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Spatial structure in light inputs is conveyed from the photoreceptors 
to the inner retina where it is sampled by the dendrites of the retinal 
ganglion cells (RGCs), the output cells of the retina. Empirical models 
dominate our quantitative characterization of this spatial integration 
process. Such models have been refined over the past several decades 
and in many cases can accurately describe responses to the same stim-
uli to which the models are fit1–3. No models for spatial integration, 
however, accurately predict the responses of individual RGCs across 
a wide range of spatial inputs. Further, empirical models by design do 
not provide a detailed basis for spatial sensitivity in terms of anatomi-
cal and physiological features of the retinal circuitry.

Two features of spatial integration in RGCs present major obstacles 
for a predictive model: nonlinearity and fine-scale heterogeneity. Cat 
RGCs have been classified based on whether they linearly (‘X’ cells) 
or nonlinearly (‘Y’ cells) integrate inputs across space4; RGCs show-
ing nonlinear spatial integration have since been identified in many 
species5–8. Standard approaches to mapping receptive fields, such as 
those based on spike-triggered averaging, do not capture nonlinear 
spatial integration. Bipolar cells had been initially proposed9,10 and 
then demonstrated11 to be the substrate for nonlinear subunits in the 
RGC receptive field. A remaining challenge is to determine which 
types of bipolar cell provide input to a given type of RGC and how the 
sampling of these bipolar cell inputs shapes RGC sensitivity.

Heterogeneity in spatial sampling among individual RGCs of the 
same type also represents a major obstacle for predictive models. RGC 
receptive fields exhibit large-scale structure that deviates from either 
circular or elliptical Gaussian profiles12. Heterogeneities on a finer scale 
have been measured as ‘hot spots’ in the receptive field that are unique 
for each RGC13–16. The authors of a previous study had measured fine-
scale heterogeneity in the receptive fields of rabbit RGCs but did not 
find a clear correspondence between hot spots in the receptive field 
and dendritic patterns of individual RGCs15. The authors had proposed  

that incorporating information about connectivity between bipolar 
cells and RGCs might clarify such a correspondence.

A predictive model of the spatial integration of RGCs would have 
broad implications for understanding retinal circuits. A model 
based directly on anatomical and physiological mechanisms would 
by necessity incorporate some aspects of the retinal circuitry and 
neglect others; a successful model would thus identify aspects of 
the circuit that are essential to characterize and how they shape 
spatial sensitivity. Such a model would also help explain how spatial 
integration changes as the circuitry shaping the responses changes, 
for example, as signals shift from the rod bipolar to cone bipolar 
circuits with increasing light levels. Finally, a successful predictive 
model would be a powerful tool with which to explore computa-
tionally how populations of RGCs encode the enormous space of 
visual patterns.

RESULTS
Nonlinear and heterogeneous spatial integration
We studied a distinct functional and morphological cell type in mouse 
retina that is identified by its large soma, large and sparse dendrites 
and high-contrast sensitivity (characterized previously as the G10 
RGC by its morphology and neuronal coupling pattern17 and referred 
to below as the ‘On alpha-like’ RGC18,19). We mapped the linear recep-
tive fields of these cells using standard white-noise stimuli (Fig. 1a–c). 
Consistent with results from other RGC types and in other species, 
the spatial profile of the receptive-field center contained hot spots that 
were not well fit by a two-dimensional Gaussian profile13–16 (Fig. 1b). 
Also consistent with data for other RGCs5–9, responses to temporally 
modulated stimuli showed clear evidence for nonlinear spatial inte-
gration: spatially uniform stimuli elicited a response dominated by the 
modulation frequency, whereas temporal modulation of light and dark 
bars elicited a response at twice the modulation frequency (Fig. 1d). 
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Understanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the 
retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. 
Existing models of this process generalize poorly to predict responses to new stimuli. This failure arises in part from properties 
of the ganglion cell response that are not well captured by standard receptive-field mapping techniques: nonlinear spatial 
integration and fine-scale heterogeneities in spatial sampling. Here we characterize a ganglion cell’s spatial receptive field using 
a mechanistic model based on measurements of the physiological properties and connectivity of only the primary excitatory 
circuitry of the retina. The resulting simplified circuit model successfully predicts ganglion-cell responses to a variety of spatial 
patterns and thus provides a direct correspondence between circuit connectivity and retinal output.
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Such ‘frequency doubling’ is a hallmark of nonlinear spatial integra-
tion10. The frequency-doubled response reached a peak for gratings 
with a spatial scale of ~40 µm and declined substantially only when 
the spatial scale exceeded the ~300 µm RGC receptive-field center, 
presumably stimulating the receptive-field surround (Fig. 1e).

The stimuli and analyses illustrated in Figure 1 and related stud-
ies highlight that RGCs do not integrate space linearly or smoothly. 
These approaches, however, provide incomplete information about 
alternative models of receptive fields because approaches based on 
measuring responses to white noise typically assume linear spatial 
integration20,21, and grating stimuli enable the characterization of 
sensitivity to spatial scale but not position in two dimensions. Thus we 
turned to stimuli and analyses that probed heterogeneity and nonlin-
earity more effectively. In particular, we studied responses to random 
textures (stimulus construction is described in Online Methods).

As expected from the grating responses (Fig. 1d,e), nonlinear 
spatial integration was apparent in responses to texture stimuli 
that had structure on a fine spatial scale but little or no structure 
on the scale of the entire receptive-field center (Fig. 2a). Cells 
responded robustly to these texture patterns with a dependence 
on spatial scale similar to that observed with grating stimuli 
(Fig. 2b). Such structure is expected from a receptive field com-
posed of nonlinear subunits but cannot be explained by a global  

nonlinearity applied after linear spatial integration (for example, 
in standard linear–nonlinear receptive-field models)21.

