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SUMMARY

The developing retina generates spontaneous gluta-
matergic (stage III) waves of activity that sequentially
recruit neighboring ganglion cells with opposite light
responses (ON and OFF RGCs). This activity pattern
is thought to help establish parallel ON and OFF
pathways in downstream visual areas. The circuits
that produce stage III waves and desynchronize ON
and OFF RGC firing remain obscure. Using dual
patch-clamp recordings, we find that ON and OFF
RGCs receive sequential excitatory input from ON
and OFF cone bipolar cells (CBCs), respectively.
This input sequence is generated by crossover
circuits, in which ON CBCs control glutamate release
from OFF CBCs via diffusely stratified inhibitory
amacrine cells. In addition, neighboring ON CBCs
communicate directly and indirectly through lateral
glutamatergic transmission and gap junctions, both
of which are required for wave initiation and propa-
gation. Thus, intersecting lateral excitatory and verti-
cal inhibitory circuits give rise to precisely patterned
stage III retinal waves.

INTRODUCTION

Spontaneous neuronal activity pervades the developing nervous

system and correlations contained in its patterns guide the syn-

aptic refinement of many immature circuits (Blankenship and

Feller, 2010; Katz and Shatz, 1996). This has best been studied

in the developing visual system, where waves of spontaneous

activity originate in the retina (Meister et al., 1991) and dictate

firing patterns up to primary visual cortex (V1) (Ackman et al.,

2012; Mooney et al., 1996). Across many species, retinal waves

mature in three stereotypic stages (I–III) (Blankenship and Feller,

2010; Wong, 1999). In each stage, distinct mechanisms give rise

to unique activity patterns that serve specific functions in orga-

nizing visual circuits.

During stage III (postnatal day 10–14, P10–P14mice), the firing

patterns of different RGC types diverge (Lee et al., 2002; Liets
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et al., 2003; Wong and Oakley, 1996). In particular, we recently

discovered that within each stage III wave neighboring RGCs

with opposite light responses fire asynchronous bursts of action

potentials in a fixed order: ON before OFF (Kerschensteiner and

Wong, 2008). Multiple lines of evidence indicate that this activity

pattern is critical for the segregation of ON and OFF retinogeni-

culate projections. First, ON/OFF segregation in the dorsolateral

geniculate nucleus (dLGN) emerges concurrent with stage III

waves (Hahm et al., 1991; Morgan and Thompson, 1993).

Second, blockade of retinal activity or its transmission to dLGN

neurons during this period prevents ON/OFF segregation

(Cramer and Sur, 1997; Dubin et al., 1986; Hahm et al., 1991).

Third, mouse mutants with precocious stage III waves display

excessive ON/OFF segregation (Chandrasekaran et al., 2007;

Grubb et al., 2003). Fourth, artificial neuronal networks with

burst-time dependent plasticity rules similar to those found in

subcortical visual circuits (Butts et al., 2007; Shah and Crair,

2008) undergo reliable ON/OFF segregation in response to stage

III wave patterns (Gjorgjieva et al., 2009). In addition to guiding

refinement of dLGN circuits, the asynchronous activation of

ON and OFF RGCs appears well suited to shape the emergence

of ON/OFF domains and orientation selectivity in V1 (Jin et al.,

2008; Miller, 1994). At the same time, distance-dependent

correlations imposed by the lateral propagation of stage III

waves and disjoint binocular RGC activity are needed to

maintain retinotopic organization and eye-specific segregation

of retinofugal projections (Chapman, 2000; Demas et al., 2006;

Zhang et al., 2012).

The activation of RGCs during stage III waves is known to be

mediated by glutamate receptors and a transient rise in extrasy-

naptic glutamate has been shown to accompany each wave

(Blankenship et al., 2009; Firl et al., 2013; Wong et al., 2000).

However, the circuits that initiate and laterally propagate stage

III waves, and desynchronize the activity of neighboring ON

and OFF RGCs remain obscure.

Here, we systematically combine dual patch-clamp record-

ings of morphologically identified neurons in the retina to eluci-

date the circuits and mechanisms that give rise to the unique

activity patterns of stage III waves. We find that sequential spike

bursts of ON and OFF RGCs are generated by consecutive

glutamate release from ON and OFF CBCs. We identify and

characterize crossover circuits involving diffuse glycinergic and

GABAergic amacrine cells (ACs) through which ON CBCs
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Figure 1. Spike and Synaptic Input Patterns of ON and OFF RGCs

during Stage III Waves

(A) Schematic illustration of the retinal circuitry. Letters denote the following

cell classes: P, photoreceptors; B, CBCs; A, ACs; G, RGCs. Light responses
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hyperpolarize OFF CBCs to delay glutamate release and show

that glutamate uptake, mediated at least in part by Mueller glia

(MGs), is required for the separation of excitatory input to ON

and OFF RGCs. In addition to vertical inhibitory networks, we

discover two lateral excitatory circuit mechanisms that link ON

CBCs and underlie stage III wave initiation and propagation.

RESULTS

Spike Trains and Synaptic Inputs of ON and OFF RGCs
during Glutamatergic Waves
We began our investigation into the circuit mechanisms that

generate and pattern stage III waves by obtaining dual whole-

cell patch-clamp recordings from RGCs in flat-mounted P11–

P13 retinas. To minimize distortions in the relative timing of

activity introduced by lateral wave propagation, we targeted

neighboring RGCs with overlapping dendritic territories (Figures

1A and 1B; overlap: 59.4% ± 3.4%, mean ± SEM, n = 25).

Current-clamp recordings showed, in agreement with previous

studies (Blankenship et al., 2011; Kerschensteiner and Wong,

2008), that stage III waves often occur in clusters with multiple

bursts of activity separated by prolonged periods of silence (Fig-

ure 1C). More importantly, these recordings confirmed our previ-

ous multielectrode-array-based observation that within each

wave neighboring ON and OFF RGCs fire asynchronous bursts

of action potentials in a fixed order: ON before OFF (Figures

1D and 1E; peak time of OFF-ON cross-correlation (PT): 755 ±

134 ms, mean ± SEM, n = 11) (Kerschensteiner and Wong,

2008). The spontaneous activity of RGCs of the same response

sign (i.e., ON-ON or OFF-OFF), in contrast, is synchronized (PT:

25 ± 25 ms, n = 4; p < 0.01 for comparison to OFF-ON).

The precise sequence of ON andOFFRGC spike bursts during

glutamatergic waves could arise from distinctly timed excitatory

and/or inhibitory inputs to these cells, differences in their intrinsic
are indicated by filled (OFF) or open (ON) somata. Cells recorded to obtain the

data of this figure are highlighted.

