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What is multiple scattering ?

* Interaction between wave and object
* Related to refractive index
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Scattering exists in wave imaging

Hilarious Scattaring
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His brother?




Reconstruct image by inverting scattering

* Microwave imaging
* Ultrasound refraction tomography
* Optical diffraction tomography [T. Kim et al., 2014]

Zebra fish dynamics

T. Kim et al. Nature Photonics 8, 256—263 (2014)



Inverting scattering as inverse problem

e Lippmann-Schwinger equation [Lippmann & Schwinger, 1950]
* Optimization formulation

ISTA/FISTA/ADMM
Effective in practice
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Lippmann, B. A.; Schwinger, J. (1950). Phys. Rev. Lett. 79: 469.



Inverting scattering as inverse problem

* Lippmann-Schwinger equation
e Optimization formulation

ISTA/FISTA/ADMM
Effective in practice

data-fidelity regularizer

A \ /
F = arg mm{guy CHE)|2, + R(f)} |
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where | H(f) = Sdiag(u(f))f

u(f) = w, linear ~ single scattering

u(f) = u;, nonlinear ~ multiple scattering
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Results obtained by linear/nonlinear FISTA-TV

o Effective in practice

Linear

onLinear

Nonlinear

Scattering Levels

Ma, et al., Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP 2018) (Calgary, Canada, March 15-20), pp. 6473-6477.



But, optimization-based methods have drawbacks

e Slow reconstruction

* ~ hours for 1 example u(r):uin(r)+k2/g(r—rl)u(l")f(rl)dr', vreR?.

e Artifacts / inaccurate
* strong noise

H. Liu, et al., IEEE Transactions on Computational Imaging, vol. 4, no. 1, pp. 73-86, March 2018.



But, optimization-based methods have drawbacks

e Slow reconstruction
* ~ hours for 1 example

e Artifacts / inaccurate
* strong noise

FoamDielExtTM

FISTA-TV, Input SNR = 20 dB, Strong scattering



Can we do faster and more accurate simultaneously ?

Deep Learning !



Why we consider deep learning ?

e Multiple scattering = repeated convolutions
* Inverting scattering = repeated deconvolution

Kamilov, et al., Optica vol. 2, no. 6, pp. 517-522, June 2015 (Nature News)
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Why we consider deep learning ?

* Multiple scattering = repeated convolutions N S G
* Inverting scattering = repeated deconvolution % 2% 2% W L e
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* Denoising / impainting / deblurring
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Ulyanoy, et al., CVPR 2018
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e Fast prediction
* Single forward propagation
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The framework of Scattering decoder (ScaDec)

----------------------------------------------------------

U-Net
Decoder

----------------------------------------------------------

Yu Sun, et al., Opt. Express 26, 14678-14688 (2018)



We design the decoder based on U-Net
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[- 2 X 2 max pooling] [‘ 2 x 2 up-conv. + BN + ReLU] [f\ 3 x 3 conv. + BN + RelLU ] [l 1 skip connection + concatenation j [ n 1x1 conv.]

e U-Net [Ronneberger et al., 2015]
e Cited by 3314

Ronneberger, et al., Medical Image Computing and Computer-Assisted Intervention (MICCAI) 9351, 234-241 (2015)
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« U-Net [Ronneberger et al., 2015]
e Cited by 3314

e Multi-resolution decomposition
* Increasing effective receptive field

Ronneberger, et al., Medical Image Computing and Computer-Assisted Intervention (MICCAI) 9351, 234-241 (2015)



We design the decoder based on U-Net
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[- 2 X 2 max pooling] [‘ 2 x 2 up-conv. + BN + ReLU] [r\ 3 x 3 conv. + BN + RelLU ] [l 1 skip connection + concatenation ] [ f\ 1x1 conv.]

« U-Net [Ronneberger et al., 2015]
e Cited by 3314

e Multi-resolution decomposition
* Increasing effective receptive field

e Local-global composition
e Local details + global features

Ronneberger, et al., Medical Image Computing and Computer-Assisted Intervention (MICCAI) 9351, 234-241 (2015)



We firstly validate ScaDec on simulated datasets

Simulated data
e Piece-wise smooth & Human faces (CelebA)
e Use high fidelity model to simulate measurements
e Add noise with Input SNR =20 dB
e Training: 1500 / Test: 24 (randomly selected)

128 128

128
128

Piece-wise smooth

Yu Sun, et al., Opt. Express 26, 14678-14688 (2018)



Visual comparison on Piece-wise smooth and Faces
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35 min 1 sec
Yu Sun, et al., Opt. Express 26, 14678-14688 (2018)



ScaDec is also competitive in terms of average SNR

Table 1. SNR (dB) comparison of six methods on two datasets

Method Average SNR over the dataset
Piecewise-smooth Human faces
Weak Strong Weak Strong
FB-NN 16.49 12.79 10.39 6.61
LS-NN 16.49 16.74 10.39 10.85
FB-TV 23.04 15.53 19.79 7.08
LS-TV 23.04 22.57 19.79 20.12
LS-BM3D 21.54 21.72 20.48 20.99
ScaDec 26.14 26.19 20.26 20.21

Yu Sun, et al., Opt. Express 26, 14678-14688 (2018)



Validation on experimental microwave dataset

Experimental data
e Plastic & foam (J.M. Geffrin, et al. 2005)
e Microwave / Very Noisy
e Use 6500 synthesized data to train
e Strong prior

(a) Experimental setup

Foam

Jean-Michel Geffrin et al 2005 Inverse Problems 21 S117



Examples of synthesized data for training ScaDec

Experimental data
e Microwave data (J.M. Geffrin, et al. 2005)
* Very Noise
e Use 6500 synthesized data to train
e Strong prior

Synthesized examples

Yu Sun, et al., Opt. Express 26, 14678-14688 (2018)



ScaDec successfully reconstructs the image from real
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Yu Sun, et al., Opt. Express 26, 14678-14688 (2018)



We test the stability of ScaDec with respect to
noise and refractive index

Not enough, is the model robust ?
* |Learning-based
 |Input noise
 Refractive index

Yu Sun, et al., Opt. Express 26, 14678-14688 (2018)



ScaDec degrades as noise level increases
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ScaDec generalizes well by training jointly

Refractive Index
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Conclusion

e Inverting Scattering is important & difficult

e ScaDec is shown to achieve fast and accurate
reconstruction

e ScaDec is stable with respect to noise and scattering
strength

e Code available here:
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https://github.com/sunyumark/ScaDec-deep-learning-diffractive-tomography
https://github.com/sunyumark/ScaDec-deep-learning-diffractive-tomography
https://github.com/sunyumark/ScaDec-deep-learning-diffractive-tomography
https://twitter.com/wustlcig