To probe fine-scale heterogeneity in the spatial sensitivity profiles 
of individual RGCs, we measured responses to three variants of these 
texture stimuli: a change in the random seed used to construct the texture 
(Fig. 2c), small translations of the texture (Fig. 2d) and rotations of  
the texture (Fig. 2e). These stimuli should produce little or no response 
modulation if they are perfectly centered on a receptive field that integrates 
over space with radial symmetry. This lack of response modulation holds 
true for receptive fields constructed from linear or nonlinear subunits. On 
alpha-like RGCs, however, were sensitive to all three manipulations, with 
unique response profiles for each cell (Fig. 2c–e). Errors in the centering of 

the stimulus with respect to the RGC dendrites, 
which typically were less than 30 µm, could 
not account for the differences we observed 
(Supplementary Fig. 1). This sensitivity  
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Figure 1  Receptive fields of On alpha-like RGCs have heterogeneous 
structure and nonlinear subunits. (a) Image of an RGC superimposed on 
the spatial component of the linear receptive field derived from white-noise 
stimulation. Ellipse shows the 2 standard deviation boundary of the best-
fit Gaussian profile. (b) One-dimensional profile of a slice of the receptive 
field denoted by the red line in a. (c) Average temporal filter from the 
pixels inside the ellipse in a. (d) Excitatory input currents (Resp.) elicited 
by a stimulus (Stim.) consisting of temporally modulated discs (top) or  
44 µm bars (bottom; Online Methods). (e) Frequency-doubled (F2) 
response power as a function of bar width. Error bars, s.e.m. (n = 4 trials).
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Figure 2  Nonlinear and heterogeneous receptive-
field properties cause unique responses to 
stimuli with fine spatial structure. (a) Texture 
stimuli with different spatial scales (top; see 
Online Methods for stimulus construction) and 
firing rate of an example cell in response to the 
presentation of each texture stimulus shown 
above it (bottom). Textures were flashed for 0.5 s 
with 1 s blank between trials with a maintained 
light level throughout. Gray bars indicate texture 
presentation. (b) Mean spike count as a function  
of the spatial scale of the texture. Error bars, 
s.e.m. (n = 7 cells). Arrowhead indicates spatial 
scale used for the stimuli in c–e. (c) Examples 
of two texture stimuli generated with different 
random seeds (top). Responses of two different  
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with eight random seeds (middle and bottom).  
(d) Stimulus examples and responses elicited by 
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eight different directions; ‘–’ indicates original 
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Error bars (c–e), s.d. across 10–20 trials. 



©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature NEUROSCIENCE  advance online publication	 �

a r t ic  l e s

highlights the need to incorporate fine-scale heterogeneity and nonlin-
earity into descriptions of RGC receptive fields.

We focused on the rotation condition because it was least influ-
enced by the large-scale Gaussian profile of the receptive-field center. 
Specifically, rotation of a fixed spatial pattern should not modulate 
the response of any radially symmetric mechanism, independent of 
whether the mechanism is composed of linear or nonlinear subunits. 
For a smooth but elongated mechanism, such as an elliptical Gaussian, 
responses should vary slowly and periodically with rotation angle. 
We also characterized sensitivity of RGCs to translations of differ-
ent sizes (Supplementary Fig. 2), to translations of natural patterns 
(Supplementary Fig. 3) and to texture patterns generated from dif-
ferent random seeds (Supplementary Fig. 4). Our aim next was to 
identify the anatomical and physiological mechanisms responsible for 
heterogeneity and nonlinearity in the spatial integration of RGCs and 
to characterize these mechanisms in sufficient detail that they could 
be used to construct a quantitative, predictive model for responses 
such as those in Figure 2.

Excitatory input dominates nonlinear spatial integration
How closely does the receptive field reflect the excitatory synaptic 
input provided by bipolar cells? To answer this question we compared 
the excitatory inputs and spike outputs of the same On alpha-like RGC 
in response to a rotated  texture (Fig. 3). The response patterns were 
nearly identical (Fig. 3c; r2 = 0.97 ± 0.005, mean ± s.e.m., 4 cells).

We also characterized sensitivity of RGC responses to rotation angle 
using linear Fisher information, a measure that defines the error bound 
of an optimal linear decoder (Online Methods). The information  

contained in the spikes and that contained in the excitatory input were 
not distinguishable when measured from the same cells (Fig. 3d). 
These results indicate that sensitivity to texture rotation is dominated 
by changes in an RGC’s excitatory synaptic input, with little contribu-
tion from inhibitory inputs or intrinsic properties. Thus we focused 
on identifying the bipolar cell type(s) that provide excitatory input 
to On alpha-like RGCs.

Type 6 bipolar cells provide majority of excitatory input
The unique response profiles of On alpha-like RGCs could be shaped 
by the sparse pattern of the ganglion cell’s dendrites and their connec-
tivity with the bipolar cell mosaics, as suggested previously15. To test 
this proposal, we first determined which bipolar cell types dominate 
excitatory input to On alpha-like RGCs and then characterized both 
the properties of the excitatory input these cells provide and their 
connectivity with the RGC dendrites.

RGCs receive input from a subset of bipolar cell types in part owing 
to the specific stratification patterns of bipolar-cell axon terminals and 
RGC dendrites22,23. Can a single bipolar cell type provide the substrate 
for nonlinear subunits? To answer this question, we first measured 
the fraction of the excitatory synapses on the RGC dendrites made 
by type 6 bipolar cells, which make many synaptic contacts with On 
alpha-like ganglion cells24.

We identified synapses between type 6 bipolar cells and On alpha-
like RGC dendrites by combining biolistic techniques with trans-
genic labeling of cells. We labeled retinas with four distinct markers 
(Fig. 4a–f). We biolistically transfected RGCs with cDNA encoding a 
red fluorescent protein (tdTomato) to visualize their dendrites and a 
tagged postsynaptic density protein (PSD95-CFP) to label excitatory 
postsynaptic sites24. All On bipolar cells expressed YFP in the Grm6-
YFP transgenic mouse line25, and type 6 bipolar cells were labeled by 
Synaptotagmin-2 (Syt2) immunostaining22. We identified On alpha-
like RGCs by their large somata and dendritic morphology. The quad-
ruple labeling allowed us to determine whether each postsynaptic site 
on the RGC was opposed to an On bipolar cell (Fig. 4c), and if so, 
whether that bipolar cell was type 6 (Fig. 4d,e and Supplementary 
Movie 1). Putative synapses with type 6 bipolar cells were distrib-
uted evenly throughout the dendritic tree of the ganglion cell and 
across experiments represented ~70% of the identified inputs from 
On bipolar cells (Fig. 4f and Supplementary Table 1). Owing to the 
dim and somewhat patchy nature of the Syt2 label, we likely missed 
some contacts with type 6 bipolar cells in our analysis. This percent-
age, therefore, is a lower bound on the proportion of type 6 bipolar 
cell inputs. An independent measurement of the proportion of type 6 
bipolar cell inputs gave a similar result (Online Methods).