(B) Orthogonal projections of a two-photon image stack of representative ON

(green) and OFF (magenta) RGCs recorded in a flat-mounted P12 retina.

(C and D) Representative current-clamp (I = 0 pA) traces of neighboring ON

and OFF RGCs shown on different timescales.

(E) Cross-correlations of the firing rates (r) of same (black) and opposite (red)

sign RGCs during stage III waves. Lines (shaded areas) here and elsewhere

represent the means (±SEMs) of the respective populations (n = 4 for same

sign and n = 11 for opposite sign RGCs).

(F) Representative EPSCs (VM ��60 mV) of neighboring ON and OFF RGCs

during glutamatergic waves.

(G) Cross-correlations of excitatory conductances (g) of same (n = 10) and

opposite sign (n = 10) RGCs.

(H) Representative IPSCs (VM �0 mV) of neighboring ON and OFF RGCs.

(I) Cross-correlations of inhibitory conductances (g) of same (n = 7) and

opposite (n = 7) sign RGCs color-coded as in (E) and (G).

(J) Simultaneously recorded EPSCs and IPSCs from a representative ON and

OFF RGCs.

(K) Crosscorrelation (n = 8) of excitatory conductances of ON RGCs and

inhibitory conductances of OFF RGCs. The ratios of inhibitory (ginh) and

excitatory (gexc) conductances of ON (open circles) and OFF (filled circles)

RGCs during stage III waves are shown in an inset. Lines indicate the means of

the respective populations.

See also Figure S1.
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excitability, or combinations thereof. To begin distinguishing

among these possibilities we examined synaptic inputs to

RGCs during stage III waves. Voltage-clamp recordings at the

reversal potential for inhibitory conductances (�60 mV) revealed

sequential excitatory postsynaptic currents (EPSCs) in ON and

OFF RGCs. The timing of EPSCs matched the spike patterns of

these neurons during waves (Figures 1F and 1G; OFF-ON PT:

control: 698 ± 42 ms, n = 15; same sign PT: 3.5 ± 16 ms, n = 10;

p < 10�4). From here on, we will refer to the distinct periods of

each wave during which ON and OFF RGCs receive excitation

(and spike) as the wave’s ON and OFF phases, respectively.

Unlike EPSCs, inhibitory postsynaptic currents (IPSCs) of ON

and OFF RGCs recorded at the reversal potential for excitatory

conductances (0 mV) were synchronized similar to those of

same sign RGCs (Figures 1H and 1I; OFF-ON PT: �27 ±

36 ms, n = 7; same sign PT: �44 ± 22 ms, n = 7; p > 0.8).

OFF RGCs Receive Crossover Inhibition from ON
Circuits during Stage III Waves
To determine whether RGCs receive inhibition during the ON

and/or OFF phase of stage III waves, we simultaneously

recorded EPSCs in ON RGCs and IPSCs in OFF RGCs (Fig-

ure 1J). The coincidence of these inputs (Figure 1K; PT: 2.6 ±

9.3 ms, n = 8) suggests that inhibition to both OFF and ON

RGCs is driven by the same circuit elements that provide excit-

atory input to ON RGCs. As a result, ON RGCs receive simulta-

neous excitation and inhibition, whereas inhibition precedes

excitation for OFF RGCs. In addition to differences in their timing,

the relative weights of excitatory and inhibitory synaptic con-

ductances were reversed between ON and OFF RGCs (Fig-

ure 1K, inset; ON ginh/gexc: 0.67 ± 0.09, n = 25 cells; OFF ginh/

gexc: 2.35 ± 0.26, n = 31 cells; p < 10�7).

Because synaptic inhibition precedes excitation in OFF RGCs,

postinhibitory rebound could contribute to their firing (Margolis

and Detwiler, 2007). To compare the importance of rebound

depolarizations to those mediated by synaptic excitation, we

recorded OFF RGC responses to somatic current injections

(see Figure S1 available online). Even for current steps

(�150 pA) that hyperpolarized OFF RGCs (�102.6 ± 8.3 mV,

n = 7 cells) well below the likely reversal potential for inhibitory

conductances at this age (Zhang et al., 2006), only two of seven

cells fired rebound spikes. Moreover, when observed, rebound

firing gave rise to only few action potentials compared to the

robust spike bursts elicited by depolarizing current injections

(Figure S1) and observed during waves (Figures 1C and 1D).

Responses of ON RGCs to current injections were similar to

those of OFF RGCs (Figure S1).

Thus, it appears that the offset bursts of ON and OFF RGCs

are elicited by sequential excitatory inputs to these neurons,

which in the case of ON RGCs outweigh simultaneous inhibitory

inputs and in the case of OFF RGCs are preceded by inhibition.

ON CBCs Depolarize and OFF CBCs Hyperpolarize
during the ON Phase of Stage III Waves
Several studies have shown that excitatory input to RGCs during

stage III waves is mediated by glutamate and recent reports

identify BCs as its likely source (Blankenship et al., 2009; Firl

et al., 2013; Wong et al., 2000). However, how BCs themselves
324 Neuron 79, 322–334, July 24, 2013 ª2013 Elsevier Inc.
respond during waves is not well understood. To address this

question and elucidate the mechanisms that offset excitatory

inputs to ON and OFF RGCs, we obtained dual whole-cell

patch-clamp recordings from BCs and RGCs with overlapping

neurite territories in P11–P13 retinal flat mount preparations (Fig-

ures 2A and 2B). The dendrites of BCs contact either rod (RBCs)

or cone (CBCs) photoreceptors. All CBCs (43/43 cells) but no

RBCs (0/4 cells) we recorded participated in stage III waves.

Like RGCs, CBCs can be grouped into ON and OFF classes.

The axons of ON CBCs stratify in the inner 3/5 of the IPL, those

of OFF CBCs in the outer 2/5 where they contact the dendrites of

ON and OFF RGCs, respectively (Ghosh et al., 2004). Simulta-

neous recordings of ON CBCs and ON RGCs revealed that

during each stage III wave, ON CBCs depolarize while their

membrane potential remains relatively stable between waves

(Figure 2C; VRest: �59.4 ± 1.6 mV, n = 27). The timing and shape

of ON CBC depolarizations matched those of concurrently

recorded ON RGC EPSCs (Figures 2D and 2E; PT: 56 ± 43 ms,

n = 18).

