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Summary

Most neurons function in the context of pathways that pro-

cess and propagate information through a series of stages,
e.g., from the sensory periphery to cerebral cortex [1].

Because activity at each stage of a neural pathway depends
on connectivity at the preceding one, we hypothesized that

during development, axonal output of a neuronmay regulate
synaptic development of its dendrites (i.e., retrograde plas-

ticity). Within pathways, neurons often receive input from
multiple partners and provide output to targets shared with

other neurons (i.e., convergence) [2]. Converging axons
can intermingle or occupy separate territories on target den-

drites. Activity-dependent competition has been shown to
bias target innervation by overlapping axons in several sys-

tems [3–8]. By contrast, whether territorial axons or den-
drites compete for targets and inputs, respectively, has not

been tested. Here, we generate transgenic mice in which
glutamate release from specific sets of retinal bipolar cells

(BCs) is suppressed. We find that dendrites of silenced

BCs recruit fewer inputs when their neighbors are active
and that dendrites of active BCs recruit more inputs when

their neighbors are silenced than either active or silenced
BCs with equal neighbors. By contrast, axons of silenced

BCs form fewer synapses with their targets, irrespective of
the activity of their neighbors. These findings reveal that

retrograde plasticity guides BC dendritic development
in vivo and demonstrate that dendrites, but not territorial

axons, in a convergent neural pathway engage in activity-
dependent competition. We propose that at a population

level, retrograde plasticity serves to maximize functional
representation of inputs.

Results and Discussion

Bipolar cells (BCs) are glutamatergic second-order neurons of
the visual system that receive input from photoreceptors (rods
or cones) in the outer retina and innervate amacrine (ACs) and
ganglion (GCs) cells in the inner retina (Figure 1A) [9]. There are
12 types of BCs in mice: seven depolarize (ON BCs) and five
hyperpolarize (OFF BCs) to light increments [9, 10]. Here, we
analyze the influence of axonal activity on the development
of type 6 ON BCs (B6s). Each B6 receives input from approxi-
mately four cones (Figure 2) [11], and approximately 200 of
them converge onto a specific GC target [12, 13].

We previously developed mice in which a few B6s in each
retina exhibit bright red fluorescence (Figure 1B, tdTomato),
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as well as mice in which all ON BCs express the light chain
of tetanus toxin (Figure 1C, TeNT) and yellow fluorescent pro-
tein (YFP) [12, 14]. For this study, we generated additional
transgenic lines expressing TeNT and YFP in a sparse subset
of B6s (Figure 1D, TeNTsparse). TeNT inhibits transmitter
release by cleaving vesicle-associated membrane protein 2
(VAMP2) [15]. Immunohistochemistry showed that VAMP2 is
depleted similarly in YFP-positive axon terminals of TeNT
and TeNTsparse mice and that YFP-negative ON BC axons in
TeNTsparse retinas contain normal levels of VAMP2 (Figures
1E–1I). We next compared electroretinographic (ERG) re-
sponses of wild-type (WT) and TeNTmice (Figure 1J). The pre-
served a-wave amplitudes of TeNT mice (Figure 1K) suggest
that photoreceptor responses to light are unchanged. Oscilla-
tory potentials and b-waves in the ERG arise in third-order
neurons (ACs and GCs) and BCs plus third order neurons,
respectively [16]. Accordingly, we interpret the nearly com-
plete suppression of oscillatory potentials (Figure 1M) accom-
panied by a small reduction in b-wave amplitudes (Figure 1L) in
TeNT mice as evidence that TeNT expression blocks gluta-
mate release from BC axons in vivo, with no or only minor ef-
fects on signaling in BC dendrites. In vitro patch clamp and
multielectrode array (MEA) recordings from GCs corroborate
reduced transmitter release from BCs [14].
To analyze the role of transmitter release in the develop-