Type 7 bipolar cells have also been observed to make synaptic 
contacts with the On alpha-like RGC25, so we repeated the synapse-
counting experiments in a transgenic line with most type 7 bipolar 
cells labeled23,26 (Fig. 4g–j and Supplementary Movie 2). Although 
particular type 7 bipolar cells often made multiple synaptic contacts 
with the RGC dendrites, consistent with previous results24, the major-
ity of type 7 bipolar cells did not make any synapses with the On 
alpha-like RGC. Across experiments, type 7 bipolar cells accounted 
for less than 5% of the identified excitatory synaptic sites on the RGC 
(Supplementary Table 2 and Supplementary Movie 2).

Type 6 bipolar cells constitute nonlinear subunits
The numerical predominance of type 6 bipolar cell inputs to the On 
alpha-like RGC suggests that they provide the anatomical substrate 
for nonlinear subunits. To test this suggestion, we quantified the spa-
tial scale of nonlinear interactions in the RGC receptive field and 
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determined whether these spatial nonlineari-
ties were aligned with the locations of type 6 
bipolar cells.

We quantified nonlinear interactions 
between two locations in space by measur-
ing responses to small spots of light presented 
either individually or simultaneously (Fig. 5). 
Two spatial locations interacted nonlinearly 
if the response to the spots presented simul-
taneously differed from the linear sum of the 
responses to the spots presented individu-
ally; we quantified the strength of such non-
linear interactions with a nonlinearity index 
that measured the deviation from linearity 
in units of the s.d. of the responses (Online 
Methods). As inputs to the RGC dendrites 
should be integrated linearly or near linearly 
under voltage clamp, we attribute nonlineari-
ties in the measured currents to the synaptic 
output of the bipolar cell. We observed non-
linear interactions most frequently for spots presented nearby with the 
average nonlinearity index falling near zero, indicating a linear inter-
action, when spots were 50–60 µm apart (Fig. 5e). This spatial scale 
is similar to the spatial scales characteristic of the frequency-doubled 
response (Fig. 1e) and of responses to random textures (Fig. 2b).

In the experiments described above we characterized the spatial 
extent of the nonlinear subunits but did not test the role of type 
6 bipolar cells specifically. Hence we recorded excitatory inputs in 
response to light stimuli targeted to individual type 6 bipolar cells 
using a mouse (Grm6:tdTomato) in which a subset of On bipolar 
cells is brightly labeled27 (Fig. 5a–d and Online Methods). If the 
targeted type 6 bipolar cell indeed constituted a nonlinear subunit, we 
would expect to see a larger nonlinear interaction between a pair of 
spots presented in its receptive field than between a pair of spots pre-
sented across the boundary of its receptive field (Fig. 5f). Indeed, the  

nonlinearity index was significantly larger for two spots located within 
a circular region with a radius of 19–25 µm centered on the bipolar  
cell dendrites than it was for spots located across this boundary  
(P < 0.01 across this range; Fig. 5g,h). The radius accounting for the 
most significant effect was 22 µm (P < 0.001; Fig. 5h,i), consistent with 
both the interaction distance between spots (Fig. 5e) and direct mea
surements of the bipolar cell receptive field28 (see below). Experimental 
uncertainties are likely to obscure, rather than inappropriately create, 
such a correspondence between bipolar cell location and nonlinear 
interaction strength. For example, some fraction of the many 
unlabeled bipolar cells could have receptive fields containing the pair 
of spots, causing scatter in the measured relationship between bipolar 
cell position and nonlinear interaction between spots. Uncertainty 
about spot location on the retina or tilt in the photoreceptor array 
would also blur this relationship. Thus, the actual correspondence  
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between spatial nonlinearities and the location of type 6 bipolar cells is  
likely stronger than that revealed in this experiment.

Predicting the unique spatial fingerprint of an RGC
The relationship between spot location relative to the type 6 bipo-
lar cell and interaction strength in the RGC input currents provides 
physiological evidence that type 6 bipolar cells contribute to nonlin-
ear spatial integration by the ganglion cell. Other bipolar cell types 
that make numerically fewer synaptic contacts with the On alpha-like 
RGCs (Fig. 4) could also contribute. Nonetheless, we constructed 
a model of the receptive field based on (i) the connectivity of the  
type 6 bipolar cells with the RGC dendrites, (ii) the bipolar-cell recep-
tive field and (iii) the nonlinear contrast-response function of the 
ganglion cell’s excitatory synaptic inputs.

We previously counted putative synapses between individual type 6 
bipolar cells and On alpha-like RGCs24 in the Grm6:tdTomato mouse 
described above (Fig. 5) with biolistic labeling of the ganglion cell 
dendrites and with expression of PSD95-CFP (as in Fig. 4). Here 
we found that this synaptic count depends linearly on the length of 
dendrite in the territory of the synaptic terminal of the bipolar cell 
(Fig. 6a–c). Next we characterized the distribution of the axon ter-
ritory areas in type 6 bipolar cells (Fig. 6d). Because the synaptic 
terminals of mouse bipolar cells tile space completely22, we randomly 

sampled the distribution of territory areas to construct realistic mosa-
ics of the bipolar cell population (Online Methods). Using a two-
dimensional projection of the dendritic pattern of an On alpha-like 
RGC, we assigned a weight to each bipolar cell in the model mosaic 
according to the linear relationship between the number of synapses 
and dendritic length (Fig. 6c,e).

Two physiological properties of subunits of bipolar cells com-
pleted the model (Fig. 7a). First, we measured the receptive field 
of type 6 bipolar cells from their responses to narrow bars of light 
(Fig. 7b). The dependence of the integrated current on bar position 
was well described by a circular Gaussian profile (2 s.d. width of  
44 ± 8 µm, mean ± s.e.m.; n = 5; Fig. 7b). This is considerably larger 
than expected from the ~15 µm diameter of the bipolar cell den-
drites, but is consistent with the only other measurements of mouse 
cone bipolar cell receptive fields28. The relatively large receptive field 
likely reflects spread of signals through the gap junctions coupling 
cone bipolar cells to AII amacrine cells29,30. The receptive-field size 
of the bipolar cell was fixed in the model. Second, we measured the 
nonlinearity in a ganglion cell’s excitatory inputs by stimulating the 
entire receptive-field center with uniform 300-µm discs at several 
contrasts. These large stimuli should uniformly stimulate the popula-
tion of bipolar cells that provide input to the RGC. We normalized 
the integrated current at each contrast to the maximum to construct 
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two spots from the labeled bipolar cell center (Online Methods). Dotted lines indicate the value of the bipolar cell receptive-field radius yielding the 
most significant difference (P < 10−3) between ‘within’ and ‘across’ regions. (h) Significance of the statistical test (P value of one-tailed t-test) that the 
nonlinearity index for ‘within’ bipolar spot pairs exceeds that for ‘across’ bipolar spot pairs (that is, within > across) plotted as a function of the assumed 
radius of the bipolar-cell receptive field (RF). (i) Mean nonlinearity index in each region of g for a bipolar cell receptive-field radius of 22 µm.
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the contrast-response function of the excitatory inputs (Fig. 7c). This 
function is a measure of the average nonlinear transformation occur-
ring between light stimuli and the RGC excitatory input11.