In contrast, OFF CBCs hyperpolarize during each stage III

wave and rest at higher membrane potentials in between (Fig-

ure 2F; VRest: �48.4 ± 2.4 mV, n = 16 cells, p < 10�3 for compar-

ison to ON CBCs). The timing of the respective events, similar to

depolarizations of ON CBCs, was aligned with the ON phase of

each wave (Figure 2G; trough time of cross-correlation: 52 ±

194 ms, n = 10). To further quantify voltage changes in ON and

OFF CBCs, we algorithmically detected waves (Experimental

Procedures) and subtracted from the voltage extremum during

a wave its average value before and after. Voltage excursions

of ON and OFF CBCs measured in this way had similar ampli-

tudes but opposite signs (Figure 2H; ON CBCs: 13.1 ± 1 mV,

n = 27; OFF CBCs: �12.6 ± 1.6 mV, n = 16, p < 10�7). This

was true irrespective of whether waves were detected based

on the CBC voltage itself or on simultaneously recorded excita-

tion to RGCs (Figure S2). To explicitly test the concurrence of

CBC voltage fluctuations with stage III waves, we compared

the probability with which RGC EPSCs coincided with CBC de-

polarizations (ON) or hyperpolarizations (OFF) in recorded traces

to simulations in which the timing of CBC events was randomly

shifted. In each case, the coincidence of CBC and RGC events

was significantly higher in the recorded than in the randomized

traces (Figure 2I, observed: 71% ± 2%, random 17% ± 1%,

n = 39, p < 10�7). Since RGC EPSCs at this age were shown to

be largely restricted towaves (Blankenship et al., 2009), it follows

that the CBC voltage fluctuations we discover here are as well.

Events detected only in RGC or CBC traces most likely reflect

waves propagating along paths that included most of the neu-

rites of one but not the other neuron recorded.

Thus, ONCBCs excite ONRGCs as they depolarize during the

ON phase of stage III waves, whereas OFF CBCs, instead of de-

polarizing during the OFF phase of waves, hyperpolarize during

the ON phase and release glutamate onto OFF RGCs as their

voltage returns to baseline.

Crossover Inhibition Hyperpolarizes OFF CBCs during
the ON Phase of Stage III Waves
To probe themechanisms that hyperpolarize OFF CBCs, we car-

ried out voltage-clamp recordings from these cells. In doing so,



Figure 2. ON CBCs Depolarize and OFF CBCs Hyperpolarize during

Stage III Waves

(A) Schematic of the retinal circuitry with the cells recorded to obtain data

presented in this figure highlighted. Labeling as in Figure 1.

(B) Representative two-photon image stack projected along two orthogonal

axes. For visual clarity, the recording electrodes have been digitally removed

from the side view (bottom panel).

(C and D) Simultaneous voltage (I = 0 pA, VRest ��63 mV) and EPSC

(VM ��60 mV) recording of an ON CBC and ON RGC, respectively, during

stage III waves, shown on different timescales.
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we observed large IPSCs in OFF CBCs that coincided with

EPSCs in simultaneously recorded ON RGCs (Figures 3A and

3B; PT: 30 ± 98 ms, n = 7). Importantly, the inhibitory inputs to

OFF CBCs far outweighed coinciding excitatory ones (Figures

3C and S4C; ginh/gexc: 7.56 ± 1.43, n = 11).

Previous results suggest that glycine and GABA receptors

mediate inhibition to OFF CBCs at this age (Schubert et al.,

2008). Consistent with this, we found that while strychnine

(500 nM) alone was sufficient to suppressmost wave-associated

OFF CBC hyperpolarizations (Figures 3D and 3E), blockade of

both glycinergic and GABAergic transmission (strychnine

500 nM, gabazine 5 mM, TPMPA 50 mM) was needed to depo-

larize OFF CBCs during stage III waves (Figures 3D and 3E; con-

trol: �13.8 ± 2.1 mV; �Gly: �0.2 ± 3.1 mV; �Gly �GABAA/C:

7.0 ± 2.7 mV, n = 6; p < 0.03 for all comparisons). Blockade of

inhibition had no effect on the amplitude of voltage fluctuations

in ON CBCs (control: 16.1 ± 2.9 mV; �Gly �GABAA/C: 15.5 ±

4.3 mV, n = 5; p > 0.8), but raised the frequency of waves

in both ON and OFF CBCs (Figure S3; control: 0.082 ±

0.008 Hz; �Gly �GABAA/C: 0.238 ± 0.032 Hz, n = 11, p < 10�3).

From these results, we conclude that ON CBCs drive cross-

over inhibition onto both OFF RGC dendrites and OFF CBC

axon terminals. This inhibition involves glycinergic and

GABAergic synaptic transmission and overwhelms synchronous

excitatory inputs to OFF CBCs.

Diffuse ACs Likely Provide Crossover Inhibition to OFF
CBCs and OFF RGCs
To identify the cells that mediate crossover inhibition, we

obtained dual recordings from ACs and RGCs during stage III

waves. ACs are a morphologically diverse class of inhibitory

interneurons in the inner retina (MacNeil and Masland, 1998).

For our experiments, we targeted ACs with diffusely stratified

neurites that are well positioned to convey signals between ON

and OFF CBCs in the IPL (Figures 4A and 4B). In agreement

with previous studies, we found that most diffuse ACs had

narrow to medium-sized lateral fields (territory: 960 ± 227 mm2,

n = 14) (MacNeil and Masland, 1998; Menger et al., 1998).

Uniformly, these ACs depolarized from rest during stage III

waves (Figures 4C and 4D; VRest: �55.1 ± 3.3 mV, DVoltage:

14.9 ± 1.6 mV, n = 18). Simultaneous recordings of EPSCs in

ON RGCs or IPSCs in OFF RGCs demonstrated that AC
(E) Crosscorrelation (mean ± SEM, n = 18) of ONCBC voltage (v) and excitatory

synaptic conductance of ON RGCs (or inhibitory conductance of OFF

RGC) (g).

(F) Simultaneous voltage and EPSC recording of an OFF CBC (VRest��46 mV)

and ON RGC.

(G) Crosscorrelation (n = 10) of OFF CBC voltage (v) and excitatory conduc-

tance of ON RGCs (or inhibitory conductance of OFF RGC) (g).

(H) The average of the maximal voltage changes during each wave of a given

CBC is indicated by circles (open, ON; filled, OFF). Population averages are

shown by lines.

(I) The conditional probability of algorithmically detecting awave in an ONRGC

EPSC trace given that a wave was identified in the simultaneously recorded

CBC voltage is depicted. Thin lines indicate data from each dual recording.

The thick line and filled symbols (error bars) represent the mean (±SEM) of the

population.

See also Figure S2.
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Figure 3. Glycinergic and GABAergic Cross-

over Inhibition Hyperpolarizes OFF CBCs

during Each Wave

(A) Simultaneous recording of wave-associated

IPSCs (VM �0 mV) in OFF CBCs and EPSCs

(VM ��60 mV) in ON RGCs.

