

Efficient and accurate inversion of multiple scattering with deep learning

Yu Sun

iTWIST, CIRM, Marseille, France. November, 2018

Thanks for the NSF support under rant No. 1813910.

What is multiple scattering?

- Interaction between wave and object
- Related to refractive index

Single/linear scattering

Multiple/nonlinear scattering

What is multiple scattering?

- Interaction between wave and object
- Related to refractive index

Single/linear scattering

Multiple/nonlinear scattering

Scattering exists in wave imaging

Reconstruct image by inverting scattering

- Microwave imaging
- Ultrasound refraction tomography
- Optical diffraction tomography [T. Kim et al., 2014]
- •

Zebra fish dynamics

Inverting scattering as inverse problem

- Lippmann-Schwinger equation [Lippmann & Schwinger, 1950]
- Optimization formulation
- ISTA/FISTA/ADMM
- Effective in practice

$$u(\mathbf{r}) = u_{\text{in}}(\mathbf{r}) + k^2 \int_{\Omega} g(\mathbf{r} - \mathbf{r}') u(\mathbf{r}') f(\mathbf{r}') d\mathbf{r}', \quad \forall \mathbf{r} \in \mathbb{R}^d.$$

Inverting scattering as inverse problem

- Lippmann-Schwinger equation
- Optimization formulation
- ISTA/FISTA/ADMM
- Effective in practice

$$\widehat{\mathbf{f}} = \arg\min_{\mathbf{f} \in \mathbb{R}^N} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{H}(\mathbf{f})\|_{\ell_2}^2 + \mathcal{R}(\mathbf{f}) \right\},$$

where
$$\mathbf{H}(\mathbf{f}) = \mathbf{S} \operatorname{diag}(\mathbf{u}(\mathbf{f}))\mathbf{f}$$

$${f u}({f f})={f u}_{
m in}\;$$
 linear ~ single scattering ${f u}({f f})
eq {f u}_{
m in}\;$ nonlinear ~ multiple scattering

Inverting scattering as inverse problem

- Lippmann-Schwinger equation
- Optimization formulation
- ISTA/FISTA/ADMM
- Effective in practice

$$\widehat{\mathbf{f}} = \operatorname*{arg\,min}_{\mathbf{f} \in \mathbb{R}^N} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{H}(\mathbf{f}) \|_{\ell_2}^2 + \mathcal{R}(\mathbf{f}) \right\},$$

where
$$\mathbf{H}(\mathbf{f}) = \mathbf{S} \operatorname{diag}(\mathbf{u}(\mathbf{f}))\mathbf{f}$$

$$u(\mathbf{f}) = u_{\mathrm{in}}$$
 linear ~ single scattering $u(\mathbf{f})
eq u_{\mathrm{in}}$ nonlinear ~ multiple scattering

Results obtained by linear/nonlinear FISTA-TV

Effective in practice

Scattering Levels

But, optimization-based methods have drawbacks

- Slow reconstruction
 - ~ hours for 1 example
- Artifacts / inaccurate
 - strong noise

$$u(\mathbf{r}) = u_{\text{in}}(\mathbf{r}) + k^2 \int_{\Omega} g(\mathbf{r} - \mathbf{r}') u(\mathbf{r}') f(\mathbf{r}') d\mathbf{r}', \quad \forall \mathbf{r} \in \mathbb{R}^d.$$

$$egin{aligned} \mathbf{u}^* &= rgmin_{\mathbf{u}} \|\mathbf{A}\mathbf{u} - \mathbf{u}_{\mathrm{in}}\|_2^2 \ & \mathrm{where} \quad \mathbf{A}\!:=\!\mathbf{I}\!-\!\mathbf{G}\mathrm{diag}(\mathbf{f}) \end{aligned}$$

But, optimization-based methods have drawbacks

- Slow reconstruction
 - ~ hours for 1 example
- Artifacts / inaccurate
 - strong noise

FISTA-TV, Input SNR = 20 dB, Strong scattering

Can we do faster and more accurate simultaneously?

Deep Learning!

Why we consider deep learning?

- Multiple scattering = repeated convolutions
 - Inverting scattering = repeated deconvolution

Why we consider deep learning?

- Multiple scattering = repeated convolutions
 - Inverting scattering = repeated deconvolution
- Naturally fit to image
 - Denoising / impainting / deblurring

Why we consider deep learning?

- Multiple scattering = repeated convolutions
 - Inverting scattering = repeated deconvolution
- Naturally fit to image
 - Denoising / impainting / deblurring
- Fast prediction
 - Single forward propagation

The framework of Scattering decoder (ScaDec)

$$\mathbf{z}_k = \mathbf{P}_k \mathbf{y}_k$$
 with $\mathbf{P}_k \triangleq \operatorname{diag}(\mathbf{u}_{in}^*) \mathbf{H}^{\mathsf{H}}$

$$\mathbf{w} = \sum_{k=1}^K \mathbf{z}_k = \sum_{k=1}^K \mathbf{P}_k \mathbf{y}_k$$

We design the decoder based on U-Net

- U-Net [Ronneberger et al., 2015]
 - Cited by 3314

We design the decoder based on U-Net

- U-Net [Ronneberger et al., 2015]
 - Cited by 3314
- Multi-resolution decomposition
 - Increasing effective receptive field

We design the decoder based on U-Net

- U-Net [Ronneberger et al., 2015]
 - Cited by 3314
- Multi-resolution decomposition
 - Increasing effective receptive field
- Local-global composition
 - Local details + global features

We firstly validate ScaDec on simulated datasets

Simulated data

- Piece-wise smooth & Human faces (CelebA)
- Use high fidelity model to simulate measurements
- Add noise with Input SNR = 20 dB
- Training: 1500 / Test: 24 (randomly selected)

Visual comparison on Piece-wise smooth and Faces

35 min

1 sec

ScaDec is also competitive in terms of average SNR

Table 1. SNR (dB) comparison of six methods on two datasets

Method	Average SNR over the dataset			
	Piecewise-smooth		Human faces	
	Weak	Strong	Weak	Strong
FB-NN	16.49	12.79	10.39	6.61
LS-NN	16.49	16.74	10.39	10.85
FB-TV	23.04	15.53	19.79	7.08
LS-TV	23.04	22.57	19.79	20.12
LS-BM3D	21.54	21.72	20.48	20.99
ScaDec	26.14	26.19	20.26	20.21

Validation on experimental microwave dataset

Experimental data

- Plastic & foam (J.M. Geffrin, et al. 2005)
- Microwave / Very Noisy
- Use 6500 synthesized data to train
- Strong prior

(a) Experimental setup

Examples of synthesized data for training ScaDec

Experimental data

- Microwave data (J.M. Geffrin, et al. 2005)
- Very Noise
- Use 6500 synthesized data to train
- Strong prior

Synthesized examples

ScaDec successfully reconstructs the image from real data

We test the stability of ScaDec with respect to noise and refractive index

Not enough, is the model robust?

- Learning-based
- Input noise
- Refractive index

ScaDec degrades as noise level increases

ScaDec generalizes well by training jointly

Conclusion

- Inverting Scattering is important & difficult
- ScaDec is shown to achieve fast and accurate reconstruction
- ScaDec is stable with respect to noise and scattering strength
- Code available here: https://github.com/sunyumark/
 ScaDec-deep-learning-diffractive-tomography

Hit & Follow us