We generated the full receptive-field model (Fig. 7a) by combin-
ing the map of bipolar cell to RGC connectivity modeled for each 
recorded RGC as in Figure 6e with the spatial sampling (Fig. 7b) and 
nonlinearity characteristics (Fig. 7c) of type 6 bipolar cells. The model 
was entirely constrained by the measurements described above with 
the only free parameter being normalization of the overall response. 

The only visual stimulus used to construct the model for a particular 
RGC was a uniform disc used to measure the contrast-response func-
tion. Thus, spatial structure in the responses predicted by the model 
emerges from the bipolar cell receptive field, the anatomical estimate of 
bipolar cell connectivity based on the RGC dendrites and parameters 
of the synaptic contacts made by type 6 bipolar cells. Nonetheless, the 
model generated accurate predictions of stimuli with two-dimensional 
spatial structure, for example, the response profile of a ganglion cell 
across the 8 different rotation angles of the texture stimulus (Fig. 7d). 
The model predictions generalized to other spatial stimuli as well  
(see predictions for random textures in Supplementary Fig. 4).

Performance of the model was evaluated by comparing the mea
sured responses to a null prediction generated using a different 
random rotating texture as model input (Online Methods). Across 
a population of cells, the log-likelihood ratio (base 10) between the 
model prediction for the appropriate versus null rotating texture was 
85 ± 26 (± s.e.m.; n = 10); that is, the model prediction was ~1085 times 
more likely than the null model.

The model in Figure 7 is based on anatomical estimates of the 
weights of bipolar cell inputs to ganglion cells. Bipolar cell weights 
could also be estimated physiologically by generating a grid of bipolar  
cell positions, as in Figure 6e, and assigning a weight to each  

Figure 6  Construction of the bipolar cell 
weight map from anatomical measurements. 
(a) Image of RGC dendrites (blue), PSD95-
YFP (green) and type 6 bipolar cell (red). 
Putative synapses between the bipolar cell 
and RGC were counted as in Figure 3.  
(b) RGC dendrites were traced and the length 
of dendrite in the convex polygonal axonal 
territory of the bipolar cell axon terminal 
was measured (thin white lines). (c) Number 
of putative synapses as a function of RGC 
dendritic length in the bipolar cell axon 
territory (n = 28 bipolar cell–RGC pairs; raw 
data from ref. 27). Dashed line indicates 
best fit line through the origin (slope = 0.39 
synapses µm−1). (d) Histogram of the bipolar 
cell axon area (mean = 227 ± 51 µm2).  
(e) Model of bipolar cell weights based on the 
anatomical measurements in c and d. Tracing of RGC dendrites (green) and model of bipolar cell synaptic weights. Model bipolar cells with  
nonzero weights are outlined in black, and darker fill colors correspond to larger weights (Online Methods). 
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Figure 7  A predictive model of RGC responses to two-dimensional patterns 
of light. (a) Schematic of the model (Online Methods). The stimulus is 
sampled by the receptive field of each bipolar cell subunit (see b).  
The resulting input is passed through the nonlinear output function  
of the bipolar cell (see c). The bipolar cell outputs are each weighted by 
the anatomical model and summed at the RGC. (b) Measurement of the 
receptive field of a type 6 bipolar cell in one dimension. Charge transfer in 
response to 0.5 s steps of a bright bar (top) at different positions were fit 
by a one-dimensional Gaussian (bottom). (c) Contrast-response function 
measurement. Uniform 300 µm discs of light were presented to the 
RGC while excitatory input currents were measured. The charge transfer, 
normalized to its maximum, is plotted as a function of the contrast of 
the stimulus. (d) Response profiles of two RGCs to a texture stimulus 
at different rotation angles along with model predictions based on the 
measured nonlinear transfer function and imaged dendrites of each cell. 
Texture scale was 36 µm. Data points are charge transfer, normalized to 
the mean, of RGC excitatory input currents. Error bars, s.d. across 10 trials 
at each rotation angle. The model prediction was calculated for each 
degree of rotation. Solid purple line is the mean and shaded region is the 
s.d. over 10 choices of random seed in the jittering of the bipolar cell grid 
(Online Methods).
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bipolar cell based on a fine-scale receptive field (for example, Fig. 1a). 
Although the bipolar cell weights in such a model are estimated using 
white noise, the model constructed using these weights differs from 
a standard linear receptive field because the bipolar cell subunits 
each provide nonlinear input to the ganglion cell with a nonlinearity 
measured as above. This physiological approach to estimate bipolar 
cell weights, however, resulted in substantially poorer predictions 
than the model based on anatomical weights (by a factor of 106.5 for 
the example cell in Supplementary Fig. 5). This failure could arise 
from inherent difficulty in characterizing spatial nonlinearities using 
white-noise approaches and/or the hundreds of bipolar weights that 
need to be estimated. A previous study has found that receptive fields 
measured at high resolution with white noise captured gross features 
of dendritic morphology (as in Fig. 1a) but did not correlate strongly 
with fine dendritic structure15. It remains possible that bipolar cell 
weights derived from a receptive-field map with higher resolution and 
lower noise or those derived from a different spatial stimulus could 
improve model performance to match or exceed that of models based 
on the anatomically defined weights. The question of how to estimate 
nonlinear bipolar weights from a physiological measurement is an 
important area of future research.

Factors contributing to prediction accuracy
What factors determine the accuracy of the model predictions? To answer 
this question we constructed a set of alternative models (Fig. 8). To 
explore the role of fine-scale heterogeneity in bipolar cell weights (Fig. 6), 
we compared predictions of the anatomical-weights model with those of 
models based on a Gaussian distribution of bipolar weights (Fig. 8a). To 
explore the role of nonlinear spatial integration, we compared models 
with linear and nonlinear bipolar cell output functions (Fig. 8a).