(B) Crosscorrelation (mean ± SEM, n = 7) of in-

hibitory synaptic conductances of OFF CBCs and

excitatory synaptic conductances of ON RGCs.

(C) Ratio of inhibitory (ginh) and excitatory (gexc)

synaptic conductances activated in OFF CBCs

(filled circles) during stage III waves. Line indicates

mean of the population.

(D) Voltage traces of OFF CBCs in control condi-

tions (top trace), in the presence of strychnine

(500 nM, middle trace), and strychnine (500 nM),

gabazine (5 mM), and TPMPA (50 mM) (bottom

trace).

(E) Group data (mean ± SEM) for ON (white bars)

and OFF (black bars) CBCs illustrating the cell-

type-specific effects of inhibitory blockers on stage

III voltage responses.

See also Figures S3 and S4.
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depolarizations occurred during the ON phase of each wave

(Figures 4E and 4F; PT: 33 ± 51 ms, n = 9) and voltage-clamp

recordings revealed correlated EPSCs in diffuse ACs and ON

RGCs (Figures 4G and 4H; PT: 19 ± 46 ms, n = 5).

Thus, it appears that during the ON phase of stage III waves

ON CBCs release glutamate and depolarize glycinergic and

GABAergic diffuse ACs, which crossover inhibit OFF CBCs and

OFF RGCs.

Blockade of Synaptic Inhibition or Glutamate Uptake
Synchronizes Excitatory Input to ON and OFF RGCs
If delayed excitation and bursting of OFF RGCs depend on

crossover inhibition of OFF CBCs by diffuse ACs, as we suggest,

then blockade of inhibition, which inverts the responses of OFF

CBCs, should advance excitatory inputs and spike bursts of

OFF RGCs to the ON phase of stage III waves. Voltage- and

current-clamp recordings from neighboring ON and OFF RGCs

in the presence of strychnine, gabazine and TPMPA showed

that indeed blocking glycine, GABAA and GABAC receptors

synchronized EPSCs (Figures 5A and 5B; control: 698 ± 42 ms,

n = 15; �Gly �GABAA/C: 68 ± 42 ms, n = 4, p < 0.005) and spike

trains (Figure S5; control: 755 ± 134ms, n = 11;�Gly�GABAA/C:

40 ± 68 ms, n = 5, p < 0.005) of OFF and ON RGCs (Kerschen-

steiner and Wong, 2008).

To maintain temporal separation of the excitatory inputs to ON

and OFF RGCs, the spread of extrasynaptic glutamate needs to

be restricted to the distinct sublaminae in which their dendrites

stratify. In support of a role for excitatory amino acid transporters

(EAATs) in this process, we found that EPSCs in ON and OFF

RGCs were synchronized by application of TBOA (25 mM) (Fig-

ures 5C and 5D; control: 698 ± 42 ms, n = 15; �EAAT: 31 ±

28 ms, n = 5, p < 0.002). Furthermore, dual patch-clamp record-

ings from MGs and RGCs showed that MGs depolarize during

each neuronal wave (Figure S6; DVoltage: 1.26 ± 0.09 mV,

n = 5), suggesting that EAAT-mediated glutamate uptake, which
326 Neuron 79, 322–334, July 24, 2013 ª2013 Elsevier Inc.
is known to be electrogenic (Owe et al., 2006), is performed at

least in part by MGs.

ONCBCsAre Depolarized via Gap Junctions andCation-
Nonselective Conductances during Stage III Waves
The experiments described so far define circuit mechanisms that

offset the activity of ON and OFF RGCs and thus pattern gluta-

matergic waves. During these experiments, we found that ON

CBCs depolarize in each wave and control the activity of down-

stream neurons. To gain insight into the mechanisms by which

glutamatergic waves are initiated and propagated laterally, we

focused next on how ON CBCs depolarize.

Dual voltage-clamp recordings showed that ON CBCs receive

excitatory inputs in phase with ONRGCs (Figures 6A and 6B; PT:

28 ± 62 ms, n = 8). Surprisingly, for half of the ON CBCs (14/27

cells) the amplitude of wave-associated currents was similar at

0 mV and�60mV. To better characterize the excitatory conduc-

tances of ON CBCs, we blocked inhibition and recorded wave-

associated currents at a series of different holding potentials.

ON CBCs studied in this way fell into two distinct groups. In

the first group (I, 3/6 cells), the current amplitude relative to base-

line was insensitive to the holding potential (Figures 6C and 6D).

This behavior is expected if the recorded cells are coupled via

gap junctions to neighboring neurons that depolarize during

stage III waves. In the second group (II, 3/6 cells), wave-associ-

ated currents reversed near 0 mV (Figures 6E and 6F), indicative

of cation-nonselective conductances. OFF CBCs (4/4) displayed

similar current-voltage (I–V) relationships to group II ON CBCs

(Figure S4).

Extrasynaptic Glutamate Directly and Indirectly
Activates ON CBCs
Given previously observed wave-associated increases in

extrasynaptic glutamate in the IPL (Blankenship et al., 2009;

Firl et al., 2013), the most parsimonious explanation for the



Figure 4. Diffuse ACs Receive Excitatory Input and Depolarize

during the ON Phase of Stage III Waves

(A) Circuit diagram of the retina in which neurons recorded for this figure are

highlighted; labeling as in Figure 1.

(B) Orthogonal projections of a two-photon image stack of a diffuse AC (green)

and OFF RGC (magenta) filled during a recording.

(C) Simultaneous current- (I = 0 pA, VRest ��46 mV) and voltage-clamp clamp

(EPSCs, VM��60 mV) recording from a diffuse AC and ONRGC, respectively.

(D) The mean maximal voltage change during waves for each diffuse AC is

indicated by open circles. A solid line shows themean of all diffuse ACs (n = 18)

analyzed.

(E) Excerpts of the traces in (C) on an expanded timescale.

(F) Crosscorrelation (mean ± SEM, n = 9) of the membrane potential (v) of

diffuse ACs with excitatory conductances in ON RGCs (or inhibitory conduc-

tances in OFF RGCs) (g).

(G) Simultaneous recording of EPSCs in a diffuse AC and an ON RGC.