ment of converging territorial axons, we compared arbor
morphologies and synapse patterns of active B6 axons with
active neighbors (WT), silenced B6 axons with silenced neigh-
bors (TeNT), and silenced B6 axons with active neighbors
(TeNTsparse). Individual B6s were visualized either by crossing
to tdTomato mice (WT and TeNT) or by YFP expression in
TeNTsparse mice. Axons of each BC type are strictly territorial
and tile the retinal surface with few gaps and little overlap [10].
Confocal reconstructions revealed that B6 axons that are
unable to release glutamate establish normal territories,
even when surrounded by active neighbors (Figures 2A–2D).
Similarly, stratification patterns of B6 axons were indistin-
guishable betweenWT, TeNT and TeNTsparse mice (Figure S1),
indicating that laminar targeting and territorial interactions
of BC axons are independent of transmitter release. We
next counted synapses, as identified by punctate labeling
for C-terminal binding protein 2 (CtBP2) (Figures 2A–2C), a
component of presynaptic ribbons [17], which has been
confirmed to appose postsynaptic specializations on GCs
and ACs [12, 14, 18, 19]. We found that silenced B6 axons
formed fewer synapses (Figure 2E); numbers were equally
reduced in TeNT and TeNTsparse mice, suggesting that neuro-
transmitter release regulates target innervation by territorial
axons without competition [20]. The difference in observa-
tions made of overlapping axons [3–8] suggests that the terri-
torial arrangement of axons may serve to constrain the role of
activity in synaptic development. We previously observed
similar architectural boundaries to the influence of neuro-
transmission between axons targeting separate layers of bis-
tratified dendrites [14].
To test whether neurotransmission retrogradely regulates

dendritic development, we reconstructed B6 dendrites—and
visualized their contacts with cone terminals by labeling with
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Figure 1. Transgenic Silencing of Specific Sets of Bipolar Cells In Vivo

(A) Schematic of the convergent vertical pathway through the retina. Several photoreceptors (P) synapse onto the dendrites of each bipolar cell (BC) in the

outer plexiform layer (OPL). Axons of many BCs in turn innervate each ganglion cell (GC) in the inner plexiform layer (IPL).

(B–D) Images of BC somata in flat-mounted retinas illustrate the expression patterns of tdTomato (cyan) and YFP (red, coexpressed with TeNT) in WT (B),

TeNT (C), and TeNTsparse (D) mice. Inset schematics illustrate labeling (black, unlabeled; cyan, tdTomato; red, YFP; white, tdTomato and YFP) and activity

status of the analyzed B6 cells (middle cell) and their neighbors. Red circles with diagonal crossings indicate axonal silencing by TeNT expression.

(E–H) Images of vibratome sections through the IPL ofWT (E), TeNT (F), and TeNTsparse (G and H) retinas show VAMP2 depletion in axon terminals (VGluT1) of

TeNT-expressing (i.e., YFP-positive) ON BCs. A zoomed-out view of an isolated YFP-positive B6 in a TeNTsparse retina is shown in (G). The left panel of (H)

includes an outline of the perimeter of the masked axon terminal of the B6 shown in (G) and the right panel of (H).

(I) Quantification of the VAMP2 content of YFP-negative and YFP-positive ONBC axon terminals inWT (n = 12), TeNT (n = 10), and TeNTsparse (n = 26) retinas.

Each small circle represents one retinal section, and large circles (error bars) denote population averages (6SEM).

(J) Raw (lower traces; horizontal scale bar, 50 ms) and high-pass-filtered (cutoff: 100 Hz; upper traces; horizontal scale bar, 66 ms) ERG responses of dark-

adapted WT (black) and TeNT (red) retinas to light flashes (2.526 cd s m22).

(K–M) Population data (WT: n = 5 mice; TeNT: n = 5 mice) of a-wave (K), b-wave (L), and oscillatory potential (M) amplitudes. Insets highlight the cellular

origins of the respective ERG components in the vertical pathway in green.
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fluorescent peanut agglutinin (PNA)—in WT, TeNT, and
TeNTsparse mice (Figures 3A–3C). Importantly, cone densities
and terminal sizes were indistinguishable across genotypes
(Figure S2). We found that dendrites of active and silenced
B6s recruit similar numbers of cones so long as their neighbors
are active or silenced as well (WT: 4.15 6 0.14, n = 51; TeNT:
4.00 6 0.21, n = 27; p > 0.5; Figures 3D and S2). By contrast,
silenced B6s with active neighbors contact fewer cones
(TeNTsparse: 3.31 6 0.14, n = 42; p < 0.0001 and p < 0.01 for
comparisons toWT and TeNT, respectively; Figure 3D). These
findings suggest that dendrites of neighboring B6s compete
for input partners and that the outcome of their competitions
is biased by retrograde signals elicited by axonal transmitter
release. In WT retinas, the size of synapses on B6 dendrites
decreases with distance from the soma (Figure 3E) as the
likelihood of shared cone recruitment by neighboring B6s in-
creases [10, 21]. The absence of this relationship in TeNT-
expressing B6s (TeNT and TeNTsparse) further supports the
idea that axonal transmitter release influences interactions be-
tween dendrites of neighboring BCs (Figures 3F and 3G).
Interestingly, the size of synapses between cones andB6s in

TeNTsparse retinas was increased compared to WT and TeNT
(p < 0.0001 for both comparisons, Figures 3E–3G and S3).
We hypothesize that this increase in contact size is a conse-
quence of the decrease in the number of cones contacted,
indicative of homeostatic mechanisms that stabilize input to
developing BCs. Similar observations of synaptic scaling
have previously been made in other circuits [22–24].