Gaussian receptive-field models are often motivated anatomically 
assuming a constant density of inputs per unit length of RGC den-
drite (for example, Fig. 6c) and the increasing sparseness of more 
distal RGC dendrites31. In these models, the Gaussian receptive field 
originates from a decrease in the number of synapses with distance 
from the soma resulting from decreasing dendritic coverage, whereas 
the strength of individual synaptic contacts is assumed constant or 
near-constant across the dendritic tree. Assumptions that provide the 
basis for such Gaussian models have been confirmed by anatomical 
studies25,32–34. Such models do not incorporate fine-scale dendritic 
structure but instead assume it is accounted for by the Gaussian fal-
loff in input weights with radial distance. Similar to past models35, we 
generated a Gaussian model by assigning each cell in the simulated 
mosaic of type 6 bipolar cells a weight based on its distance from the 
center of mass of the RGC dendrites. Otherwise, we computed the 
predictions from this model identically to those from the anatomical-
weights model described in Figure 7.

Both the fine-scale heterogeneity and nonlinearity of the 
anatomical-weights model were critical as models with substitu-
tions in either factor did not predict the measured response pro-
file. The Gaussian model generated a slowly varying and periodic 
dependence on rotation angle owing to imperfect alignment of 
the stimulus on the bipolar weights (Fig. 8b,c). With a perfectly 
centered stimulus, the Gaussian model predicted no dependence 
on rotation angle (Fig. 8b,c). Across 80 rotating-texture responses 
from ten cells, the anatomical-weights model outperformed the 
Gaussian model (likelihood ratio; Online Methods) by a factor of 
10316 and the centered Gaussian model by a factor of 10133 (Fig. 8c). 
We describe additional tests of the importance of spatial features of 
the model in Supplementary Discussion.
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Figure 8  Tests of the predictive power of simplified receptive-field  
models. (a) Bipolar cell weight maps based on the anatomical model  
(as in Fig. 6) or a circular two-dimensional Gaussian (top). Weight maps  
are normalized so that the darkest colors represent maximal weight, but  
the sum of the weights was constant across models. Examples of a measured  
output nonlinearity and a linear function replacing the output nonlinearity. (b) Data from a single cell and predictions from models using the two 
different bipolar cell weight maps in a. The dashed line shows the prediction for an optimized Gaussian model with a free parameter to shift the 
stimulus relative to the Gaussian weight profile. The orange line shows the prediction for a Gaussian model where the stimulus is perfectly centered  
(a flat line by construction since the Gaussian weight map was radially symmetric). Error bars, s.d. across 10 trials at each rotation angle. (c) Measured 
responses versus predictions from the anatomical, Gaussian and centered Gaussian bipolar weights models for a population of cells. (d) Data points 
from b along with predictions for a model with linear bipolar cell output and anatomically estimated bipolar cell weights (purple). (e) Measured 
responses versus predictions from the nonlinear (filled symbols) and linear (open symbols) bipolar cell output models for the same population as in c. 
Both models used the anatomically defined bipolar cell weights. For population data in c and e, n = 10 cells at 80 total rotation angles.
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Nonlinear transfer at the bipolar cell output was also critical to the 
performance of the model. As expected for a stimulus with matching 
distributions of light intensity above and below the background, models 
with a linear bipolar cell output function averaged zero response across 
texture patterns (Fig. 8d,e) with predictions too far from the data to define 
a meaningful likelihood ratio (>10600). Such behavior cannot be ‘fixed’ 
by a single global nonlinearity, as in linear–nonlinear or related models; 
a global nonlinearity would elevate all responses equally, including the 
response in the absence of a stimulus altogether21. The precise shape of 
the bipolar cell output nonlinearity was relatively unimportant as a model 
with a simple rectification in place of the measured nonlinearity per-
formed worse than the model with the measured nonlinearity by only a 
factor of 12.1 across the population (data not shown).

DISCUSSION
Here we showed that responses of individual RGCs to arbitrary spa-
tial patterns can be predicted using the measured properties of the 
bipolar cell inputs to an RGC: size of the receptive field, connectivity 
pattern with the RGC and output nonlinearity. Predictions of this 
mechanistically based model were much more accurate than empirical 
models for spatial selectivity. The model describes how spatial sen-
sitivity depends on connectivity between bipolar cells and ganglion 
cells and the physiological properties of the signals RGCs receive from 
their bipolar-cell inputs.

Model simplifications and their validity
Our anatomically based model captured the response profiles of indi-
vidual RGCs more closely than previous receptive-field models based 
on linear spatial integration or a Gaussian weighting of nonlinear 
subunits (Fig. 8). The failure of linear models is expected given the 
clear nonlinearities in spatial integration exhibited by similar cell 
types in other species4,7,8. The failure of Gaussian models indicates 
that fine structure in the dendrites cannot be captured by a Gaussian 
falloff in bipolar cell weights with distance from the soma.

Our model, nonetheless, makes considerable simplifications. We 
neglected bipolar cells other than type 6 ones that make excitatory 
synapses on the On alpha-like RGC dendrites26 (Fig. 4). Type 7 bipo-
lar cells provide less than 5% of the excitatory synapses (Fig. 4) and 
hence are unlikely to have a major role shaping spatial sensitivity.  
Type 8 bipolar cells, which also stratify with the dendrites of On 
alpha-like RGCs, have much larger dendritic fields than either type 
6 or 7 bipolar cells22, so they would be predicted to be less sensitive 
to texture patterns with fine spatial structure. Based on the similar 
spatial selectivity of the excitatory synaptic input and spike responses 
(Fig. 3), the model also neglects presynaptic and postsynaptic inhibi-
tion and active properties of the RGC dendrites.

The success of the model in predicting RGC responses to two-
dimensional texture patterns (Figs. 7 and 8) indicates that, at least for 
these stimulus manipulations, the model incorporated (and neglected) 
an appropriate set of circuit mechanisms. Spatial stimuli of increased 
complexity, especially those including interactions between space and 
time, will challenge the predictive power of this simplified model but 
may highlight the applicability of the anatomically based approach. 
With targeted physiological measurements and appropriate anatomi-
cal markers, other input circuits could be mapped and layered on 
top of the primary photoreceptor to bipolar cell to RGC pathway. 
Even without mapping the additional circuitry, deviations from the  
type 6 bipolar cell pathway prediction under various stimulus 
conditions could be used to isolate the functional role of other circuits 
such as the excitatory input from other bipolar cell types or inhibition 
either onto the bipolar cell terminals or onto the RGC dendrites.