(H) Crosscorrelation (mean ± SEM, n = 5) of excitatory conductances in diffuse

ACs (g) with excitatory conductances in ON RGCs (or inhibitory conductances

in OFF RGCs) (g).
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cation-nonselective currents is that a subset of developing ON

CBCs express ionotropic glutamate receptors (iGluRs) on their

axons. To further explore this possibility and elucidate how the

two excitatory mechanisms of ON CBCs may be coordinated,

we focally applied glutamate onto their axon terminals in retinal

slices (P11–P13; Figure 7A). These experiments, conducted in

absence of Ca2+ to block synaptic transmission, recapitulated

the ON CBC groupings observed during stage III wave record-

ings. In 7/11 ON CBCs (group I; Figure 7B), glutamate puffs

elicited currents with amplitudes independent of the holding

potential and in 4/11 ON CBCs (group II; Figure 7C) glutamate

activated currents that reversed near 0 mV. These results indi-

cate that group I ON CBCs are gap junctionally coupled to neu-

rons that are depolarized by glutamate, whereas group II ON

CBCs appear to be directly activated via iGluRs. Importantly,

both mechanisms are jointly recruited by extrasynaptic gluta-

mate. Focal glutamate applications on RBC axons elicited cur-

rents that reversed at negative potentials (Figure 7D; n = 5) and

thus are likely carried by chloride.

Blockade of Ionotropic Glutamate Receptors or Gap
Junctions Suppress Stage III Waves
The observation that group I and II ON CBCs are activated by

glutamate, which they release, suggests that both mechanisms

may collaborate to propagate and/or initiate stage III waves.

To begin to test this hypothesis, we applied blockers of AMPA/

kainate (NBQX, 20 mM) and NMDA (AP5, 90 mM) receptors while

recording from CBCs and RGCs. In all cases (5/5), NBQX and

AP5 reversibly blocked not only EPSCs in RGCs, but also the

depolarizations of ON CBCs (Figures 7E and 7F). Waves were

similarly eliminated in OFF CBCs and diffuse ACs. Next, we

applied meclofenamic acid (MFA, 200 mM), a blocker of gap

junctions (Pan et al., 2007; Veruki and Hartveit, 2009), during

dual recordings of CBCs and RGCs. Similar to NBQX and AP5,

MFA uniformly (6/6) abolished EPSCs in RGCs as well as depo-

larizations of ON CBCs and diffuse ACs, and the hyperpolariza-

tions of OFFCBCs (Figures 7G and 7H). In agreement with recent

data (Veruki and Hartveit, 2009), even with fast solution

exchange, the effects of MFA showed slow onset and recovery

kinetics (>20min). To test whether this accounts for our previous

failure to silence stage III waves with MFA in multielectrode array

(MEA) recordings (Kerschensteiner and Wong, 2008), we

repeated these experiments. Indeed, when allowing for pro-

longed exposure and washout, we confirmed that MFA revers-

ibly suppresses stage III waves irrespective of the recording

method (Figures S7A and S7B). Moreover, 18-b-Glycyrrhetinic

acid (18-b-GA, 50 mM), another blocker of gap junctions,

similarly inhibited stage III waves in MEA recordings (Figures

S7C and S7D).

Together these data suggest that gap junctions and glutama-

tergic transmission form interacting circuit mechanisms for

lateral excitation of ON CBCs, which are both required for the

propagation and/or initiation of stage III waves.

DISCUSSION

In waves of all stages (I–III) bursts of RGC activity spread across

the retina separated by periods of silence (Demas et al., 2003;
Neuron 79, 322–334, July 24, 2013 ª2013 Elsevier Inc. 327



Figure 5. Blockade of Crossover Inhibition

and Glutamate Uptake Synchronize EPSCs

of ON and OFF RGCs

(A) Representative simultaneous recording of

EPSCs from ON and OFF RGCs in the presence of

strychnine (500 nM), gabazine (5 mM), and TPMPA

(50 mM).

(B) Crosscorrelation (mean ± SEM, control

n = 15, �Gly �GABAA/C n = 4) of excitatory syn-

aptic conductances (g) of ON and OFF RGCs in

control conditions (black) or in the presence of

glycinergic and GABAergic blockers (blue).

(C) Representative EPSC traces from simulta-

neously recorded ON and OFF RGCs in the

presence of the glutamate uptake inhibitor TBOA

(25 mM).

(D) Crosscorrelation (mean ± SEM, control

n = 15, �TBOA n = 5) of excitatory synaptic con-

ductances in ON and OFF RGCs. As in (B) control

results obtained in control conditions are depicted

in black. Cross-correlations recorded in the pres-

ence of TBOA are shown in orange.

See also Figures S5 and S6.
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Wong, 1999). Uniquely during stage III (P10–P14), neighboring

ON and OFF RGCs are recruited sequentially (ON before OFF)

into passing waves (Kerschensteiner and Wong, 2008). This

asynchronous activity is thought to help segregate ON and

OFF circuits in the dLGN and shape emerging ON and OFF

columns in geniculocortical projections (Cramer and Sur, 1997;

Dubin et al., 1986; Gjorgjieva et al., 2009; Hahm et al., 1991;

Jin et al., 2008; Kerschensteiner and Wong, 2008). At the same

time, the lateral propagation of stage III waves and the asynchro-

nous firing of RGCs in both eyes appear to maintain retinotopic

organization and eye-specific segregation of retinofugal projec-

tions (Chapman, 2000; Demas et al., 2006; Zhang et al., 2012).

RGC spiking during stage III waves is known to depend on

glutamate release from BCs and a transient rise in extrasynaptic

glutamate in the IPL has been shown to accompany each wave

(Blankenship et al., 2009; Firl et al., 2013; Wong et al., 2000). But

how stage III waves are initiated and propagated and what

mechanisms offset the activity of ON and OFF RGCs was

unclear. Using systematic combinations of dual patch-clamp re-

cordings, we identify intersecting lateral excitatory and vertical

inhibitory circuits in the developing retina (Figure 8) and elucidate

mechanisms by which neurons in these circuits generate pre-

cisely patterned stage III waves.

Circuit Mechanisms Desynchronizing ON and OFF RGC
Bursts during Stage III Waves
Analyzing the mechanisms that generate asynchronous spike

bursts, we found that EPSCs inON andOFFRGCs occur in a ste-

reotypical sequence (ON before OFF), whereas both neurons

receive inhibition simultaneously during the ON phase of stage

III waves (Figure 1). In addition to distinctions in timing, ON

RGCs tend to receive more excitation than inhibition and OFF

RGCs more inhibition than excitation. Similar patterns of synap-

tic inputs to ON and OFF RGCs are elicited by light stimulation in
328 Neuron 79, 322–334, July 24, 2013 ª2013 Elsevier Inc.
mature retinal circuits (Murphy and Rieke, 2006; Pang et al.,

2003) and differences in excitation/inhibition ratios of ON and

OFF RGCs persist after photoreceptor degeneration (Margolis

et al., 2008; Yee et al., 2012). This suggests that key circuits in

the inner retina, particularly those mediating ON-to-OFF cross-

over inhibition, are established prior to vision, maintained

following its loss, and play an important role in patterning both

spontaneous and light-evoked RGC activity.