Figure 2. Activity-Dependent Plasticity of BC Axons

(A–C) Projections through confocal image stacks of representative B6 axons inWT (A), TeNT (B), and TeNTsparse (C) retinas. Insets show single boutons of B6

axons and their CtBP2 labeling.

(D and E) Comparisons of axonal territories (D) and synapse numbers (E) betweenWT (n = 18), TeNT (n = 18), and TeNTsparse (n = 19) retinas. Each small circle

represents one cell. Large circles (error bars) mark the population averages (6SEM).

See also Figure S1.
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If differences in axonal output of neighboring BCs indeed
bias the outcome of their dendritic competitions, one would
expect that active B6s with silenced neighbors expand den-
dritic territories and recruit additional cones. To test this pre-
diction, we identified transgenic mice in which 18.5% 6 1.4%
of ON BCs express TeNT and YFP distributed in patches of
high and low density (Figure 4A, TeNTpatchy). The patterns of
VAMP2 depletion in TeNTpatchy retinas matched the patterns
of YFP expression (Figure S4). Moreover, spatiotemporal
receptive fields (RFs) of ON GCs measured in MEA recordings
were smaller and spatially less homogeneous in TeNTpatchy

compared to WT retinas but showed preserved kinetics (Fig-
ures 4B–4E), suggesting that TeNT-expressing ON BCs are
silenced while the remaining ON BCs relay photoreceptor sig-
nals to GCs normally. Reconstructions of YFP-negative (i.e.,
active) B6s surrounded by YFP-positive (i.e., silenced) neigh-
bors in high-density patches (91.8% 6 6.4% YFP-positive ON
BCs) of double-transgenic TeNTpatchy tdTomato retinas (Fig-
ure 4A) revealed that their dendrites expand to contact
more cones (WT: 4.15 6 0.14, n = 51; TeNTpatchy: 5.18 6
0.21, n = 22; p < 0.001; Figures 4F and 4G), whereas their
axons occupy similar territories to WT B6s (WT: 191.02 6
8.73 mm2, n = 18, TeNTpatchy: 186.25 6 9.03 mm2, n = 19; p >
0.7). The size of cone-B6 contacts was on average slightly
increased (p < 0.01), and their centroperipheral gradient
across dendritic fields was restored in TeNTpatchy retinas (Fig-
ure 4H). The former suggests that increased input (TeNTpatchy)
during development does not trigger the same homeostatic
adjustments as decreased input (TeNTsparse), whereas the
latter reflects the influence of axonal activity on dendritic
interactions.
Together, our results support the idea that dendrites of

developing BCs compete for input partners and that the
outcomes of dendritic competitions depend on transmitter
release from axons of the same neurons (Figures 4I and
4J). By allocating inputs to developing dendrites of neigh-
boring neurons according their axon’s ability to communi-
cate information onward, retrograde plasticity, at a popula-
tion level, acts to maximize the functional representation of
inputs (i.e., the coverage of inputs whose signals reach
target layers). The signals that mediate retrograde influences
on dendritic competitions, whether target derived [25] or
elicited by actions of glutamate on BCs themselves [26],
remain to be identified. Interestingly, modifications of synap-
tic strength (long-term potentiation and long-term depres-
sion) have been shown to back propagate from the Xenopus
tectum to the retina in a process dependent on BDNF
signaling [27].
Unlike input recruitment on dendrites, absolute levels of

transmitter release regulate synapse formation of BC axons,
rather than differences among neighbors, and axon territories
are established independent of activity (Figures 2, 4I, and 4J).
Converging territorial axons thus appear to follow different
plasticity rules than axons that intermingle on target dendrites,
due in part, most likely, to their distinct spatial arrangements
[14, 28]. Finally, our findings reveal that dendrites and axons
of the same neurons can differentially engage in activity-
dependent competitions in vivo, adding further complexity



Figure 3. Retrograde Activity-Dependent Plasticity of BC Dendrites

(A–C) Projections through confocal image stacks of representative B6 dendrites inWT (A), TeNT (B), and TeNTsparse (C) retinas. Insets show individual con-

tacts of B6 dendrites and cones stained with fluorescent peanut agglutinin (PNA). The perimeters of cones and synaptic contacts are outlined in magenta

and green, respectively.