Quantitatively relating connectivity and function
We report to our knowledge the first identification of a particular 
bipolar cell type that provides the basis for nonlinear subunits in the 
RGC receptive field and the first quantitative prediction of the fine 
structure of the RGC receptive field from the connectivity between 
the bipolar cell mosaic and the RGC dendrites. Most previous studies 
of RGC receptive fields have used linear systems approaches and thus 
assume linear spatial integration by construction1 (Supplementary 
Fig. 5c). Models that capture nonlinear spatial integration have used 
simplifying assumptions about subunit connectivity such as a circular 
Gaussian profile35 (Fig. 8b). Although several groups have speculated 
about the connection between the dendritic morphology of individual 
ganglion cells and their spatial receptive fields15,31–38, they have not 
established a quantitative link between the two or have concluded 
that fine dendritic structure has only a weak and unimportant role in 
determining how the RGC samples visual space31.

The proliferation of specific labels for bipolar cell types22 along with 
a growing set of data on retinal connectivity39 will enable subsequent 
receptive-field models to incorporate connectivity data into quanti-
tative descriptions of RGC function. As researchers studying other 
visual areas or other sensory systems begin to uncover how inputs are 
mapped across the dendritic arbor of a neuron40, the general approach 
of incorporating detailed connectivity data into functional models 
could provide a valuable framework.

Dendritic morphology influences stimulus selectivity
The sparse dendritic morphology of On alpha-like RGCs led to fine-
scale heterogeneity in the weights of bipolar cell inputs (Figs. 6 and 8a)  
and contributed to their different responses to texture patterns pre-
sented at slightly different angles or positions (Fig. 2). Models based 
on Gaussian weighting of nonlinear subunits will be sensitive to tex-
tured stimuli but not to different texture patterns or small movement 
of a given texture10,41. Indeed, our anatomically defined model was 
more sensitive to small (15 µm) translations of natural image stimuli 
than a Gaussian receptive-field model (Supplementary Fig. 3). These 
considerations suggest that the relative density of RGC dendrites 
will be a key determinant of selectivity for different spatial features. 
Indeed, others have found receptive-field hot spots primarily in wide-
field ganglion cells and suggested that these cells might respond to 
different visual features than narrow-field ganglion cells with more 
dense dendritic arbors15.

Fine-scale structure of the receptive field is not beneficial for encod-
ing all classes of stimuli, but instead should be viewed as a parameter  
that influences what types of visual stimuli are best encoded. A hetero
geneous receptive field will create different ambiguities in a cell’s  
response than a Gaussian receptive field. For example, a small object 
crossing through the receptive field would create a temporally modu-
lated response owing to the spatial heterogeneity in synaptic weights; 
a similar response could be produced by temporal modulation of a 
spatially invariant object. However, a heterogeneous receptive field is 
more sensitive than a Gaussian receptive field to the position of a small 
object (Supplementary Fig. 6) or a small translation of a natural image 
(Supplementary Fig. 3). The vast array of RGC morphologies17,42–45 
may offer important clues about their stimulus selectivity35,46–48. Our 
anatomically based model of RGC responses could be integrated into 
future modeling and experimental work aiming to explore the relation-
ship between dendritic morphology and stimulus selectivity.

Encoding and decoding in a heterogeneous population
We found that individual RGCs of the same type respond differently to 
the same stimulus patterns (Fig. 2c–e) based on their unique dendritic 
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branching patterns. The unique response fingerprint provided by 
the dendrites, together the extensive dendritic overlap of nearby On 
alpha-like RGCs45,49, raises several questions about coding in a hetero
geneous population. Are the dendrites of neighboring RGCs of the 
same type positioned in a way that increases correlation between the 
cells50 or does independence at a small spatial scale among overlap-
ping dendritic fields allow for more independent encoding of spatial 
patterns16? Is heterogeneity exploited in the encoding of visual pat-
terns by the RGC population, or is it a source of noise, limiting the 
fidelity of the population code? If RGC selectivity to stimulus features 
such as texture angle or position does carry useful information, how 
is the signal decoded in downstream circuits? Although new experi-
ments will be needed to answer these questions, a predictive model of 
RGC responses will be an important tool for modeling the response 
of a heterogeneous population.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Recording. Tissue preparation and RGC recordings were performed as described 
previously19 except that the retina was affixed to a glass slide covered in d-poly
lysine (BD Biosciences). All animal procedures were approved by the Institutional 
Animal Care and Use Committee at the University of Washington. Cell-attached 
recordings with Ames solution in the recording pipette were used to measure 
spike responses. For whole-cell voltage clamp recordings in RGCs and type 6 
bipolars, the internal solution contained 105 mM CsCH3SO3, 10 mM TEA-Cl, 
20 mM HEPES, 10 mM EGTA, 5 mM Mg-ATP, 0.5 mM Tris-GTP, 2 mM QX-
314 and 0.2 mM Alexa Fluor 488 or Alexa Fluor 750 (pH ~7.3 with CsOH, ~280 
mOsm). RGCs were adapted to the background light level for at least 10 min 
before data collection, and data were collected only from cells that had stable and 
robust spike responses to 10% contrast steps.

The small-spot experiments (Fig. 5) were performed in a mouse with sparse 
labeling of On bipolar cells29. A target type 6 bipolar cell was first identified 
by axon terminal morphology in the two-photon microscope, and its cell body 
was identified by following the axon. Stimuli were centered on the cell body. 
Throughout this procedure, laser power was kept low (<4 mW at the sample) to 
minimize light exposure. A whole-cell voltage clamp measurement was made 
from a nearby On alpha-like RGC, and the cell was filled with a fluorescent dye. 
After the recording, the region of retina was imaged at higher power (~10 mW) 
so that bipolar dendrites were visible. If the axon of the target bipolar was apposed 
to the RGC dendrites in a single image plane (Fig. 5c), the data were included in 
the analysis. Alignment of spots was based on the center of mass of the bipolar 
dendrites in the high-power image (Fig. 5d).

Type 6 bipolar cells were recorded and filled in flat mount retina and identified 
by morphology and stratification in the inner plexiform layer (IPL) after record-
ings. We approached the bipolar cells by tearing a hole through the inner limiting 
membrane and ganglion cell layer ~100 µm lateral from the site of recording and 
moved the patch pipette diagonally through the IPL to reach the On bipolar cell 
bodies in the inner nuclear layer.

Visual stimulation. Visual stimuli were displayed on a 800 × 600 pixel OLED 
array (eMagin) and projected onto the photoreceptors from below. Pixels were 
either 1.2 or 1.8 µm on the retina. OLED display intensities were calibrated and 
linearized in software. Throughout stimulation, the retina was illuminated with 
a uniform background light, b, causing 500–1,500 rhodopsin isomerizations per 
rod per second. Light intensities, I, in the spatial patterns are described in terms 
of their contrast defined as

I b
b
− ×100%

Checkerboard stimuli used to measure the linear receptive field (Fig. 1a,b)  
consisted of random patterns of 18 µm squares at either −100% or 100% contrast 
covering the entire monitor and updated at a frame rate of either 15 Hz or 30 Hz. 
Frequency-doubled responses (Fig. 1e,f) were measured using square waves in 
space (−80% to 80% contrast) at a variety of bar widths, masked by a 600-µm-
diameter circle centered on the recorded cell. The contrast in each pixel within 
the mask was modulated sinusoidally at 3.75 Hz for 20 cycles per trial.