Because inhibition stereotypically precedes excitation to OFF

RGCs during stage III waves and light-evoked spike trains of OFF

RGCs are shaped by disinhibition (Manookin et al., 2008;Murphy

and Rieke, 2006), we tested the contribution of postinhibitory

rebound to the delayed bursting of OFF RGCs (Figure S1). Unlike

in mature OFF RGCs (Margolis and Detwiler, 2007), we found

that rebound depolarizations following somatic current injec-

tions rarely elicited spikes at P11–P13 and observed no differ-

ences in the intrinsic excitability of ON and OFF RGCs (Myhr

et al., 2001). With the caveat that somatic current injections

may not adequately capture the influence of dendritic inhibition

(Gidon and Segev, 2012), we therefore conclude that offset

excitatory synaptic inputs account for the sequential spiking of

ON and OFF RGCs.

Asynchronous excitation of RGCs suggested that ON andOFF

CBCs, which provide input to ON and OFF RGCs, respectively,

participate differently in stage III waves. Indeed, we found that

during the ON phase of each wave ON CBCs depolarize,

whereas OFF CBCs hyperpolarize (Figure 2). In conjunction

with the timing of RGC EPSCs, these data imply that OFF

CBCs release glutamate as their voltage returns to baseline

following transient hyperpolarizations. The ability of CBCs to

continuously vary neurotransmission as a function of voltage

relies on the specialized release machinery of ribbon synapses

(Matthews and Fuchs, 2010). The importance of ribbon synapses

to stage III waves is underlined by the observation that these



Figure 6. ON CBCs Receive Excitatory Input during Waves via

Cation-Nonselctive Conductances and Gap Junctions
(A) Simultaneous recording of EPSCs of an ONCBC andONRGC during stage

III waves.

(B) Crosscorrelation (mean ± SEM, n = 8) of excitatory synaptic conductances

(g) of ON CBCs and ON RGCs.

(C and E) Voltage-clamp traces of a representative group I (C) and II (E) ON

CBC in the presence of strychnine (500 nM), gabazine (5 mM), and TPMPA

(50 mM) at a series of holding potentials.

(D and F) Normalized I-V relationship (mean ± SEM) of wave-associated input

currents to group I (D, n = 3) and II (F, n = 3) ON CBCs during blockade of

inhibitory synaptic transmission.
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waves first appear as synaptic ribbons are being assembled in

the IPL (Fisher, 1979), a period that is predated by conventional

glutamate release from CBCs (Johnson et al., 2003). The mech-

anisms by which an OFF CBC’s return to baseline voltage

without appreciable overshoot (Figure 2) is translated into a

phasic EPSC in an OFF RGC are discussed in the supplement

(Supplemental Discussion).

To maintain the temporal separation of glutamate release from

ON and OFF CBCs in the EPSCs of ON and OFF RGCs, the

spread of extrasynaptic glutamate during waves needs to be

limited to the distinct sublaminae in which their dendrites stratify.

Application of TBOA synchronized excitatory input to ON and

OFFRGCs (Figure 5), indicating that glutamate uptake via EAATs

is necessary to prevent spillover between ON and OFF sub-
laminae. MGs express EAAT1 (GLAST) and are thought to be

the primary agent of glutamate clearance from the IPL (Pow

et al., 2000). While Ca2+ signals in MGs do not coincide with

neuronal waves (Firl et al., 2013), we find that MGs depolarize

during each stage III wave (Figure S6), likely reflecting electro-

genic glutamate uptake (Owe et al., 2006).

In daylight, OFF CBCs hyperpolarize in part due to decreases

in glutamate release from cone photoreceptors onto AMPA and

kainate receptors on their dendrites (DeVries, 2000; DeVries and

Schwartz, 1999). In contrast, voltage-clamp recordings showed

that inhibitory synaptic conductances mediate the hyperpolar-

ization of OFF CBCs during stage III waves (Figure 3). In agree-

ment with a previous study (Schubert et al., 2008), we found

that both GABA and glycine receptors mediate presynaptic

inhibition of developing OFF CBCs. ACs are a diverse class of

interneurons in the inner retina (MacNeil and Masland, 1998).

The most likely candidates for providing crossover inhibition

from ON to OFF CBCs are diffusely stratified ACs, which contact

both neurons. To convey directional ON-to-OFF inhibition,

diffuse ACs would have to preferentially receive input in the ON

sublamina and provide output in the OFF sublamina of the IPL.

Consistent with this prediction, we find that diffuse ACs receive

excitatory input and depolarize selectively during the ON phase

of stage III waves, which in turn matches the timing of inhibitory

input to OFF CBCs. This applies to both narrow- and medium-

field diffuse ACs, which are likely glycinergic and GABAergic,

respectively (Masland, 2012; Menger et al., 1998). Finally,

blockade of crossover inhibition was sufficient to invert OFF

CBC responses and synchronize excitatory inputs to and spiking

of ON and OFF RGCs (Figures 3, 5, and S5), supporting the

notion that inhibition of OFF CBC axon terminals controls their

glutamate release during stage III waves.

A similar ‘‘axonal’’ mode of OFF CBC operation relays signals

near the threshold for vision (Murphy and Rieke, 2006) and con-

tributes to processing at higher light levels (Liang and Freed,

2010; Manookin et al., 2008; Molnar and Werblin, 2007). The

respective circuits differ in that RBCs rather than ON CBCs drive

crossover inhibition at low light levels, but appear not to partici-

pate in stage III waves. In addition, light-evoked crossover

inhibition can largely be accounted for by activation of glyciner-

gic AII ACs (Liang and Freed, 2010; Molnar and Werblin, 2007;

Murphy and Rieke, 2006), whereas presynaptic inhibition of

OFF CBCs during glutamatergic waves involves a broader set

of glycinergic (including AII) and GABAergic diffuse ACs.

Circuit Mechanisms of Stage III Wave Initiation and
Propagation
The data discussed so far reveal that ON CBCs engage specific

vertical inhibitory circuits to generate precisely timed asynchro-

nous spike bursts in ON andOFF RGCs and thus pattern stage III

waves. Next, we will address how excitation spreads laterally

between ON CBCs to provide insight into the mechanisms that

initiate and propagate stage III waves.

Voltage-clamp recordings showed that ON CBCs fall into two

groups that receive excitatory input via distinct mechanisms. In

one group (II), stage III waves as well as focal glutamate

applications on axon terminals appear to activate cation-nonse-

lective conductances (Figures 6 and 7). In vision, ON CBCs
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Figure 7. Focal Application of Glutamate Activates Distinct Currents in ONCBCs and Antagonists of iGluRs andGap Junctions Blocks Stage

III Waves in ON CBCs and RGCs

(A) Schematic illustrating focal application of glutamate in the IPL.