(D) Summary data comparing the numbers of cones contacted by B6s inWT (n = 51), TeNT (n = 27), and TeNTsparse (n = 42) retinas. Each small circle shows

the number of cones contacted by one B6. Large circles (error bars) represent the population averages (6SEM).

(E–G) Scatter plots of the area of synaptic contacts between cones and B6 dendrites as a function of distance from the center of the B6 soma. Each circle

represents the contacts of one cone with a B6 dendrite (WT: 0.746 0.05 mm2, n = 87; TeNT: 0.886 0.07 mm2, n = 71; TeNTsparse: 1.316 0.07 mm2, n = 72; p >

0.08 for WT versus TeNT and p < 0.0001 for TeNTsparse versus WT or TeNT). The dashed blue line in (E) indicates significant correlation in WT retinas

(p < 0.001), which was not observed for TeNT-expressing B6s.

See also Figures S2 and S3.
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and precision to the known influences of activity on circuit
development.
Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be foundwith this article online at http://dx.doi.org/

10.1016/j.cub.2014.08.018.
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Figure 4. Dendrites of Active BCs with Silenced Neighbors Expand to Recruit More Cones

(A) Image of BC somata in a flat-mounted TeNTpatchy retina showing a single tdTomato-positive YFP-negative B6 surrounded by TeNT-expressing (YFP-pos-

itive) neighbors. The inset schematic illustrates labeling (cyan, tdTomato; red, YFP) and activity status of the analyzed B6 cells (middle cell) and their neigh-

bors. Red circles with diagonal crossings indicate axonal silencing by TeNT expression.

(B) Binarized RF center maps of ten representative ON GCs recorded in WT (left) and TeNTpatchy (right) retinas. Spike-triggered averages (STAs) were

constructed from GC responses to 1 hr of Gaussian checkerboard white-noise stimulation. Significant center pixels were defined as having higher intensity

(ON GCs) at the temporal peak of the response than expected based on simulated STAs constructed by random placement of a similar number of spikes as

the cell in question (Supplemental Experimental Procedures). The side length of each pixel in the RF maps is 28 mm.

(C and D) Plots of the STA time course of the number of significant ON pixels (i.e., significantly higher intensity than mean) of ON GCs indicate reduced RF

center size but preserved response kinetics in TeNTpatchy (D; n = 130) compared to WT (C; n = 134) retinas.

(E) Comparison of the solidity of ON GC RFs in WT (n = 134) and TeNTpatchy (n = 130) retinas. Solidity was defined as the ratio of the area of the sum of the

significant pixels over the area of the smallest convex polygon encompassing them. Each small circle represents one ONGC. Large circles (error bars) mark

the population averages (6SEM).

(F) Projection through a confocal image stack of representative B6 dendrites in a TeNTpatchy retina. Insets show individual contacts of the B6 dendrite with

cones stained with fluorescent PNA. Perimeters of cones and synaptic contacts are outlined in magenta and green, respectively.

(G) Comparison of the numbers of cones contacted by B6s inWT (n = 51) and TeNTpatchy (n = 22). Each small circle shows the number of cones contacted by

one B6. Large circles (error bars) represent the population averages (6SEM). The increase in the number of cones contacted by B6s in TeNTpatchy retinas is

mediated by an expansion of their dendritic territories (WT: 137 6 10 mm2, n = 20; TeNTpatchy: 197 6 14 mm2, n = 15; p < 0.002).

(H) Scatter plot of the area of cone-B6 synaptic contacts as a function of distance from the center of the B6 soma. Each circle represents the contacts of

one conewith a B6 dendrite (WT: 0.746 0.05 mm2, n = 87; TeNTpatchy: 0.966 0.07 mm2, n = 56; p < 0.01). The dashed black line indicates significant correlation

(p < 0.02).

(I) Schematic illustrating the activity status of the analyzed B6 cells (shaded areas) and their neighbors in TeNTsparse, TeNT, WT, and TeNTpatchy mice. Red

circles with diagonal crossings indicate axonal silencing by TeNT expression.

(J) Schematic summarizing the changes in bipolar development observed in TeNTsparse, TeNT,WT, and TeNTpatchymice. Changes in dendritic structure and

connectivity with cones (magenta) are depicted in the top row, and effects on axonal morphology and the numbers of synapses (red) are illustrated in the

bottom row.

See also Figure S4.
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