Texture stimuli were created by convolving a random binary pixel map 
with a two-dimensional Gaussian filter. The resulting images were cropped 
by a 300-µm-diameter circular mask and renormalized to contain a uniform 
distribution of contrasts from −100% to 100%. The mean intensity across the 
texture equaled that of the surrounding background-only region. The spatial 
scale of the texture is defined as the 2σ width of the Gaussian filter. Textures 
were presented for 0.5 s with at least 1.5 s between trials. Manipulations of the 
texture stimuli by changing the rotation angle, center location or random seed 
are described in Results.

In the single and paired-spot experiments (Fig. 5), spot stimuli were 9 µm in 
diameter, and presented at 300–2,000% contrast for 100 ms. For measurements 
of the type 6 bipolar cell receptive field (Fig. 7b), rectangular bars 9 µm × 72 µm 
at 1,500% contrast were presented for 0.5 s with 1 s between trials. Bar position 
was varied in steps of 9 µm parallel to the short dimension.

Uniform discs to measure the contrast response function in the input  
currents to the RGC (Fig. 7c) were 300 µm in diameter, centered on the RGC. 
They were presented for 0.5 s with 1.5 s between trials at contrasts ranging  
from −100% to 100%.

A test pattern presented on the stimulus monitor was imaged after each record-
ing to aid in the registration between visual stimuli and fluorescence images.

Analysis. The linear space-time receptive field (Fig. 1a–c) was calculated as the 
reverse correlation of the spike train with the random checkerboard stimulus 
in 5 ms bins. The spatial and temporal filters were deconvolved by an iterative 
procedure. First we computed an initial spatial projection of the receptive field 
by taking the maximum intensity value in time at each pixel. The following steps 
were iterated (usually twice): (i) a two-dimensional Gaussian was fit to a spatial 
projection of the receptive field, (ii) the temporal filter was estimated as the mean 
time projection for pixels inside the 2σ boundary of the spatial Gaussian, and  
(iii) the spatial projection was recomputed along the estimated temporal filter.

Cycle-averaged responses to temporally modulated bars excluded the first cycle 
in each trial. The power spectrum of the average response was computed, and we 
reported the power of the frequency-doubled ‘F2’ component at 7.5 Hz (Fig. 1e).

Responses to texture patterns were quantified as the spike count for cell-
attached recordings, or the charge transfer for whole-cell recordings, during the 
0.5 s presentation of the texture corrected for the baseline in the 0.5 s preceding 
stimulus presentation. To account for time dependent changes over long record-
ings, response amplitudes were drift corrected by subtracting a baseline obtained 
from the preceding and subsequent trials. Drift correction did not substantially 
alter the reported results.

The linear Fisher information, If, for rotated texture stimuli was as51:

I R C Rf = ∇ ∇−( ) ( )q q1

where R(θ) is the mean response for each rotation angle θ, and C is the covariance 
of the responses across angles.

To assess nonlinear interactions between spot locations (Fig. 5), we quantified 
the response to each spot presented individually, Ra and Rb, and the response  
to the spots presented simultaneously, Rab, as the projection of the current trace 
on each trial along a template derived from the mean response to the simultane-
ous presentation. The nonlinearity index, NLI, was computed based on these 
responses and the number of observations of each, N, as follows:

NLI
R R R

N N N

ab a b

ab

ab

a

a

b

b

=
− −

+ +
s s s2 2 2

Quantifying the spot responses by the integrated current gave similar results.
Type 6 bipolar cell responses (Fig. 7b) were quantified by the integrated current 

during presentation of each bar stimulus. Receptive fields were fit in each dimen-
sion by a one-dimensional Gaussian. Circularity of the receptive field was assessed 
in the two cells for which the receptive field was measured in two directions. In 
these cells, the mean difference between width in the two dimensions was 33%.

Contrast response functions for an RGC’s excitatory input (Fig. 7c) were 
quantified by integrating the current measured during the presentation of discs 
at varying contrasts.

To compare the RGC responses to different rotation angles of a texture, D(θ), 
to the model output, M(θ), we first scaled both the data and model to a mean 
response of unity (Fig. 7; model construction described below). The likelihood 
of a given model response given the data was calculated as

 = −







∏P

M D
g

D

( ) ( )

( )

q q
s qq

where Pg denotes the Gaussian probability density function. The likelihood of the 
model when presented with the same stimulus as the cell, ver, was compared to 
null prediction, null, obtained by presenting the model with a texture stimulus 
with the same statistics as the real stimulus, but a different random seed. We 
report log likelihood ratios for the comparison of the veridical to null models 
averaged over 10 null models with different random seeds:

log10


ver

null

Cell transfection. RGCs were biolistically transfected as described previ-
ously24,25,27. Briefly, isolated retinas were mounted on nitrocellulose membrane 
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filters RGC side up. Gold particles of 1.6 µm diameter were coated with plasmids 
encoding CFP-tagged PSD95 or tdTomato under the control of the CMV pro-
moter, and delivered to RGCs using a Helios gene gun (Bio-Rad). The retina was 
then incubated for 24 h in mouse artificial cerebral spinal fluid (119 mM NaCl, 
2.5 mM KCl, 1.3 mM MgCl2, 2.5 mM CaCl2, 1 mM NaHPO4, 11 mM glucose 
and 20 mM HEPES, pH 7.4) in an oxygenated chamber heated at 33 °C. At the 
end of the incubation, the retina was fixed in 4% (w/v) paraformaldehyde for  
20 min and washed in 0.1 M phosphate buffer saline (PBS, pH 7.4).

Immunohistochemistry. Fixed retinas were cryoprotected in PBS with a sucrose 
gradient (10%, 20% and 30%, w/v), and frozen and thawed twice. The tissue was 
then incubated in PBS containing mouse monoclonal anti-Syt2 antibody (1:200, 
znp-1, Zebrafish International Resource Center, University of Oregon, Eugene), 
5% normal donkey serum, 0.5% Triton X-100 and 0.05% sodium azide, for 5 d at 
4 °C. After washing the primary antibody, the tissue was incubated with a donkey 
anti-mouse IgG DyLight 649 secondary antibody (Jackson ImmunoResearch 
Laboratories; 715-606-150) overnight at 4 °C.