(B–D) Representative traces (top panels) and summary data (bottom panels) of currents elicited by glutamate in different BC types: group I ON CBCs (B, n = 7),

group II ON CBCs (C, n = 4) and RBCs (D, n = 5).

(E and G) Dual-current (I = 0 pA, VRest ��65 mV) and voltage-clamp (EPSCs, VM ��60 mV) recordings from ON CBCs and ON RGCs, respectively. Traces are

shown in control solution, during application of 90 mM AP5 and 20 mM NBQX (E) or 200 mM MFA (G) and after washout of these drugs.

(F and H) Average (±SEM) rate of waves in these conditions (AP5, NBQX n = 5; MFA n = 6).

See also Figure S7.
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hyperpolarize to glutamate release from cones via dendritically

localized mGluRs coupled to Trpm1 channels (Koike et al.,

2010; Masu et al., 1995; Morgans et al., 2009). Based on our

results, the most parsimonious conclusion is that during

development group II ON CBCs express iGluRs on their axon

terminals. While expression of these receptors needs to be

confirmed and is likely transient, there is some evidence that

even in mature circuits a subset of ON CBCs may utilize iGluRs

(Kamphuis et al., 2003; Pang et al., 2012).Wave-associated spill-

over of glutamate into the extrasynaptic space (Blankenship

et al., 2009; Firl et al., 2013) combined with the expression of

axonal iGluRs would provide a direct excitatory link between

neighboring ON CBCs.
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In another group (I) of ON CBCs, gap junctions mediate depo-

larizations during waves and in response to focal glutamate

applications (Figures 6 and 7). Which neurons form these gap

junctions with ON CBCs? Candidates have to depolarize during

the ON phase of stage III waves and be activated by glutamate.

In mature circuits, ON CBCs are known to couple to AII ACs,

which express iGluRs (Hartveit and Veruki, 1997; Kolb and Fami-

glietti, 1974; Mills and Massey, 1995; Veruki and Hartveit, 2002;

Zhou and Dacheux, 2004). In addition to participating in visual

processing, these electrical connections are involved in the

generation of patterned spontaneous activity in retinas with

photoreceptor degeneration (Borowska et al., 2011; Trenholm

et al., 2012). Among the diffuse ACs we recorded, four were



Figure 8. Schematic Illustration of Retinal Circuit Activation during
Stage III Waves

(A) Circuit diagram of the retina. Numbers denote the following: 1, ON CBC; 2,

ON RGC; 3, diffuse AC; 4, OFF CBC; 5, OFF RGC. Color cording indicates

whether the respective neurons participate in the ON (blue) or OFF (orange)

phase of stage III waves.

(B) Activity patterns (VM) aswell as excitatory (gexc) and inhibitory (ginh) synaptic

conductances of the cells depicted in (A) are summarized. Shaded areas mark

the ON and OFF phase of stage III waves. The relative amplitudes of gexc and

ginh traces are representative of the relative size of these conductances in a

given cell but not between different cells.
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morphologically identified as AII ACs. Each depolarized during

the ON phase of stage III waves. Aside from excitatory coupling

to ON CBCs, AII ACs likely participate in glycinergic crossover

inhibition of OFF CBCs and OFF RGCs. In addition to AII ACs,

ON CBCs may be coupled to other ACs (Farrow et al., 2013)

and/or each other (Arai et al., 2010). Thus, gap junctions provide

a second lateral excitatory link, either direct or via intermediate

ACs, among ON CBCs.

Both forms of excitatory input are recruited by glutamate

released from ON CBCs, which we propose forms the basis for

the generation and coordinated lateral propagation of stage III

waves. Consistent with this notion, blockade of either iGluRs

or gap junctions was sufficient to block stage III waves in ON

CBCs as well as RGCs (Figures 7 and S7). In support of the

importance of gap junctions, we show that application of MFA

blocks depolarizations in ON CBCs, and that both MFA and

18-b-GA reversibly silence stage III waves in MEA recordings.

In previous studies, 18-b-GA similarly suppressed glutamatergic

waves in the developing chick and rabbit retina (Syed et al.,

2004; Wong et al., 1998). However, stage III waves persist in

knockout mice lacking two connexin subunits involved in

coupling of BCs (Blankenship et al., 2011). One or both of the

following explanations likely account for the discrepant results
of pharmacologic and genetic manipulations. First, blockers of

gap junctions are known to have off target effects (Peretz

et al., 2005). While MFA and 18-b-GA are among the more

specific antagonists of gap junctions (Pan et al., 2007) and the

similarity of their effects in our experiments argue against a

nonspecific mechanism of wave blockade, we cannot rule out

this possibility. Second, genetic (i.e., persistent) manipulations

that interfere with specific wave mechanisms have consistently

been found to trigger homeostatic adjustments that preserve

waves (Blankenship et al., 2009; Stacy et al., 2005; Stafford

et al., 2009; Sun et al., 2008). Accordingly, germline deletion of

connexins may lead to compensatory changes in iGluR expres-

sion of ON CBCs. While future experiments are needed to

conclusively determine the importance of gap junctions for the

propagation and/or initiation of stage III waves, our recordings

demonstrate that they are responsible for the depolarization of

group I ON CBCs.

Spontaneous network activity in the retina and elsewhere

arises either from pacemaker neurons or in a distributed manner

from groups of neurons coupled by excitatory mechanisms

(Blankenship and Feller, 2010). Blockade of either gap junctions

or iGluRs suppressed all depolarizations in ON CBCs (Figure 7).

While our sampling of ON CBCs is not exhaustive and other

neurons (e.g., AII ACs) could act as pacemakers (Trenholm

et al., 2012), these data favor a distributed origin of stage III

waves and argue that the two excitatory links between ON

CBCs we discover are involved both in the initiation and lateral

propagation of network activity.
EXPERIMENTAL PROCEDURES

Electrophysiology

All procedures in this study were approved by the Animal Studies Committee

of Washington University School of Medicine and performed in compliance

with the National Institutes of Health Guide for the Care and Use of Laboratory

Animals. Mice (C57BL/6J) were dark adapted (�2 hr) and their retinas isolated

under infrared illumination (>900 nm) as described previously (Soto et al.,

2012).

