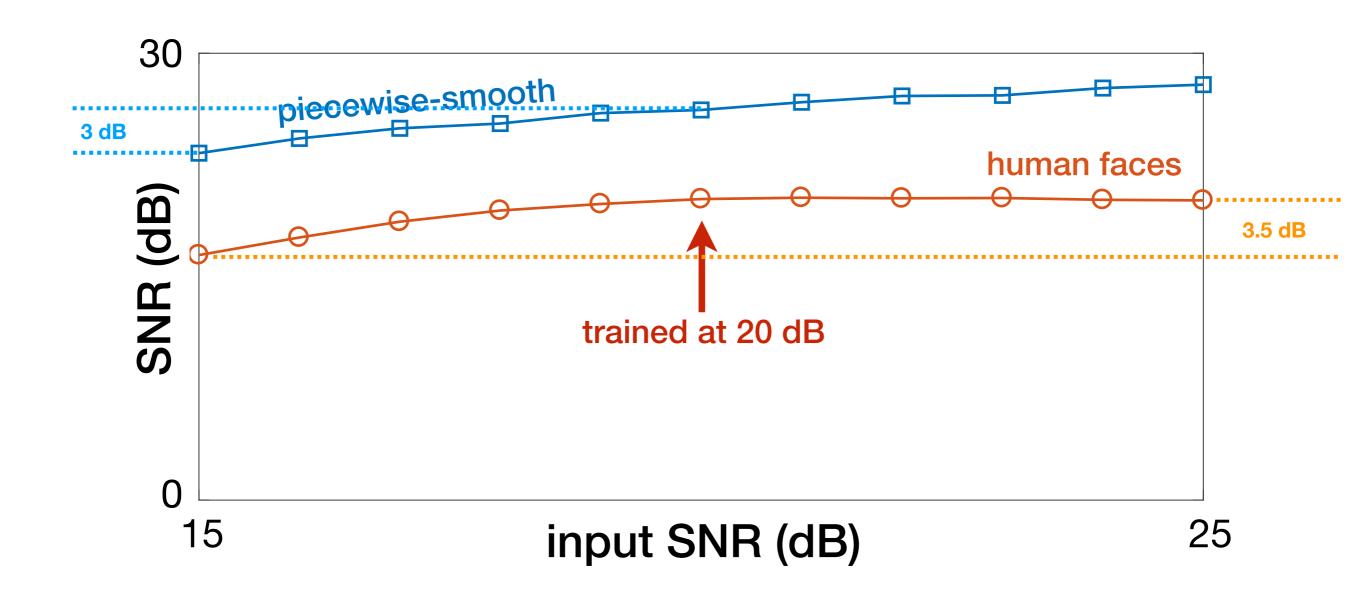


We test the stability of ScaDec with respect to noise and refractive index

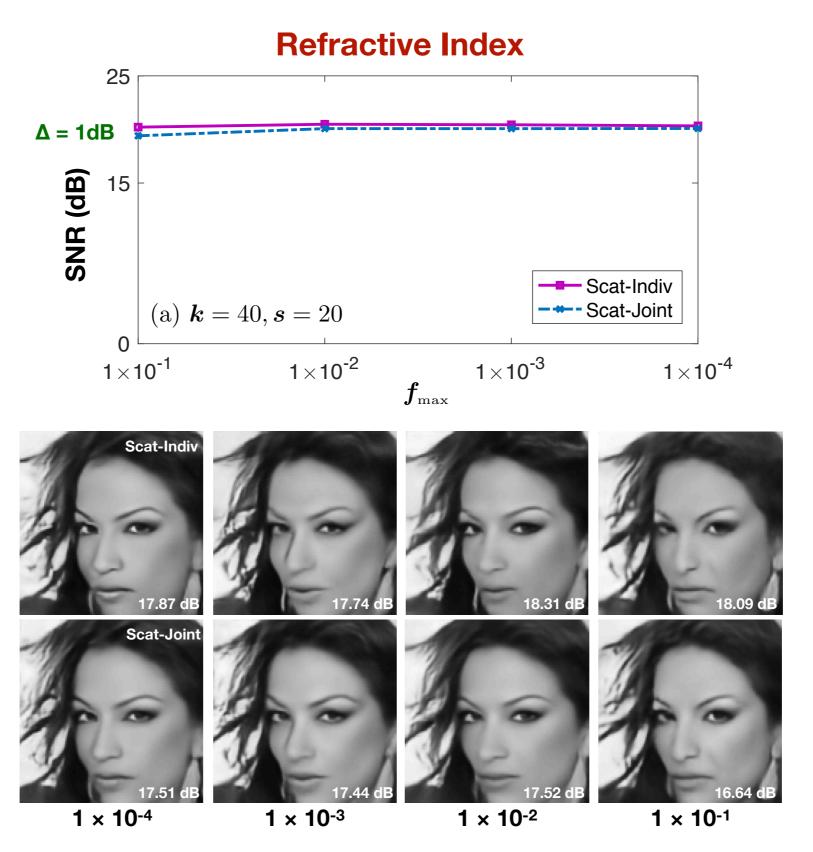
Not enough, is the model robust?

- Learning-based
- Input noise
- Refractive index

ScaDec degrades as noise level increases



ScaDec generalizes well by training jointly



Conclusion

- Inverting Scattering is important & difficult
- ScaDec is shown to achieve fast and accurate reconstruction
- ScaDec is stable with respect to noise and scattering strength
- Code available here: https://github.com/sunyumark/
 ScaDec-deep-learning-diffractive-tomography

Hit & Follow us