Imaging. Images of fixed retinas described in Figures 4 and 6 were acquired 
with Olympus FV1000 confocal microscope using 1.35 NA, ×60 or 1.4 NA, 
×60 oil objectives. The voxel size was 0.103 × 0.103 × 0.3 µm for Figure 4, and 
0.069 × 0.069 × 0.2 µm for Figure 6. Live images of RGC dendrites along with 
bipolar cells (Fig. 4) were acquired with a Nikon FN-1 two-photon microscope  
with 980 nm excitation light using a 1.0 NA, ×60 objective with a voxel size of 
0.414 µm × 0.414 µm × 0.350 µm. Images of RGC dendrites for the predictive 
model (Fig. 6) were acquired either with two-photon illumination at 980 nm 
using a 0.5 NA, ×20 objective with a voxel size of 1.24 µm × 1.24 µm × 1.00 µm 
or with one-photon infrared illumination using a 0.25 NA, ×10 objective with a 
voxel size of 1.55 µm × 1.55 µm × 1.50 µm.

Image analysis. Acquired images were median filtered to remove photomultiplier 
noise. For the image analysis in Figure 4, all PSD95 puncta in the entire image 
were identified as described previously25 using our custom-written program in 
Matlab (Mathworks). As shown in Supplementary Movies 1 and 2, each identi-
fied PSD95 punctum was visually assessed in 3D for potential apposition with 
the axonal terminals of type 6 and type 7 bipolar cells24. Type 7 bipolar cell axons 
were visualized using Gus-GFP transgenic mice22,26. Type 6 bipolar cell axons 
were identified by Syt2 immunoreactivity. The intensity of the Syt2 signal was 
variable across cells, making it more difficult to judge whether a particular type 
6 axon was apposed to the G10 dendrite when the immunolabeling was dim. 
To circumvent this limitation, we used the Grm6-YFP transgenic mouse line in 
which all On bipolar cell axons are brightly labeled by expression of YFP25. In this 
line, even dimly expressing Syt2 axons could be visualized using the YFP signal 
(Supplementary Movie 1).

For the image analysis in Figure 6, pairs of type 6 bipolar cells and On alpha-
like RGCs obtained in a previous study24 were reanalyzed. We arrived at an inde-
pendent estimate of the proportion of type 6 bipolar contacts from this analysis. 
We found that a given G10 RGC has on average 0.5 synapses µm−1 dendrite, 
so the 0.39 synapses µm−1 dendrite within the type 6 bipolar cell axonal field 
(Fig. 6c) represent 78% of the synapses assuming complete tiling of type 6 bipolar 
cell axon terminals.

Binary masks of bipolar axons and RGC dendrites were created using Amira 
(Visage Imaging), and projected onto a single z plane to generate polygonal ter-
ritories of bipolar axon terminals and for skeletonizing RGC dendrites. Numbers 
of synapses between individual pairs of type 6 bipolar cells and On alpha-like 
RGCs were obtained from a previous study24.

Bipolar weights model. Model bipolar cell locations were generated as a jittered 
hexagonal grid. Grid spacing was 16 µm plus gaussian noise (σ = 2 µm), and 

bipolar axon territories were generated by the Voronoi tessellation of these center 
positions. Randomization of the bipolar positions was varied as described in the 
text and legends, but other parameters remained fixed. These parameters were 
chosen so that the distribution of axon territory areas matched both the mean 
and s.d. of the measured distribution for type 6 bipolar cells (Fig. 6d).

Images of RGC dendrites were traced by hand. The length of dendrite within 
the axonal territory of each model bipolar was computed, and the bipolar weight 
was assigned according to the measured density of 0.39 synapses µm−1 of dendrite 
(Fig. 6c). Bipolar weights were rounded to the nearest integer, and each bipolar 
with a nonzero weight was assigned a circular Gaussian receptive field with a  
2σ width of 44 µm normalized to integrate to unity.

Construction of anatomical-weights model. A two dimensional stimulus was 
represented in the model by the contrast in each pixel, S(x,y). The stimulus was 
scaled and aligned to match the image of the RGC dendrites. The receptive field 
of each model bipolar, Fb(x,y), was multiplied point by point with the stimulus 
and summed. For each bipolar, the resulting contrast value

c S x y F x yb b
x y

= ∑ ( , ) ( , )
,

served as the input to the contrast response function, N(cb), measured for the 
RGC (Fig. 6c) and linearly interpolated between the measured points. The result-
ing bipolar responses were each scaled by the bipolar weight, Wb, as described 
above and summed to give the final model RGC response, M:

M W N cb b
b

N

=
=
∑ ( )
1

bipolars

To account for the unknown angle of shear between the photoreceptors on which 
stimuli were presented and the imaged RGC dendrites, we allowed the model to 
vary the assumed stimulus position by up to 25 µm from the position determined 
by alignment. We chose the stimulus position that maximized the log-likelihood 
estimate of the model prediction given the measured data. Evidence that this 
small displacement fitting procedure did not over-fit noise and bias our interpre-
tation of the quality of model fits is given in Supplementary Figure 1.

Alternative models. We tested alternative models by systematically substituting 
pieces of the nonlinear anatomical-weights model described above with more 
traditional assumptions about spatial integration (Fig. 8 and Supplementary 
Fig. 5). These substitutions are described below.

Gaussian bipolar weights. Bipolar weights were derived from a two-dimensional 
Gaussian distribution centered on the center of mass of the RGC dendrites, with 
a 2σ width matching the largest distance between dendrites. Each bipolar cell was 
assigned a weight by the distance between the bipolar center and the center of 
mass of the RGC dendrites. The weight matrix was normalized so that the sum of 
bipolar weights matched that of the anatomical-weights model. In the optimized 
Gaussian model, the fit likelihood was optimized by shifting the stimulus arbitrar-
ily relative to the Gaussian weight profile. Supplementary Table 3 summarizes 
the differences between the anatomical and Gaussian bipolar weights models.

Receptive field measurement weights model. Each bipolar cell received a weight 
equal to that of the nearest pixel in a spatial receptive field measured as described 
above with 18 µm flickering squares.

Linear. The contrast response function used as an input-output relationship for 
each bipolar was replaced by a line of unity slope.
51.	Abbott, L.F. & Dayan, P. The effect of correlated variability on the accuracy of a 

population code. Neural Comput. 11, 91–101 (1999).
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