Dual whole-cell patch-clamp recordings from RGCs and cells in the inner

nuclear layer (INL) were obtained in flat mount preparations continuously

superfused (�2 ml/min) with warm (33�C–35�C) mouse artificial cerebrospinal

(mACSF) containing (in mM) 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 NaH2PO4, 2

CaCl2, 20 glucose, and 26 NaHCO3 equilibrated with 95% O2/5% CO2. In

some experiments, the following pharmacological agents were added to

mACSF and bath-applied individually or in combinations (Results): D-(�)-2-

Amino-5-phosphonopentanoic acid (AP5, 90 mM, Tocris), 2,3-Dioxo-6-nitro-

1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX, 20 mM, Tocris),

(1,2,5,6-Tetrahydropyridine-4-yl-methylphosphinic acid (TPMPA, 50 mM,

Sigma), gabazine (5 mM, Tocris), Strychnine (500 nM, Sigma), Meclofenamic

acid (MFA, 200 mM, Sigma), and 18-b-Glycyrrhetinic acid (18-b-GA, 50 mM,

Sigma). To record from monostratified RGCs with overlapping dendrites,

neighboring large somata (�20 mm) in the ganglion cell layer (GCL) were

targeted after tearing a hole through the inner limiting membrane (ILM). To

record INL cells within the dendritic territory of a given RGC, an additional

hole in the ILM was made �100 mm from the site of the RGC recording and

patch electrodes advanced diagonally toward the INL. Cells were targeted

for recording under infrared (>900 nm) illumination.

Responses of BCs to focal glutamate applications on their axon terminals

were recorded in retinal slices (200 mm thick). For slicing, pieces of isolated

retinas were embedded in low melting point agarose (3%, Sigma) and cut

on a vibrating microtome (Leica). In the recording chamber slices were held

in place by a harp consisting of nylon strings glued to a platinum ring.
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Glutamate (1 mM in mACSF, Sigma) was focally applied in short (30 ms) puffs

from a patch pipette using a Picospritzer II (Parker Hannifin). We included

0.1 mM Alexa 488 in the puff solution and verified by two-photon imaging

that applications were restricted to axon terminals of BCs filled with Alexa 568.

For voltage-clamp recordings from RGCs, patch pipettes (4–7 MU, borosil-

icate glass) were filledwith (inmM) 120Cs-gluconate, 1 CaCl2, 1MgCl2, 10 Na-

HEPES, 11 EGTA, 10 TEA-Cl, and 2Qx314 (pH adjusted to 7.2 with CsOH). For

all current clamp recordings and voltage clamp recordings from INL cells,

patch pipettes were filled with (in mM) 125 K-gluconate, 10 NaCl, 1 MgCl2,

10 EGTA, 5 HEPES, 5 ATP-Na, and 0.1 GTP-Na (pH adjusted to 7.2 with

KOH). For glutamate puff experiments K-gluconate in the pipette solution

was replaced by Cs-gluconate and pH adjusted with CsOH. Internal solutions

included 0.1 mM of either Alexa 488 or Alexa 568. All reported voltages were

corrected for liquid junction potentials. Signals were amplified on Multiclamp

700B amplifier, filtered at 3 kHz (8-pole Bessel low-pass) and sampled at

10 kHz. All recordings of spontaneous activity were conducted in darkness

(<0.1 Rh*/R/s).

In MEA experiments, action potentials from large ensembles of RGCs

were simultaneously recorded on planar arrays of 252 electrodes

(MultiChannelSystems). Toward this end, rectangular pieces of isolated retina

were mounted on the MEAs RGC-side down and secured with a dialysis

membrane weighed down by a platinum ring. The tissue was superfused

(�1 ml/min) with warm (33�C–35�C) mouse artificial cerebrospinal (mACSF).

Signals of each electrode were band-pass filtered between 0.3 and 3 kHz

and digitized at 5 kHz. Signal cutouts flanking (3 ms) negative threshold cross-

ings were recorded to hard disk and principal component analysis of these

waveforms used to sort spikes into trains representing the activity of individual

neurons (Offline Sorter; Plexon). Refractory periods in spike trains were used to

assess the quality of the sorting. Cross-correlations among spike trains were

used to detect when activity of a single neuron had been recorded on more

than one electrode. In these cases, only the train with the most spikes was

used for further analysis.

Imaging

The morphology of recorded cells (filled with Alexa 488 and Alexa 568) was

analyzed in two-photon z-series image stacks acquired at the end of each

recording (microscope: Fv1000 MPE; objective: 203, 0.9 NA, both Olympus).

Neurons were identified as ON or OFF cells when their dendrites (RGCs),

axons (BCs) or bifunctional neurites (ACs) stratified within the inner 3/5 and

outer 2/5, respectively, of the inner plexiform layer (IPL) (Ghosh et al., 2004).

ACs that elaborate neurites in both parts of the IPL were classified as diffuse

ACs. In a subset of our experiments full-field light stimuli (�10,000 Rh*/R/s)

were presented on an organic light-emitting display (852 3 600 pixels,

OLED-XL, eMagin) focused onto the photoreceptors via the substage

condenser. In each case, the elicited responses confirmed the morphology-

based assignment of the respective neurons to ON or OFF groups. In the

INL, we recorded BCs, ACs andMGs, which were distinguished based on their

morphology (Supplemental Experimental Procedures).

Analysis

Data were analyzed using procedures custom written in Matlab (Mathworks).

To compare the timing of synaptic inputs to and activity of simultaneously

recorded cells we computed cross-correlations as follows:
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where xi and yi represent spike counts, or voltage or conductance measure-

ments of two cells in the i-th of N time bins, < x > and < y > signify their respec-

tive average values, and t the time lag in the crosscorrelation. The width of time

bins (Dt) was 100 ms for spike trains and 1 ms for voltage and conductance
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measurements. Because synaptic inputs and activity were nonstationary

(i.e., high during waves and negligible in between), we determined values of

< x > and < y > using 5 s-wide sliding windows (Kerschensteiner and Wong,

2008; Perkel et al., 1967).

To algorithmically detect waves in current or voltage recordings of BCs

and RGCs, we smoothed the respective traces using a Loess filter and

defined excursions of the smoothed traces beyond several standard devia-

tions as periods of waves, which were than analyzed in the original traces.

This procedure reliably identified >90% of the events identified by a human

observer. To gauge the significance of coincident activity in simultane-

ously recorded cells, events of one cell were randomly displaced within the

recording.

The overlap of RGC dendrites was quantified as

overlap=
2 � ðAXBÞ

A+B

where A and B represent the smallest convex polygons encompassing the

arbors of the respective RGCs in a z projection and A X B indicates the

area of their intersection.

We used either Wilcoxon-Mann-Whitney rank-sum or, in case of paired

samples, Wilcoxon signed-rank tests to assess statistical significance of

differences between groups. Throughout the text population averages are

given as mean ± standard error of the mean (SEM).
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